Vertexing tridents

Sho Uemura

SLAC

Ch	0	11	or	m	ur	2
011	U	U	CI.		u	a

< E

Inputs

- Data: golden runs, pass3 (484551 nC, 77.51 nb⁻¹)
 - pairs1 trigger, filtered on all SVT flags (bias, position, burst-mode noise, header)
- MC: tritrig-beam-tri, pass2, 4962 files (24.73 nb^{-1})
- Normalize to total run luminosity (1240 nb⁻¹, very rough estimate)
- GBL tracks, unconstrained vertices
- Data-MC comparisons: black data, red MC

Cuts

- All cuts applied in org.hps.analysis.dataquality.TridentMonitoring
- Listing only significant cuts that aren't redundant with other cuts:
 - Quality: track chi2, vertex chi2
 - ► Track cuts: require top-bottom, p(e⁻), p(e⁺) < 0.85 GeV</p>
 - Radiative cut: *p*(*V*0) > 0.8 * *E*_{beam}
 - Event cut: <= 5 tracks, exactly 1 positron track in event</p>
 - Front layers: require L1 and L2 hits
 - L1 isolation: require > 1 mm to nearest strip
- Haven't optimized cuts; some cuts may be unnecessary (cluster match, event cut), other cuts may be useful (GBL kinks)
- No cluster information used
- Beamspot constraint (or equivalent) will eventually be useful

< 日 > < 同 > < 回 > < 回 > < □ > <

Cuts

- In MC, cuts are 22% efficient; starting with triggered tritrig-beam-tri
 - 65% have a V0
 - 54% pass trident cuts
 - 66% pass vertex cuts
- In data, 59% pass vertex cuts

Vertex distributions

 I see the same data-MC differences Matt does (lower mass peak in MC, more low-energy tridents)

Vertex resolution

- Fit the Gaussian core of the vertex distribution, and exponential tail
- Good data-MC agreement

Radiative vertex sigma vs. mass

Vertex tails

- Count vertices outside of 3σ: tails are roughly 10⁻² of total
- Tails asymmetric as expected
- Good data-MC agreement

Sho Uemura

Vertex Z-cut

- Z cut: E(events with z>zcut)=0.5
 - Blue curve on right (2.2 GeV, from proposal)
- Fit vertex tail to exponential
- Normalize to total run luminosity

