Trident rates \& shapes (tracking heavy \& lots of plots)

Matt Graham, SLAC
HPS Collaboration Meeting
Tuesday, October 27, 2015

Samples

- Data:
- ran over pass 3 unblind run 5772
- MC:
- full tridents="tritrig"
- generated $\boldsymbol{\sigma}=1.76 \mathrm{mb}$
- ran over 6 Million total generated events
- uses the all trident diagrams (including exchange \& interference)
- radiative tridents="RAD"
- generated $\boldsymbol{\sigma}=0.12 \mathrm{mb}$
- ran ~ 5 Million total generated events
- Bethe-Heitler tridents = "BH"
- generated $\boldsymbol{\sigma}=0.12 \mathrm{mb}$
- ran ~ 3 Million total generated events

Event Selection

- Prelims:
- pairs1 trigger
- pass-3 recon
- Tracks:
-\#of tracks < 5; \# of positrons == 1
- V0:
- χ^{2} unc <10
- $1.2>\mathrm{Pv}_{\mathrm{v} 0}(\mathrm{z})>0.55 \mathrm{GeV}$
$-\left|\mathrm{V}_{\mathrm{v} 0}(\mathrm{x})\right|<2 \mathrm{~mm} \&\left|\mathrm{~V}_{\mathrm{v} 0}(\mathrm{y})\right|<2 \mathrm{~mm} \&\left|\mathrm{~V}_{\mathrm{v} 0}(\mathrm{z})\right|<25 \mathrm{~mm}$
- $50 \mathrm{MeV}<\mathrm{P}_{\text {trk }}<900 \mathrm{MeV}$
- $\mathrm{P}_{\text {pos }}(\mathrm{y}) \times \mathrm{P}_{\text {ele }}(\mathrm{y})<0$
-exactly 1 V0 candidate passes all cut

MC vs data summary (take 4)

	Run 5772	tritrig	Bethe-Heitler	Radiative
\# tridents generated	xxxxxxx	6 M	3.00 M	4.82 M
generated trident XS	xxxxxxx	1.76 mb	8.28 mb	0.12 mb
integrated lumi	$4.8 / \mathrm{nb}$	xxxxxxx	xxxxxxx	xxxxxxx
\# of triggers (pairs1)	9.7 M	81.7 k	56.4 k	656.4 k
\# of events passing cuts	288.5 k	38.3 k	20.4 k	364.1 k
detected cross-section	$60.1 \mu \mathrm{~b}$	$112.5 \mu \mathrm{~b}$	$56.3 \mu \mathrm{~b}$	$9.1 \mu \mathrm{~b}$

Data vs tritrig XS: next slide tritrig vs $\mathrm{BH}+$ Rad: constructive interference

Full trident vs data comparison

Black=Data

Red=pure full tridents
plots are normalized to detected cross-sections on previous page
for $E\left(\mathrm{e}^{+}+\mathrm{e}^{-}\right)>0.8$ $\sigma($ data $)=32.5 \mu \mathrm{~b}$ $\sigma(M C)=42.4 \mu b$

Electron vs Positron Momentum

도ㄴㅡㅡ웅

Invariant mass distributions

SLAC

...higher $E\left(e^{+}+e^{-}\right) \rightarrow$ higher mass (no shocker there)
...within the split, data pushed higher than MC
all plots are normalized to total area

Mathew Graham, SLAC

Electron momentum distributions

...higher electron energy
...within the split, data pushed higher than MC (again)
all plots are normalized to total area

Positron momentum distributions

...overall good agreement
...within the split, data pushed lower than MC (again)

I'm using SeedTracks everywhere, but conclusion same for GBL
all plots are normalized to total area

Electron y-angle

...electrons pushed out a bit compared to MC
...funny business at -ive angle?
all plots are normalized to total area

Positron y-angle

...positrons actually look pretty good?

Electron y-angle > 30 mrad (Esum and Invariant Mass)

try cutting out events small angle tracks (either electron or positron)

Data compared to BH \& Radiative (not full $|\mathrm{A}|^{2}$)

SLAC

Mathew Graham, SLAC

Colorful plots (compare to slide 6)

Mathew Graham, SLAC

Requiring an ECAL match to both tracks

$$
\begin{aligned}
& \text { match requirement efficiency: } \\
& \text { data }=0.81 \\
& \text { full trident } \mathbf{m c}=0.84
\end{aligned}
$$

Now what?

- At high $E_{\text {sum }}$ data and MC seem to match up well...this is good! High $E_{\text {sum }}$ is where the dark photons are.
- the cross-sections about $\mathrm{E}_{\text {sum }}>0.8$
- radiative MC $\sim 6.3 \mu \mathrm{~b}$ vs $8.0 \mu \mathrm{~b}$ in the reach plot ($\sim 80 \%$)
- full trident (background) $\sim 42 \mu \mathrm{~b}$ vs 97μ b in the reach plot (~43\%)
- we win !??!
- Low $\mathrm{E}_{\text {sum }}$ is still (still) a mystery
- I'm starting to think we should take another look at MadGraph generator...how do we know it's correct? APEX got good shape (and rate?) ... but small bite ...

