Trident rates & shapes (tracking heavy & lots of plots)

Matt Graham, SLAC HPS Collaboration Meeting Tuesday, October 27, 2015

Samples

- Data:
 - ran over pass 3 unblind run 5772
- MC:
 - full tridents="tritrig"
 - generated σ =1.76mb
 - ran over 6 Million total generated events
 - uses the all trident diagrams (including exchange & interference)
 - radiative tridents="RAD"
 - generated σ =0.12mb
 - ran ~ 5 *Million* total generated events
 - Bethe-Heitler tridents = "BH"
 - generated σ =0.12mb
 - ran ~ 3 *Million* total generated events

• $1.2 > P_{v0}(z) > 0.55 \text{ GeV}$

- $|V_{v0}(x)| < 2 \text{ mm } \& |V_{v0}(y)| < 2 \text{ mm } \& |V_{v0}(z)| < 25 \text{ mm}$
- 50 MeV<P_{trk}<900 MeV
- $P_{pos}(y) \times P_{ele}(y) < 0$

Event Selection

pairs1 trigger

pass-3 recon

• Prelims:

• Tracks:

• $\chi^2_{unc} < 10$

• V0:

exactly 1 V0 candidate passes all cut

• **#of tracks < 5;** # of positrons == 1

Data vs tritrig XS: next slide tritrig vs BH+Rad: constructive interference

Black=Data Red=pure full tridents

plots are normalized to detected cross-sections on previous page

for E(e⁺+e⁻)>0.8 σ(data)=32.5μb σ(MC) =42.4μb

Electron vs Positron Momentum

Invariant mass distributions

all plots are normalized to total area

SLAC

...higher $E(e^++e^-) \rightarrow higher mass$ (no shocker there)

...within the split, data pushed higher than MC

Electron momentum distributions

Mathew Graham, SLAC 8

Positron momentum distributions

...overall good agreement

...within the split, data pushed **lower** than MC (again)

I'm using SeedTracks everywhere, but conclusion same for GBL all plots are normalized to total area

Electron y-angle

Mathew Graham, SLAC

10

Positron y-angle

Mathew Graham, SLAC 11

Electron y-angle > 30 mrad (Esum and Invariant Mass)

Data compared to BH & Radiative (not full |A|²)

Mathew Graham, SLAC

13

Colorful plots (compare to slide 6)

Mathew Graham, SLAC 14

Requiring an ECAL match to both tracks

Now what?

- At high E_{sum} data and MC seem to match up well...this is good! High E_{sum} is where the dark photons are.
 - the cross-sections about E_{sum} >0.8
 - radiative MC ~ 6.3 μ b vs 8.0 μ b in the reach plot (~80%)
 - full trident (background) ~ 42 µb vs 97 µb in the reach plot (~43%)
 - we win !??!
- Low E_{sum} is still (still) a mystery
- I'm starting to think we should take another look at MadGraph generator...how do we know it's correct? APEX got good shape (and rate?) ... but small bite ...

16