

⁵H production experiment by use of ⁷H production and decay at J-PARC

H. Fujioka (Tokyo Tech), T. Fukuda, E. Hiyama, T. Motoba, T. Nagae, S. Nagao, T. Takahashi To be uploaded on http://j-parc.jp/researcher/Hadron/en/Proposal_e.html

Letter of Intent for J-PARC 50 GeV Synchrotron

Decay Pion Spectroscopy of ${}^{5}_{\Lambda\Lambda}$ H produced by 7 Li(K^{-}, K^{+}) reactions

Feel free to contact me (fujioka[at]phys.titech.ac.jp)

if you need a pdf file.

Hiroyuki Fujioka^{1*}, Tomokazu Fukuda^{2,4†}, Emiko Hiyama^{3,4}, Toshio Motoba^{2,5}, Tomofumi Nagae⁶, Sho Nagao⁷, Toshiyuki Takahashi⁸

¹ Department of Physics, Tokyo Institute of Technology
 ² Osaka Electro-Communication University
 ³ Department of Physics, Kyushu University
 ⁴ RIKEN Nishina Center
 ⁵ Yukawa Instutute for Theoretical Physics, Kyoto University
 ⁶ Department of Physics, Kyoto University

⁷ Institute for Excellence in Higher Education, Tohoku University
 ⁸ Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization

June 15, 2018

Abstract

Proposed is a novel method to produce a double- Λ hypernucleus without using nuclear emulsion. A Ξ^- bound in ⁶He and a part of quasi-free Ξ^- 's, produced in ⁷Li(K^- , K^+) reactions, are absorbed in the reaction point, and ${}_{\Lambda\Lambda}^5$ H may be formed via $\Xi^- p \to \Lambda\Lambda$ conversion. Decay pion spectroscopy for ${}_{\Lambda\Lambda}^5$ H $\to {}_{\Lambda}^5$ He + π^- will be performed after event selection requiring a fast proton from non-mesonic weak decay of ${}_{\Lambda}^5$ He. The experimental setup will be based on the Ξ -hypernuclear spectroscopy experiment E70; a new cylindrical detector system will be installed between the K1.8 beamline spectrometer and the S-2S spectrometer for detection of the decay pion and the proton.

To be uploaded on http://j-parc.jp/researcher/Hadron/en/Proposal_e.html

Letter of Intent for J-PARC 50 GeV Synchrotron

Decay Pion Spectroscopy of ${}^{5}_{\Lambda\Lambda}$ H produced by 7 Li(K^{-}, K^{+}) reactions

Feel free to contact me (fujioka[at]phys.titech.ac.jp) if you need a pdf file.

Hiroyuki Fujioka^{1*}, Tomokazu Fukuda^{2,4†}, Emiko Hiyama^{3,4}, Toshio Motoba^{2,5}, Tomofumi Nagae⁶, Sho Nagao⁷, Toshiyuki Takahashi⁸

Abstract

Proposed is a novel method to produce a double- Λ hypernucleus without using nuclear emulsion. A Ξ^- bound in ⁶He and a part of quasi-free Ξ^- 's, produced in ⁷Li(K^- , K^+) reactions, are absorbed in the reaction point, and ${}^{5}_{\Lambda\Lambda}$ H may be formed via $\Xi^- p \to \Lambda\Lambda$ conversion. Decay pion spectroscopy for ${}^{5}_{\Lambda\Lambda}$ H $\to {}^{5}_{\Lambda}$ He + π^- will be performed after event selection requiring a fast proton from non-mesonic weak decay of ${}^{5}_{\Lambda}$ He. The experimental setup will be based on the Ξ -hypernuclear spectroscopy experiment E70; a new cylindrical detector system will be installed between the K1.8 beamline spectrometer and the S-2S spectrometer for detection of the decay pion and the proton.

Abstract

Proposed is a novel method to produce a double- Λ hypernucleus without using nuclear emulsion. A Ξ^- bound in ⁶He and a part of quasi-free Ξ^- 's, produced in ⁷Li(K^- , K^+) reactions, are absorbed in the reaction point, and ${}_{\Lambda\Lambda}^5$ H may be formed via $\Xi^- p \to \Lambda\Lambda$ conversion. Decay pion spectroscopy for ${}_{\Lambda\Lambda}^5$ H $\to {}_{\Lambda}^5$ He + π^- will be performed after event selection requiring a fast proton from non-mesonic weak decay of ${}_{\Lambda}^5$ He. The experimental setup will be based on the Ξ -hypernuclear spectroscopy experiment E70; a new cylindrical detector system will be installed between the K1.8 beamline spectrometer and the S-2S spectrometer for detection of the decay pion and the proton.

 $^{5}_{\Lambda\Lambda}H \rightarrow ^{5}_{\Lambda}He + \pi^{-}$

"mass production" (>10 /month identified) w/o using emulsion Contents **1. Physics Motivation** — Structure of ${}_{\Lambda}{}_{\Lambda}^{5}H$ 2. Experimental Principle a) Production of $_{\Lambda\Lambda}{}^{5}_{\Lambda}H$ b) Identification of ${}_{\Lambda\Lambda}{}^{5}H$ 3. Experimental Setup

4/27

B.F. Gibson et al., Prog. Theor. Phys. Suppl. **117**, 339 (1994)

Hiroyuki Fujioka (Tokyo Tech.) / HYP2018

Khin Swe Myint, S. Shinmura, and Y. Akaishi, Eur. Phys. A 16, 21 (2003)

H. Nemura et al., Phys. Rev. Lett. 94, 202502 (2005)

Finally, we commented on the size expected for the $\Lambda\Lambda$ - ΞN mixing effect in these light $\Lambda\Lambda$ hypernuclei. For models such as NSC97e which are close to describing well the $\Lambda\Lambda$ interaction as deduced from $B_{\Lambda\Lambda}(^{6}_{\Lambda\Lambda}He)$, we have argued that the $\Lambda\Lambda$ - ΞN coupling effect should not exceed 0.2 MeV in $^{6}_{\Lambda\Lambda}$ He, and a similar order of magnitude is expected for this and other medium effects in the A=5 $\Lambda\Lambda$ hypernuclei. For comparison with the better studied S=-1

I. N. Filikhin, A. Gal, and V. M. Suslov, Phys. Rev. C **68**, 024002 (2003).

I.N. Filikhin and A. Gal, Nucl. Phys. A **707**, 491 (2002)

 Many theoretical calculations support the existence of bound ⁵/_ΛH.

 caveat: the ΛΛ interaction might be too strong so as to account for the "old" binding energy of ⁶ΛΛHe.

 $\Delta B_{\Lambda\Lambda} = 1.01 \pm 0.20^{+0.18}_{-0.11} \,\text{MeV} \ (2002) \longrightarrow 0.67 \pm 0.17 \,\text{MeV} \ (2013)$

• The comparison of the $\Lambda\Lambda$ bond energy between ${}^{5}_{\Lambda\Lambda}H$ and ${}^{6}_{\Lambda\Lambda}He$ will be very important.

From an experimental point of view 7/27

- Two-body pionic decay possible ${}_{\Lambda\Lambda}{}^{5}H \rightarrow {}_{\Lambda}{}^{5}He + \pi^{-}$ cf. ${}_{\Lambda\Lambda}{}^{6}He \rightarrow {}_{\Lambda}{}^{6}Li + \pi^{-} \rightarrow {}_{\Lambda}{}^{5}He + p + \pi^{-}$
- No excited state in the daughter hypernucleus cf. ${}^{4}_{\Lambda\Lambda}H \rightarrow {}^{4}_{\Lambda}He^{(*)} + \pi^{-}$
- Remarkably high momentum of decay pion
 - All but ⁴_AH are excluded from the region of interest
- How to produce ⁵_{ΛΛ}H, and how to distinguish it from ⁴_ΛH?

Y. Yamamoto, M. Wakai, T. Motoba and T. Fukuda, Nucl. Phys. A 625, 107 (1997)

Production of double-Λ hypernuclei 8/27

Production of double-Λ hypernuclei 9/27

[emulsion exp.] Danysz et al., KEK-PS E176, E373 J-PARC E07

[counter exp.] BNL-AGS E885, E906 3 cf. PANDA ($\overline{p}p \rightarrow \Xi^{-}\Xi^{+}$)

kinetic energy (MeV) 100 50 30 20 15 10 7 5 4 3 P. Khaustov et al., 12 Phys. Rev. C 61, 027601 (2000) 10 8 branching ratio (%) 160 L (b) 140 Neutron spectrum for 120 high stopping probability events counts 33.200 Entries 60 -2 40 expected neutron 20 2 10 4 10 12 12 β inverse β inverse

H. Takahashi et al., Phys. Rev. Lett. **87**, 212502 (2001); J.K. Ahn et al., Phys. Rev. C **88**, 014003 (2013)

<u>J-PARC E07</u>

talk by Yoshida (Wed.) posters by Ekawa, Hayakawa

Production of double-A hypernuclei 10/27 <u>BNL-AGS E885</u> ${}^{12}C(K^-, K^+)^{12}_{\Lambda\Lambda}Be$

Direct production

BNL-AGS E885 planned at J-PARC (K1.8+"S-2S")

(counts/2MeV) $d\sigma^2/d\Omega dE > (nb/sr 2MeV)$ 50 40 30 0.25 0.5 0.75 Mass of Outgoing Particle (GeV/c2) 20 $^{11}B + \Xi^{-11}B$ $^{10}\text{Be} + 2\Lambda$ 10 $^{1}\text{Be} + \Lambda$ 10 $^{12}_{\Lambda\Lambda}Be$ -60 -40 -20 -80 0 20 Excitation Energy of ${}^{11}B + \Xi^-$ (MeV) (nb/sr) 20 $< d\sigma / d\Omega_{\rm L} >$ 10 $^{12}_{\Lambda\Lambda}Be$ 2 -50 -40 -30 -20 -10 0 $-B_{\Lambda\Lambda}$ (MeV) -50 -70 -60 -40 -30 -20 Excitation Energy of ${}^{11}B + \Xi^-$ (MeV)

(b)

K. Yamamoto et al., Phys. Lett. B 478, 401 (2000)

Production of double-A hypernuclei 11/27 **BNL-AGS E906** Quasi-free Ξ^- rescattering ³H **BNL-AGS E906** H (MeV/c) K^+ пп 150 K^{-} 140 IV 130 120 Π *EN* rescattering **Theory** 110 $\& \equiv N - \Lambda \Lambda$ conversion 100 ${}^{9}\text{Be}(K^{-}, K^{+})\{\Xi^{-} + {}^{8}\text{Li}^{*}\} \xrightarrow{\vee} \left[{}^{8}_{\Lambda\Lambda}\text{He}^{*} \right] + n$ III 90 $\longrightarrow \left[{}_{\Lambda\Lambda}{}^{8}\mathrm{H}^{*} \right] + p$ 80 80 90 100 110 120 130 140 150 160 <u>"double-A compound nucleus"</u>

→ fragmented into double- Λ hypernuclei, single- Λ hypernuclei etc. P_L (MeV/c) J.K. Ahn et al., Phys. Rev. Lett. **87**, 132504 (2001)

Y. Yamamoto, M. Wakai, T. Motoba, T. Fukuda, Nucl. Phys. A 625, 107 (1997)

P. Pile, HYP2003

Interpretations other than ${}_{\Lambda\Lambda}^{4}H$ 13/27 2) Double-A hypernuclei 1) Twin hypernuclei $^{7}_{\Lambda\Lambda}$ He $\rightarrow ^{7}_{\Lambda}$ Li^(*) + π^{-} $^{3}_{\Lambda}H \rightarrow ^{3}He + \pi^{-}$ \rightarrow ⁷Be + π^{-} $^{6}_{\Lambda}\text{He} \rightarrow {}^{6}\text{Li}^{(*)} + \pi^{-}$ **160**F The $^{7}_{\Lambda \Lambda}$ He decay 20 150 **Experimental Counts** 15 140 p_h (MeV/c) 130 10 120 5 ٥t 85 115 90 95 100 105 110 120 π -momentum (MeV/c) 90 I. Kumagai-Fuse and S. Okabe, 100 110 120 130 140 150 160 Phys. Rev. C 66, 014003 (2002) p, (MeV/c) S.D. Randeniya and E.V. Hungerford, Phys. Rev. C 76, 064308 (2007)

They may be produced from $\begin{bmatrix} 8\\\Lambda\Lambda \end{bmatrix}$ or $(\Xi^{-}, {}^{9}Be)_{atom}$

E961, An improved search for double Λ hypernuclei

New experiment at J-PARC

⁷Li target instead of ⁹Be

fragmented from $\begin{bmatrix} 6 \\ \Lambda \Lambda \end{bmatrix}^{*}$ \rightarrow double- Λ hypernuclei $^{4,5}_{\Lambda \Lambda}$ H \rightarrow twin hypernuclei

Ξ- stopping probability will be small because of the material density
 (Lithium: 0.53g/cm³, Beryllium: 1.85g/cm³)
 fragmented from (Ξ⁻, ⁷Li)_{atom}
 → double-Λ hypernuclei w/ A≤7 and Z=1,2
 →twin hypernuclei ^{3,4}_ΛH + ^{3,4}_ΛH

New experiment at J-PARC

Quasi-free *Ξ*[−] rescattering

BNL-AGS E906

⁷Li target instead of ⁹Be

fragmented from $\begin{bmatrix} 6\\\Lambda\Lambda}H^* \end{bmatrix}$ \rightarrow double- Λ hypernuclei $^{4,5}_{\Lambda\Lambda}H$ \rightarrow twin hypernuclei

New experiment at J-PARC

$7Li(K^-, K^+)_{\Xi}^7H$ reaction

E. Hiyama et al., Phys. Rev. C 78, 054316 (2008)

17/27

Fig. 1 Calculated ⁷Li(K^- , K^+) inclusive spectra for $p_{K^-} = 1.65$ GeV/c and $\theta_{K^+} = 0^\circ$. The *left* and *right panel* show the results corresponding to the case using potential ND and ESC with three k_f parameters listed in Table 1, respectively. These spectra are smeared assuming 2 MeV detector resolution

Koike and Hiyama, Few-Body Syst. 54, 1275 (2013)

Production via E-hypernuclear decay 18/27

PHYSICAL REVIEW C

VOLUME 54, NUMBER 1

JULY 1996

Double- Λ hypernuclear formation via a neutron-rich Ξ state

Izumi Kumagai-Fuse and Yoshinori Akaishi Institute for Nuclear Study, University of Tokyo, Tanashi, Tokyo 188, Japan (Received 21 March 1996)

Conversion processes for ${}^{7}_{\Xi}$ H are discussed as a typical example of the double- Λ hypernuclear formation via a neutron-rich Ξ state. ${}^{5}_{\Lambda\Lambda}$ H is formed with a surprisingly large branching ratio of about 90% from ${}^{7}_{\Xi}$ H that is produced by the (K^-, K^+) reaction on the 7 Li target. The ${}^{7}_{\Xi}$ H state has a narrow width, 0.75 MeV, and its population can be confirmed by tagging K^+ momentum. [S0556-2813(96)50507-8]

PACS number(s): 21.80.+a. 21.45.+v. 25.80.Nv, 25.80.Pw

I. Kumagai-Fuse, Y. Akaishi, Phys. Rev. C 54, R24 (1996)

$${}^{7}_{\Xi} H \rightarrow {}^{5}_{\Lambda\Lambda} H + n + n \sim 11 \text{ MeV},$$

$$\rightarrow {}^{4}_{\Lambda} H + \Lambda + n + n \sim 7 \text{ MeV},$$

$$\rightarrow {}^{4}_{\Lambda} H^* + \Lambda + n + n \sim 6 \text{ MeV},$$

$$\rightarrow {}^{3}_{\Lambda} H + \Lambda + n + n \sim 5 \text{ MeV}.$$

- Only 4 decay channels are allowed energetically
- Among them, the channel with the **fewest** bodies and the **largest** Q-value is most predominant (B.R. ~ 90% !!)

Production via E-hypernuclear decay 18/27

PHYSICAL REVIEW C

VOLUME 54, NUMBER 1

JULY 1996

Double- Λ hypernuclear formation via a neutron-rich Ξ state

Izumi Kumagai-Fuse and Yoshinori Akaishi Institute for Nuclear Study, University of Tokyo, Tanashi, Tokyo 188, Japan (Received 21 March 1996)

Conversion processes for ${}^{7}_{\Xi}$ H are discussed as a typical example of the double- Λ hypernuclear formation via a neutron-rich Ξ state. ${}^{5}_{\Lambda\Lambda}$ H is formed with a surprisingly large branching ratio of about 90% from ${}^{7}_{\Xi}$ H that is produced by the (K^-, K^+) reaction on the 7 Li target. The ${}^{7}_{\Xi}$ H state has a narrow width, 0.75 MeV, and its population can be confirmed by tagging K^+ momentum. [S0556-2813(96)50507-8]

PACS number(s): 21.80.+a. 21.45.+v. 25.80.Nv, 25.80.Pw

I. Kumagai-Fuse, Y. Akaishi, Phys. Rev. C 54, R24 (1996)

$${}^7_{\Xi}\mathrm{H} \rightarrow {}^5_{\Lambda\Lambda}\mathrm{H} + n + n \sim 11 \,\mathrm{MeV},$$

$$\rightarrow^4_{\Lambda} \mathrm{H} + \Lambda + n + n \sim 7 \mathrm{MeV},$$

$$\rightarrow^4_{\Lambda} \mathrm{H}^* + \Lambda + n + n \sim 6 \mathrm{MeV},$$

$$\rightarrow$$
³H+ Λ + Λ + n + n ~5 MeV.

- Only 4 decay channels are allowed energetically
- Among them, the channel with the **fewest** bodies and the **largest** Q-value is most predominant (B.R. ~ 90% !!)

 BNL-AGS E906 (P961R) two pions from sequential MWD

→ clue to identify parent double-∧ hypernuclei and daughter single-∧ hypernuclei

 This method is difficult to apply in case of ⁵^{∧∧}H decay

≈ 99MeV/c

 $^{5}_{\Lambda\Lambda}H \rightarrow ^{4}_{\Lambda}H + p +$ $^{4}_{\Lambda}H \rightarrow {}^{4}He +$

$_{\Lambda\Lambda}{}^{5}H \rightarrow _{\Lambda}{}^{5}He +$ $^{5}_{\Lambda}$ He $^{4}\text{He} +$ $\approx 133 MeV/c$

The distinction between the two decay modes are experimentally difficult.

P_{aH} (MeV/c)

Hiroyuki Fujioka (Tokyo Tech.) / HYP2018

4

${}^{5}_{\Lambda\Lambda}H \rightarrow {}^{4}_{\Lambda}H + p + \pi^{-}$ ${}^{4}_{\Lambda}H \rightarrow {}^{4}He + \pi^{-}$

$^{5}_{\Lambda\Lambda}H \rightarrow ^{5}_{\Lambda}He - ^{5$

≈ 99MeV/c

≈ 133MeV/c

The distinction between the two decay modes are experimentally difficult.

 $^{4}\text{He} +$

From a point of view of decay pion spectroscopy, the decay mode on the left side is regarded as a background process.

Novel method for ${}_{\Lambda\Lambda}{}^{5}H$ identification 23/27

Decay pion spectroscopy with tagging a proton from NMWD $_{\Lambda\Lambda}{}^{5}H \rightarrow {}^{5}_{\Lambda}He + \pi^{-}$ (referred to as a "fast proton")

 $^{5}_{\Lambda}\text{He} \rightarrow {}^{3}\text{H}+p+n$ proton energy distribution

M. Agnello et al., Nucl. Phys. 804, 151 (2008)

<u>MWD</u> $\Lambda \rightarrow p + \pi^- + 38 \text{ MeV}$

π⁻ carries away most of the released energy

(1N-induced) NMWD

 $\Lambda + p \rightarrow n + p + 176 \,\mathrm{MeV}$

BG rejection with fast proton tagging 24/27

three processes with ${}^{4}_{\Lambda}H(\rightarrow {}^{4}He + \pi^{-})$ in the final state

(a)

$$\begin{array}{c}
\stackrel{7}{=}H \rightarrow \stackrel{5}{\Lambda}_{\Lambda}H + n + n \sim 11 \text{ MeV}, \\
\stackrel{\rightarrow}{\rightarrow}\stackrel{4}{\Lambda}H + \Lambda + n + n \sim 7 \text{ MeV}, \quad \text{slow } \Lambda \rightarrow p + \pi^{-} \\
\stackrel{\rightarrow}{\rightarrow}\stackrel{4}{\rightarrow}H^{+} + \Lambda + n + n \sim 6 \text{ MeV}, \quad \text{slow } \Lambda \rightarrow p + \pi^{-} \\
\stackrel{\rightarrow}{\rightarrow}\stackrel{3}{\rightarrow}H + \Lambda + n + n \sim 5 \text{ MeV}.
\end{array}$$
(b)

$$\begin{array}{c}
\stackrel{6}{\left[\Lambda}\stackrel{6}{\Lambda}H^{*}\right] \rightarrow \stackrel{4}{\rightarrow}H + \Lambda + n \quad \text{slow } \Lambda \rightarrow p + \pi^{-} \\
\stackrel{(c)}{\left[\Lambda}\stackrel{5}{\Lambda}H \rightarrow \stackrel{4}{\rightarrow}\stackrel{4}{H} + (p + \pi^{-}/n + \pi^{0}) \quad \text{proton from MWD/no proton} \\
\stackrel{4}{\left[\Lambda}H \rightarrow \stackrel{4}{\rightarrow}H + \pi^{-}
\end{array}$$

A fast proton from NMWD has a larger kinetic energy than from MWD (including free Λ decay)

25/2

requirements

- 1. High resolution for (K⁻,K⁺) spectroscopy in order to distinguish ${}_{\Xi^{-}}^{7}H$ from QF events
 - \rightarrow S-2S will be the best option
- 2. Decay π^- and proton measurement
 - → a large-acceptance and compact CDS (cylindrical detector system)

superconducting magnet (\geq 2Tesla) gaseous detector (drift chamber? TPC?) plastic scintillator hodoscopes

J-PARC K1.8 beamline

• Production of
$${}^{4,5}_{\Lambda\Lambda}$$
H with a ⁶Li target
(depending on the B.E. of ${}^{5,6}_{\Xi^-}$ H and ${}^{4,5}_{\Lambda\Lambda}$ H)

 $\begin{array}{c} {}^{7}_{\Xi^{-}}H \rightarrow {}^{5}_{\Lambda\Lambda}H + 2n \\ {}^{5}_{\Lambda\Lambda}H \rightarrow {}^{4}_{\Lambda}H + p + \pi^{-} \\ {}^{5}_{\Lambda\Lambda}H \rightarrow {}^{5}_{\Lambda}He + \pi^{-} \end{array}$

Only possible by a counter experiment

 $_{\Xi^{-}}^{6}H \rightarrow _{\Lambda\Lambda}^{5}H + n$

 $_{\Xi^{-}}^{6}\mathrm{H} \rightarrow _{\Xi^{-}}^{5}\mathrm{H} + n$

 $_{\Xi^{-}}^{5}H \rightarrow _{A\Lambda}^{5}H$

 $\rightarrow {}_{\Lambda\Lambda}{}^{4}\mathrm{H} + 2n$

 $\rightarrow {}_{\Lambda\Lambda}{}^{4}\mathrm{H} + n$

- Selective production of ${}_{\Lambda\Lambda}{}^{5}H$ in a counter experiment
 - Determination of AA bond energy

Constraint on branching ratios such as:

• Lifetime measurement of $_{\Lambda\Lambda}{}^{5}H$

- A new method of ${}_{\Lambda\Lambda}{}^{5}H$ production via Ξ -hypernuclear decay and quasi-free Ξ rescattering is proposed.
- "Mass production" in comparison with emulsion experiments will open new possibility to investigate properties of double-Λ hypernuclei.
 - Ifetime, weak-decay B.R. as well as ΛΛ bond energy
- A Letter of Intent has been submitted to J-PARC.
- If you are interested, please contact us!

October 17, 2003

28/27

Table 7

Calculated pionic decay rates of light double- Λ hypernuclei to be produced in the (K^-, K^+) reaction on ⁹Be. The calculations are made for the two-body and three-body final states. DW denotes the use of pion distorted waves described in the text. All decay rates are given in units of the free- Λ decay rate Γ_{Λ}

Novel method for ${}_{\Lambda\Lambda}{}^{5}H$ identification 30/27

31/27

Y. Yamamoto, M. Wakai, T. Motoba and T. Fukuda, Nucl. Phys. A **625**, 107 (1997)

2 $5_{\Lambda\Lambda}H+2n$ $H+\Lambda+2n$ 1.5 $^{4}_{\Lambda}H^{*}+\Lambda+2n$ Width [MeV] $3_{H+2\Lambda+2n}$ 1 0.5 0 Δ⁻ 5 30 25 10 15 20 0 Q-value [MeV]

32/27

I. Kumagai-Fuse, Y. Akaishi, Phys. Rev. C 54, R24 (1996)