The Isospin strange asymmetry from the chiral effective theory

Luis Augusto Trevisan1 Carlos Mirez2

1Departament of Mathematics and Statistics
State University of Ponta Grossa

2Institute of Science, Engineering and Technology
Universidade Federal dos Vale do Jequitinhonha e Mucuri

HYP2018
Outline

Introduction

The model
 Review of the Chiral effective Lagrangian
 The set of Diagrams
 The coupling constant and the integrals

Result and Conclusion
Introduction

- Following the model of Effective Chiral theory Ref.[1,2] this paper estimates the total amount of strange quarks-antiquarks, in the proton and in the neutron.
Introduction

- Following the model of Effective Chiral theory Ref.[1,2] this paper estimates the total amount of strange quarks-antiquarks, in the proton and in the neutron.
- Due to the small mass difference involved, mainly among the kaons and hyperons, it is obtained an asymmetry in these quantities; that is, an isospin strange asymmetry.
In this section, we review the model presented in Ref. [2], where the chiral effective theory is used to obtain the strange quark asymmetry in the proton.
Introduction

The model
- Review of the Chiral effective Lagrangian
- The set of Diagrams
- The coupling constant and the integrals

Result and Conclusion
Some review of SU(3) theory is needed to explain and justify the basic features of the model
Some review of SU(3) theory is needed to explain and justify the basic features of the model.

The Lagrangian has the SU(3) symmetry:

\[
L = -D_{\mu}^2 \bar{B} \gamma^\mu \gamma^5 \{u_\mu, B\} - F_{\mu}^2 \bar{B} \gamma^\mu \gamma^5 + i \bar{B} \gamma^\mu [D_{\mu}, B],
\]

where

\[
u_\mu = i (\nu^\dagger \partial_\mu \nu - \nu \partial_\mu \nu^\dagger),
\]

and the operator \(u\) is given in terms of the pseudoscalar fields by

\[
u = \exp (i \varphi \sqrt{2} f \varphi).
\]
Review of the Chiral effective Lagrangian

- Some review of SU(3) theory is needed to explain and justify the basic features of the model
- The Lagrangian has the SU(3) symmetry:

\[\mathcal{L} = -\frac{D}{2} \bar{B} \gamma_\mu \gamma_5 \{u^\mu, B\} - \frac{F}{2} \bar{B} \gamma_\mu \gamma_5 + i\bar{B} \gamma_\mu [D^\mu, B], \quad (1) \]

where

\[u^\mu = i(\bar{u} \partial_\mu u - u \partial_\mu \bar{u}). \quad (2) \]
Review of the Chiral effective Lagrangian

- Some review of SU(3) theory is needed to explain and justify the basic features of the model
- The Lagrangian has the SU(3) symmetry:

\[\mathcal{L} = -\frac{D}{2} \bar{B} \gamma_\mu \gamma_5 \{ u^\mu, B \} - \frac{F}{2} \bar{B} \gamma_\mu \gamma_5 + i \bar{B} \gamma_\mu [D^\mu, B] , \]

(1)

where

\[u_\mu = i \left(u^{\dagger} \partial_\mu u - u \partial_\mu u^{\dagger} \right) , \]

(2)

and the operator \(u \) is given in terms of the pseudoscalar fields by

\[u = \exp \left(\frac{i \phi}{\sqrt{2} f_\phi} \right) \]

(3)
with f_ϕ the pseudoscalar decay constant. The covariant derivative D^μ is defined

\[[D^\mu, B] = \partial_\mu B + [\Gamma_\mu, B] \] (4)

and Γ_μ is the link operator,

\[\Gamma_\mu = \frac{1}{2} \left[u^\dagger, \partial_\mu u \right] . \] (5)

D and F are constants.
Review of the Chiral effective Lagrangian

The matrix form for the pseudoscalar field ϕ is given by:

$$
\phi = \sum_{a=1}^{8} \frac{\lambda_a}{\sqrt{2}} \phi_a
$$

$$
= \begin{pmatrix}
\frac{1}{\sqrt{2}} \pi^0 + \frac{1}{\sqrt{6}} \eta & \pi^+ & K^+ \\
\pi^- & -\frac{1}{\sqrt{2}} \pi^0 + \frac{1}{\sqrt{6}} \eta & K^0 \\
K^- & \bar{K}^0 & -\frac{2}{\sqrt{6}} \eta \\
\end{pmatrix}
$$

(6)

where λ_a are the SU(3) Gell-Mann matrices and the fields ϕ_a are given by $\phi_1 = (\pi^+ + \pi^-)/\sqrt{2}, \phi_2 = i(\pi^+ - \pi^-)/\sqrt{2}, \phi_3 = \pi^0, \phi_4 = (K^+ + K^-)/\sqrt{2}, \phi_5 = i(K^+ - K^-)/\sqrt{2}, \phi_6 = (K^0 + \bar{K}^0)/\sqrt{2}, \phi_7 = i(K^0 - \bar{K}^0)/\sqrt{2},$ and $\phi_8 = \eta.$
The octet baryon field B can be expressed in terms of the nucleon, the strangeness -1 hyperons Σ and Λ, and the strangeness -2 hyperon Ξ fields as

$$B = \sum_{a=1}^{8} \frac{\lambda_a}{\sqrt{2}} B_a$$

$$= \begin{pmatrix}
\frac{1}{\sqrt{2}} \Sigma^0 + \frac{1}{\sqrt{6}} \Lambda \\
\Sigma^- \\
\Xi^- \\
\Xi^0 \\
p \\
n \\
-\frac{2}{\sqrt{6}} \Lambda
\end{pmatrix}$$

where the individual baryon fields B_a are $B_1 = (\Sigma^+ + \Sigma^-)/\sqrt{2}$, $B_2 = (\Sigma^+ - \Sigma^-)/\sqrt{2}$, $B_3 = \Sigma^0$, $B_4 = (p + \Xi^-)/\sqrt{2}$, $B_5 = i(p - \Xi^-)/\sqrt{2}$, $B_6 = (n + \Xi^0)/\sqrt{2}$, $B_7 = i(n - \Xi^0)/\sqrt{2}$, and $B_8 = \Lambda$.

\[(7) \]
Review of the Chiral effective Lagrangian

- The resulting Lagrangian is a sum of two parts:
Review of the Chiral effective Lagrangian

- The resulting Lagrangian is a sum of two parts:
- The first has a term with a single pseudoscalar meson coupling to the baryon current, \mathcal{L}_ϕ^{BB}, that generates the rainbow diagram. Ref[2]
Review of the Chiral effective Lagrangian

- The resulting Lagrangian is a sum of two parts:
 - The first has a term with a single pseudoscalar meson coupling to the baryon current, $\mathcal{L}_{\phi BB}$, that generates the rainbow diagram. Ref[2]

\[
\mathcal{L}_{\phi BB} = \frac{1}{2f_\phi} \left\{ (D + F) \left[\bar{p} \gamma^\mu \gamma^5 p \partial_\mu \pi^0 - \bar{n} \gamma^\mu \gamma^5 n \partial_\mu \pi^0 + \sqrt{2} \right.
ight.
\]
\[
\left. \left(\bar{n} \gamma^\mu \gamma^5 p \partial_\mu \pi^- + \bar{p} \gamma^\mu \gamma^5 n \partial_\mu \pi^+ \right) \right] + (D - F) \left[\bar{\Sigma}^0 \gamma^\mu \gamma^5 p \partial_\mu K^- + \bar{p} \gamma^\mu \gamma^5 \Sigma^0 \partial_\mu K^+ + \sqrt{2} \left(\bar{\Sigma}^+ \gamma^\mu \gamma^5 p \partial_\mu \bar{K}^0 + \bar{p} \gamma^\mu \gamma^5 \Sigma^+ \partial_\mu K^0 \right) \right]
\]
\[
\left. - (D - F) \left[\bar{\Sigma}^- \gamma^\mu \gamma^5 n \partial_\mu K^- + \bar{n} \gamma^\mu \gamma^5 \Sigma^- \partial_\mu K^+ \right] \right] - \frac{1}{\sqrt{3}} (D + 3F) \left[\bar{\Lambda} \gamma^\mu \gamma^5 p \partial_\mu K^- + \bar{p} \gamma^\mu \gamma^5 \Lambda \partial_\mu K^+ + \bar{\Lambda} \gamma^\mu \gamma^5 n \partial_\mu \bar{K}^0 + \bar{n} \gamma^\mu \gamma^5 \Lambda \partial_\mu K^0 \right] - \frac{1}{\sqrt{3}} (D - 3F) \left[\bar{p} \gamma^\mu \lambda_5 p \partial_\mu \eta + \bar{n} \gamma^\mu \gamma^5 n \partial_\mu \eta \right] \right\}. \quad (8)
\]
Review of the Chiral effective Lagrangian

- The second term is a Weinberg-Tomozowa term, $\mathcal{L}_{\phi \phi BB}$, in which pseudoscalar mesons couple to the Baryon at same point.

\[
\mathcal{L}_{\phi \phi BB} = \frac{i}{2} f_{\phi} \left\{ \bar{p} \gamma^\mu p \left[\pi + \partial^\mu \pi - \pi - \partial^\mu \pi + 2 \left(K + \partial^\mu K - K - \partial^\mu K \right) \right] + \bar{n} \gamma^\mu n \left[p - \partial^\mu \pi + \pi + \partial^\mu \pi - K + \partial^\mu K - K - \partial^\mu K \right] \right\}.
\]
The second term is a Weinberg-Tomozowa term, $\mathcal{L}_{\phi\phi BB}$, in which pseudoscalar mesons couple to the Baryon at same point.

$$
\mathcal{L}_{\phi\phi BB} = \frac{i}{2f_{\phi}} \left\lbrace \bar{p} \gamma^{\mu} p \left[\pi^+ \partial_\mu \pi^- - \pi^- \partial_\mu \pi^+ + 2(K^+ \partial_\mu K^- - K^- \partial_\mu K^+) + K^0 \partial_\mu \bar{K}^0 - \bar{K}^0 \partial_\mu K^0 \right] + \bar{n} \gamma^{\mu} n \left[p^- \partial_\mu \pi^+ - \pi^+ \partial_\mu p^- + K^0 \partial_\mu \bar{K}^0 - \bar{K}^0 \partial_\mu K^0 \right] + \bar{p} \gamma^{\mu} p \left[\sqrt{2} \left(\pi^0 \partial_\mu \pi^+ - \pi^+ \partial_\mu \pi^0 \right) + K^+ \partial_\mu \bar{K}^0 - \bar{K}^0 \partial_\mu K^+ \right] + \bar{n} \gamma^{\mu} n \left[\sqrt{2} \left(\pi^- \partial_\mu \pi^0 - \pi^0 \partial_\mu \pi^- \right) + K^0 \partial_\mu \bar{K}^0 - \bar{K}^0 \partial_\mu K^0 \right] \right\rbrace. \tag{9}
$$
Introduction

The model
 - Review of the Chiral effective Lagrangian
 - The set of Diagrams
 - The coupling constant and the integrals

Result and Conclusion
The set of Diagrams

- The chiral SU(3) Lagrangian is expanded to the lowest order.
The set of Diagrams

The chiral SU(3) Lagrangian is expanded to the lowest order.
This leads to diagrams with hadron-meson fluctuations

Figure: Loop contributions to the \bar{s} PDF from the (a) kaon rainbow and (b) kaon bubble diagrams, and to the s-quark PDF from (c) hyperon rainbow, (d) tadpole, and (e) and(f) Kroll- Ruderman diagrams. Nucleons N and hyperons $Y = \Lambda; \Sigma$ are denoted by external and internal solid lines, respectively, and kaons K by dashed lines, with crosses representing insertions of the vector current.
The set of Diagrams

▶ The rainbow Fig. 1(a) and the bubble diagrams can be written in the form of convolutions of the nucleon \rightarrow hyperon + kaon splitting function and the \bar{s} PDF in the Kaon:

\[
\bar{s}(x) = \left(\sum_{KY} f_{rbw}^{KY} \right) \otimes \bar{s}_K.
\] (10)

▶ The convolution integral in eq.(10) is defined as:

\[
(f \otimes q)(x) = \int_0^1 dy \int_0^1 \delta(x-yz) f(y) q(z) \, dz.
\] (11)

▶ This is the usual expression for the calculations of the chiral loop corrections in meson cloud models.
The set of Diagrams

- The rainbow Fig. 1(a) and the bubble diagrams can be written in the form of convolutions of the nucleon → hyperon + kaon splitting function and the \bar{s} PDF in the Kaon:

$$\bar{s}(x) = \left(\sum_{KY} f_{KY}^{rbw} + \sum_{K} f_{K}^{bub} \right) \otimes \bar{s}_K. \quad (10)$$

- The convolution integral in eq.(10) is defined as:

$$\left(f \otimes q \right)(x) = \int_0^1 dy \int_0^1 dz \delta(x - yz) f(y) q(z). \quad (11)$$
The set of Diagrams

- The rainbow Fig. 1(a) and the bubble diagrams can be written in the form of convolutions of the nucleon → hyperon + kaon splitting function and the \(\bar{s}\) PDF in the Kaon:

\[
\bar{s}(x) = \left(\sum_{KY} f_{KY}^{rbw} + \sum_{K} f_{K}^{bub} \right) \otimes \bar{s}_{K}.
\]

- The convolution integral in eq.(10) is defined as:

\[
(f \otimes q)(x) = \int_{0}^{1} dy \int_{0}^{1} \delta(x - yz)f(y)q(z)dz.
\]

- This is the usual expression for the calculations of the chiral loop corrections in meson cloud models.
Without consider isospin symmetry violating effects, the antistrange PDFs in the kaon is given by

\[
\bar{s}_K = \bar{s}_0 + \bar{K} = \bar{s}_0 K,
\]

(12)

that at lowest order in the chiral expansion can be related to the valence distributions in the pion,

\[
\bar{s}_K = \bar{d}_\pi + = u_\pi + .
\]

(13)
Without consider isospin symmetry violating effects, the antistrange PDFs in the kaon is given by

$$\bar{s}_K = \bar{s}^+_K = \bar{s}^0_K,$$ \hspace{1cm} (12)
Without consider isospin symmetry violating effects, the antistrange PDFs in the kaon is given by

\[\bar{s}_K = \bar{s}_K^+ = \bar{s}_K^0, \]

that at lowest order in the chiral expansion can be related to the valence distributions in the pion,
The set of Diagrams

- Without consider isospin symmetry violating effects, the antistrange PDFs in the kaon is given by

\[\bar{s}_K = \bar{s}_K^+ = \bar{s}_K^0, \quad (12) \]

- that at lowest order in the chiral expansion can be related to the valence distributions in the pion,

\[\bar{s}_K = \bar{d}_{\pi^+} = u_{\pi^+}. \quad (13) \]
The present work uses the recent fit by from Aicher et al. ([?]) to the PDF of valence quarks in the meson:

\[q_v(x) = N \cdot x^{(\alpha-1)} \cdot (1 - x)^\beta \cdot (1 + \gamma \cdot x^\delta) \] \hspace{1cm} (14)

\(\alpha = 0.7, \beta = 2.03, \gamma = 13.8, \delta = 2.0 \) and \(N = 2.8168435 \), used to fit data at 4 GeV.
The set of Diagrams

The splitting function $f_{K_Y}^{rbw}$ is the sum of two terms,

$$f_{K_Y}^{rbw} = \frac{C_{K_Y}^2 \tilde{M}^2}{(4\pi f_K)^2} \left[f_Y^{on}(y) + f_K^{\delta}(y) \right], \quad (15)$$

where f_Y^{on} and f_K^{δ} are the on-shell and δ-function contributions, M is the nucleon mass, M_Y is the hyperon mass and $\tilde{M} = M + M_Y$ and $f_K = 113$ MeV is the kaon decay constant.
Introduction

The model
 Review of the Chiral effective Lagrangian
 The set of Diagrams
 The coupling constant and the integrals

Result and Conclusion
The coupling constant and the integrals

- The couplings C_{KY} defines the strength of the NKY interaction

For the proton fluctuations

\[C_{K0} + \Lambda = D + 3F^2 \sqrt{3}, \quad (16) \]

and

\[C_{K+} + \Sigma = \sqrt{2} C_{K0} + \Sigma = D - F \sqrt{2}, \quad (17) \]

For the neutron, the coupling constants are

\[C_{K0} \Lambda = D + 3F^2 \sqrt{3}, \quad (18) \]

and

\[C_{K+} - \Sigma = \sqrt{2} C_{K0} - \Sigma = D - F \sqrt{2}. \quad (19) \]
The coupling constant and the integrals

- The couplings C_{KY} defines the strength of the NKY interaction
- and are given in terms of the SU(3) coefficients D and F

\[C_{KY} \]

\[C_{KY} + \Lambda = D + 3F^2 \sqrt{3}, \quad (16) \]

\[C_{KY}^0 \Sigma + \Lambda = \sqrt{2} C_{KY} + \Sigma^0 = D - F \sqrt{2}, \quad (17) \]

For the neutron, the coupling constants are

\[C_{KY}^0 \Lambda = D + 3F^2 \sqrt{3}, \quad (18) \]

\[C_{KY}^+ \Sigma^0 = \sqrt{2} C_{KY}^0 \Sigma^0 = D - F \sqrt{2}. \quad (19) \]
The coupling constant and the integrals

- The couplings C_{KY} defines the strength of the NKY interaction
- and are given in terms of the SU(3) coefficients D and F
- For the proton fluctuations

\[C_{K+\Lambda} = \frac{D + 3F}{2\sqrt{3}}, \quad (16) \]

and

\[C_{K^0\Sigma^+} = \sqrt{2}C_{K^+\Sigma^0} = \frac{D - F}{\sqrt{2}}, \quad (17) \]
The coupling constant and the integrals

The couplings C_{KY} defines the strength of the NKY interaction

and are given in terms of the SU(3) coefficients D and F

For the proton fluctuations

$$C_{K+\Lambda} = \frac{D + 3F}{2\sqrt{3}}, \quad (16)$$

and

$$C_{K^0\Sigma^+} = \sqrt{2}C_{K^+\Sigma^0} = \frac{D - F}{\sqrt{2}}, \quad (17)$$

For the neutron, the coupling constants are

$$C_{K^0\Lambda} = \frac{D + 3F}{2\sqrt{3}}, \quad (18)$$

and

$$C_{K^+\Sigma^-} = \sqrt{2}C_{K^0\Sigma^0} = \frac{D - F}{\sqrt{2}}. \quad (19)$$
The coupling constant and the integrals

From Ref. [?], we can fix the parameters $F = 0.464$ and $D = 0.806$ by sum rules:

$$a_3 = g_A = F + D = 1.269 \pm 0.003$$

$$a_8 = 3F + D = 0.585 \pm 0.025 \quad (20)$$

where a_3 and a_8 are related to the polarized structure functions
The coupling constant and the integrals

- The on shell hyperon piece,

\[f_{\text{on}}(Y) = Y \int \text{dk}^2 \perp k^2 + \left[M_Y - (1 - Y)M \right]^2 \left(1 - Y \right)^2 + D^2_{KY} F_{\text{on}}(21) \]

contributes at \(y > 0 \).

\[D_{KY} = k^2 - m^2_K = - \left[k^2 \perp + yM^2 \right] + (1 - y)m^2_K - y(1 - y)M^2 \] \((22) \)

\[F_{\text{on}} \] is the kaon virtuality for an on-shell hyperon intermediate state, given by

\[F_{\text{on}} = 1 - D^2_{KY} D^2_{\mu} (23) \]

where \(\mu \) is a cutoff mass.
The coupling constant and the integrals

The on shell hyperon piece,

\[
f_Y^{(on)}(y) = y \int dk_\perp^2 \frac{k_\perp^2 + [M_y - (1 - y)M]^2}{(1 - y)^2 + D_{KY}^2} F^{(on)} \tag{21}
\]

contributes at \(y > 0 \).
The coupling constant and the integrals

- The on shell hyperon piece,

\[f_Y^{(on)}(y) = y \int dk^2_\perp \frac{k^2_\perp + [M_y - (1 - y)M]^2}{(1 - y)^2 + D_{KY}^2} F^{(on)} \]

contributes at \(y > 0 \).

- \(D_{KY} \) is the kaon virtuality for an on-shell hyperon intermediate state, given by

\[D_{KY} = k_\perp^2 - m_K^2 = -\left(k_\perp^2 + yM^2 + (1 - y)m_K^2 - y(1 - y)M^2\right) \]

\[(1 - y)^2 \]

\[\mu \] is a cutoff mass.
The coupling constant and the integrals

- The on shell hyperon piece,

\[f_Y^{(on)}(y) = y \int dk_\perp^2 \frac{k_\perp^2 + [M_y - (1 - y)M]^2}{(1 - y)^2 + D_{KY}^2} F^{(on)} \]

contributes at \(y > 0 \).

- \(D_{KY} \) is the kaon virtuality for an on-shell hyperon intermediate state, given by

\[D_{KY} = k^2 - m_K^2 = - \frac{[k_\perp^2 + yM_y^2 + (1 - y)m_K^2 - y(1 - y)M^2]}{(1 - y)} \]

(22)
The coupling constant and the integrals

- The on shell hyperon piece,

\[f_Y^{(on)}(y) = y \int dk_\perp^2 \frac{k_\perp^2 + [M_Y - (1 - y)M]^2}{(1 - y)^2 + D_{KY}^2} F^{(on)} \]

contributes at \(y > 0 \).

- \(D_{KY} \) is the kaon virtuality for an on-shell hyperon intermediate state, given by

\[D_{KY} = k^2 - m_K^2 = - \frac{[k_\perp^2 + yM_Y^2 + (1 - y)m_K^2 - y(1 - y)M^2]}{(1 - y)} \]

- \(F^{(on)} \) is a regulating function that regularizes the ultraviolet divergence of the \(k_\perp^2 \) integration.
The coupling constant and the integrals

- The on shell hyperon piece,

\[f_Y^{(on)}(y) = y \int dk_\perp \frac{k_\perp^2 + [M_y - (1 - y)M]^2}{(1 - y)^2 + D_{KY}^2} F^{(on)} \] \hspace{1cm} (21)

contributes at \(y > 0 \).

- \(D_{KY} \) is the kaon virtuality for an on-shell hyperon intermediate state, given by

\[D_{KY} = k^2 - m_K^2 = - \frac{k_\perp^2 + yM_y^2 + (1 - y)m_K^2 - y(1 - y)M^2}{(1 - y)} \] \hspace{1cm} (22)

- \(F^{(on)} \) is a regulating function that regularizes the ultraviolet divergence of the \(k_\perp^2 \) integration.
- By considering the Pauli-Villars regularization method, \(F^{(on)} \) is equivalent to

\[F^{(on)} = 1 - \frac{D_{KY}^2}{D_\mu^2} \] \hspace{1cm} (23)
The coupling constant and the integrals

- The f^K_δ arises from kaons with zero light-cone momentum,
The coupling constant and the integrals

- The f_K^δ arises from kaons with zero light-cone momentum,

$$f_K^\delta(y) = \frac{1}{\bar{M}^2} \int dk^2_{\perp} \log \Omega_K \delta(y) F^\delta,$$

where

$$\Omega_K = k^2_{\perp} + m^2_K$$

- $F^{(\delta)}$ is the corresponding regulating function.
The coupling constant and the integrals

- The f_K^δ arises from kaons with zero light-cone momentum,

$$f_K^\delta(y) = \frac{1}{\bar{M}^2} \int dk^2_\perp \log \Omega_K \delta(y) F^\delta,$$ \hspace{1cm} (24)

where

$$\Omega_K = k^2_\perp + m_K^2$$ \hspace{1cm} (25)

- $F^{(\delta)}$ is the corresponding regulating function.

- By applying the Pauli-Villars regularization method twice:
The coupling constant and the integrals

- The f_δ^K arises from kaons with zero light-cone momentum,

$$f_\delta^K(y) = \frac{1}{M^2} \int dk^2_\perp \log \Omega_K \delta(y) F_\delta,$$ \hspace{1cm} (24)

where

$$\Omega_K = k^2_\perp + m^2_K$$ \hspace{1cm} (25)

- $F^{(\delta)}$ is the corresponding regulating function.

- By applying the Pauli-Villars regularization method twice:

$$F^{(\delta)} = 1 - \frac{a_1 \log(\Omega_{\mu_1}) + a_2 \log(\Omega_{\mu_2})}{\log(\Omega_K)},$$ \hspace{1cm} (26)

where μ_1 and μ_2 are cutoff mass and
The coupling constant and the integrals

- The f^δ_K arises from kaons with zero light-cone momentum,

\[f^\delta_K(y) = \frac{1}{M^2} \int dk^2_\perp \log \Omega_K \delta(y) F^\delta, \quad (24) \]

where

\[\Omega_K = k^2_\perp + m_K^2 \quad (25) \]

- $F^{(\delta)}$ is the corresponding regulating function.

- By applying the Pauli-Villars regularization method twice:

\[F^{(\delta)} = 1 - \frac{a_1 \log(\Omega_{\mu_1}) + a_2 \log(\Omega_{\mu_2})}{\log(\Omega_K)}, \quad (26) \]

where μ_1 and μ_2 are cutoff mass and

\[\Omega_{\mu_i} = k^2_\perp + \mu_i^2. \quad (27) \]
The coupling constant and the integrals

- The constants a_1 and a_2 are calculated as follows:

\[
\begin{align*}
 a_1 &= \mu_2^2 - m_2 K \mu_1^2 - \mu_1, \\
 a_2 &= -\mu_1 - m_2 K \mu_1^2 - \mu_1.
\end{align*}
\]

(28)

Refs. [2,3] gives the following values for $\mu = \mu_1 = 545$ MeV and $\mu_2 = 600$ MeV. With the experimental uncertainty, considering two standard deviations, we may take $\mu = 526$ MeV and $\mu_2 = 894$ MeV.

The bubble diagram fig (1b) contributes to \bar{s} amount Ref[2,3]f (bub)$K + = 2 f (bub)$K_0 = - \bar{M}_2 \left(\frac{4 \pi}{f K} \right)^2 f (\delta K)$.

(29)
The coupling constant and the integrals

The constants a_1 and a_2 are calculated as follows:

$$a_1 = \frac{\mu_2 - m^2}{\mu_2 - \mu_1}, \quad a_2 = -\frac{\mu_1 - m^2}{\mu_2 - \mu_1}. \quad (28)$$
The coupling constant and the integrals

The constants a_1 and a_2 are calculated as follows:

$$a_1 = \frac{\mu_2 - m_K^2}{\mu_2 - \mu_1}, \quad a_2 = -\frac{\mu_1 - m_K^2}{\mu_2 - \mu_1}. \quad (28)$$

Refs. [2,3] gives the following values for $\mu = \mu_1 = 545$ MeV and $\mu_2 = 600$ MeV. With the experimental uncertainty, considering two standard deviations, we may take $\mu = 526$ MeV and $\mu_2 = 894$ MeV.
The coupling constant and the integrals

The constants a_1 and a_2 are calculated as follows:

$$a_1 = \frac{\mu_2 - m^2_K}{\mu_2 - \mu_1}, \quad a_2 = -\frac{\mu_1 - m^2_K}{\mu_2 - \mu_1}. \quad (28)$$

Refs. [2,3] gives the following values for $\mu = \mu_1 = 545$ MeV and $\mu_2 = 600$ MeV. With the experimental uncertainty, considering two standard deviations, we may take $\mu = 526$ MeV and $\mu_2 = 894$ MeV.

The bubble diagram fig (1b) contributes to \bar{s} amount Ref[2,3]
The coupling constant and the integrals

- The constants a_1 and a_2 are calculated as follows:

\[
a_1 = \frac{\mu_2 - m_K^2}{\mu_2 - \mu_1}, \quad a_2 = -\frac{\mu_1 - m_K^2}{\mu_2 - \mu_1}.
\] (28)

- Refs. [2,3] gives the following values for $\mu = \mu_1 = 545$ MeV and $\mu_2 = 600$ MeV. With the experimental uncertainty, considering two standard deviations, we may take $\mu = 526$ MeV and $\mu_2 = 894$ MeV.

- The bubble diagram fig (1b) contributes to \bar{s} amount Ref[2,3]

\[
f_{K^+}^{(bub)} = 2f_{K^0}^{(bub)} = -\frac{\bar{M}^2}{(4\pi f_K)^2} f_{K}^{(\delta)}.
\] (29)
The main point of this work is to calculate the difference in the amount of strange quarks of the proton to the neutron, through the effective chiral theory.
The main point of this work is to calculate the difference in the amount of strange quarks of the proton to the neutron, through the effective chiral theory.

To this end, it is interesting to recall the mass of the Kaons and the hyperons involved.
The coupling constant and the integrals

- The main point of this work is to calculate the difference in the amount of strange quarks of the proton to the neutron, through the effective chiral theory.
- To this end, it is interesting to recall the mass of the Kaons and the hyperons involved.
- The electromagnetic interaction are one of the reasons of this difference.
The coupling constant and the integrals

The total mass (in MeV) for each fluctuation is given below:

\[p \rightarrow \Sigma^+ K^0 : 1189.4 + 497.6 = 1687.0 \]
\[p \rightarrow \Sigma^0 K^+ : 1192.6 + 493.7 = 1686.6 \]
\[p \rightarrow \Lambda K^+ : 1115.7 + 493.7 = 1609.4 \]
\[n \rightarrow \Lambda^0 K^0 : 1115.7 + 497.6 = 1613.3 \]
\[n \rightarrow \Sigma^0 K^0 : 1192.6 + 497.6 = 1690.2 \]
\[n \rightarrow \Sigma^- K^+ : 1197.4 + 493.7 = 1691.1 \]
The amounts S_p and S_n are given in table I; for the case $\mu = 545$ MeV and $\mu_2 = 600$ MeV.

Coupling constants with different values for D and F and the resulting strange asymmetry. The regularization parameters are $\mu = 545$ MeV and $\mu_2 = 600$ MeV.

<table>
<thead>
<tr>
<th>C_{KY}</th>
<th>$C_{K^+\Lambda} = C_{K^0\Lambda}$</th>
<th>$D=0.806;F=0.464$</th>
<th>$D=0.80;F=0.46$</th>
<th>$D=0.83;F=0.46$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.635</td>
<td>0.629</td>
<td>0.612</td>
<td></td>
</tr>
<tr>
<td>$C_{K^0\Sigma^+} = C_{K^+\Sigma^-}$</td>
<td>0.242</td>
<td>0.240</td>
<td>0.283</td>
<td></td>
</tr>
<tr>
<td>$C_{K^+\Sigma^0} = C_{K^0\Sigma^0}$</td>
<td>0.171</td>
<td>0.170</td>
<td>0.200</td>
<td></td>
</tr>
<tr>
<td>$2 \int_0^1 \bar{s}_p(x) dx$</td>
<td>0.1025</td>
<td>0.1009</td>
<td>0.1028</td>
<td></td>
</tr>
<tr>
<td>$2 \int_0^1 \bar{s}_n(x) dx$</td>
<td>0.0954</td>
<td>0.0939</td>
<td>0.0962</td>
<td></td>
</tr>
<tr>
<td>$\text{dif}S$</td>
<td>0.0071</td>
<td>0.0070</td>
<td>0.0066</td>
<td></td>
</tr>
</tbody>
</table>
The resulting strange asymmetry with regularization parameters $\mu = 526$ MeV and $\mu_2 = 894$ MeV. The coupling constants are the same of table I.

<table>
<thead>
<tr>
<th>Strange</th>
<th>2 $\int_0^1 \bar{s}_p(x)dx$</th>
<th>2 $\int_0^1 \bar{s}_n(x)dx$</th>
<th>difS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D=0.806;F=0.464</td>
<td>0.0651</td>
<td>0.0581</td>
<td>0.007</td>
</tr>
<tr>
<td>D=0.80;F=0.46</td>
<td>0.0641</td>
<td>0.0572</td>
<td>0.0069</td>
</tr>
<tr>
<td>D=0.83;F=0.43</td>
<td>0.0653</td>
<td>0.0587</td>
<td>0.0065</td>
</tr>
</tbody>
</table>
Summary

- We used the Effective Chiral Theory to estimate the difference of the total strangeness amount in proton and neutron.
Summary

- We used the Effective Chiral Theory to estimate the difference of the total strangeness amount in proton and neutron.
- This difference is caused by the different mass involved in each meson-nucleon fluctuations.
Summary

- We used the Effective Chiral Theory to estimate the difference of the total strangeness amount in proton and neutron.
- This difference is caused by the different mass involved in each meson-nucleon fluctuations.
- Thanks.

https://doi.org/10.1142/S0217751X18500835