Single-particle spectral function of the Λ-hyperon in finite nuclei

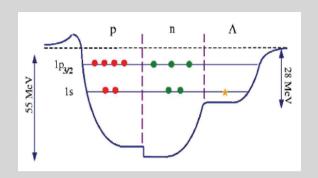
Isaac Vidaña, INFN Catania

HYP2018: "The 13th International Conference on Hypernuclear & Strange Particle Physics"

June 24th-29th 2018, Portsmouth (VA), USA

Motivation

♦ Most of the theoretical descriptions of single Λ-hypernuclei rely on the validity of the mean field picture

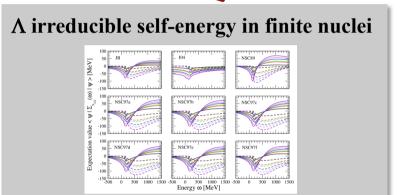


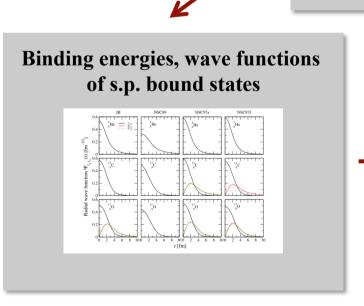
- **♦ Correlations induced by the YN interaction** can, however, substantially change this picture and, therefore, **should not be ignored**
- \diamond The knowledge of the single-particle spectral function of the Λ in finite nuclei is fundamental to determine:
 - ✓ To which extent the mean field description of hypernuclei is valid
 - ✓ To describe properly the cross section of different production mechanisms of hypernuclei

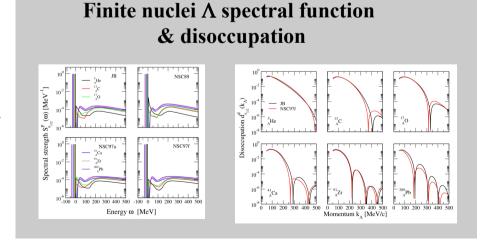
$$d\sigma_{A} \propto \int d\vec{p}_{N} dE_{N} d\sigma S_{N} (\vec{p}_{N}, E_{N}) S_{\Lambda} (\vec{p}_{\Lambda}, E_{\Lambda})$$

♦ Information on the Λ spectral function can be obtained from a combined analysis of data provided by e.g., (e,e'K⁺) reactions or other experiments with theoretical calculations (see Franco Garibaldi's talk on Thursday)

Scheme of the Calculation







Finite nuclei hyperon-nucleon G-matrix

- Finite nuclei G-matrix
- Nuclear matter G-matrix

$$G_{FN} = V + V \left(\frac{Q}{E}\right)_{FN} G_{FN}$$

$$G_{FN} = V + V \left(\frac{Q}{E}\right)_{FN} G_{FN}$$
 $G_{NM} = V + V \left(\frac{Q}{E}\right)_{NM} G_{NM}$

Eliminating V:

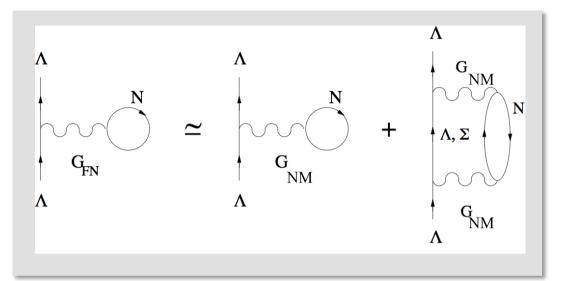
$$G_{FN} = G_{NM} + G_{NM} \left[\left(\frac{Q}{E} \right)_{FN} - \left(\frac{Q}{E} \right)_{NM} \right] G_{FN}$$

Truncating the expansion up second order:

$$G_{FN} \approx G_{NM} + G_{NM} \left[\left(\frac{Q}{E} \right)_{FN} - \left(\frac{Q}{E} \right)_{NM} \right] G_{NM}$$

Finite nucleus Λ self-energy in the BHF approximation

Using G_{FN} as an effective YN interaction, the finite nucleus Λ self-energy is given as sum of a 1st order term & a 2p1h correction



1st order term

$$\begin{array}{c|c}
\Lambda \\
\hline
 & N \\
G \\
NM \\
\Lambda
\end{array}$$

$$\mathcal{V}_{1}(k_{\Lambda}, k'_{\Lambda}, l_{\Lambda}, j_{\Lambda}) = \frac{1}{2j_{\Lambda} + 1} \sum_{\mathcal{J}} \sum_{n_{h}l_{h}j_{h}t_{z_{h}}} (2\mathcal{J} + 1)$$

$$\times \langle (k'_{\Lambda}l_{\Lambda}j_{\Lambda})(n_{h}l_{h}j_{h}t_{z_{h}})\mathcal{J}|G|(k_{\Lambda}l_{\Lambda}j_{\Lambda})(n_{h}l_{h}j_{h}t_{z_{h}})\mathcal{J}\rangle$$

This contribution is real & energy-independent

N.B. most of the effort is on the basis transformation $|(k_{\Lambda}l_{\Lambda}j_{\Lambda})(n_{h}l_{h}j_{h}t_{z_{h}})J\rangle \rightarrow |KLqLSJTM_{T}\rangle$

 $\begin{array}{c}
\Lambda \\
G \\
NM
\end{array}$ $\left[\left(\frac{Q}{E}\right)_{FN} - \left(\frac{Q}{E}\right)_{NM}\right]$ $\Lambda \\
\Lambda \\
NM$

This contribution is the sum of two terms:

• The first, due to the piece $G_{NM}(Q/E)_{FN}G_{NM}$, gives rise to an imaginary energy-dependent part in the Λ self-energy

$$\mathcal{W}_{2p1h}(k_{\Lambda}, k'_{\Lambda}, l_{\Lambda}, j_{\Lambda}, \omega)$$

$$= -\frac{\pi}{2j_{\Lambda} + 1} \sum_{n_{h}l_{h}j_{h}t_{z_{h}}} \sum_{\mathcal{L}LSJ\mathcal{J}} \sum_{Y' = \Lambda\Sigma} \int dq q^{2} \int dK K^{2}(2\mathcal{J} + 1)$$

$$\times \langle (k'_{\Lambda}l_{\Lambda}j_{\Lambda})(n_{h}l_{h}j_{h}t_{z_{h}})\mathcal{J}|G|K\mathcal{L}qLSJ\mathcal{J}TM_{T}\rangle$$

$$\times \langle K\mathcal{L}qLSJ\mathcal{J}TM_{T}|G|(k_{\Lambda}l_{\Lambda}j_{\Lambda})(n_{h}l_{h}j_{h}t_{z_{h}})\mathcal{J}\rangle$$

$$\times \delta\left(\omega + \varepsilon_{h} - \frac{\hbar^{2}K^{2}}{2(m_{N} + m_{Y'})} - \frac{\hbar^{2}q^{2}(m_{N} + m_{Y'})}{2m_{N}m_{Y'}} - m_{Y'} + m_{\Lambda}\right)$$

From which can be obtained the contribution to the real part of the selfenergy through a dispersion relation

$$\mathcal{V}_{2p1h}^{(1)}(k_{\Lambda},k_{\Lambda}',l_{\Lambda},j_{\Lambda},\omega) = \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} d\omega' \frac{\mathcal{W}_{2p1h}(k_{\Lambda},k_{\Lambda}',l_{\Lambda},j_{\Lambda},\omega')}{\omega'-\omega}$$

• The second, due to the piece $G_{NM}(Q/E)_{NM}G_{NM}$, gives also a real & energy-independent contribution to the Λ self-energy and avoids double counting of Y'N states

$$\begin{aligned} \mathcal{V}_{2p1h}^{(2)}(k_{\Lambda}, k_{\Lambda}', l_{\Lambda}, j_{\Lambda}) \\ &= \frac{1}{2j_{\Lambda} + 1} \sum_{n_h l_h j_h t_{z_h}} \sum_{\mathcal{L}LSJ\mathcal{J}} \sum_{Y' = \Lambda \Sigma} \int dq q^2 \int dK K^2 (2\mathcal{J} + 1) \\ &\times \langle (k_{\Lambda}' l_{\Lambda} j_{\Lambda}) (n_h l_h j_h t_{z_h}) \mathcal{J} | G | K \mathcal{L}q LSJ \mathcal{J}T M_T \rangle \\ &\times \langle K \mathcal{L}q LSJ \mathcal{J}T M_T | G | (k_{\Lambda} l_{\Lambda} j_{\Lambda}) (n_h l_h j_h t_{z_h}) \mathcal{J} \rangle \\ &\times Q_{Y'N} \left(\Omega - \frac{\hbar^2 K^2}{2(m_N + m_{Y'})} - \frac{\hbar^2 q^2 (m_N + m_{Y'})}{2m_N m_{Y'}} - m_{Y'} + m_{\Lambda} \right)^{-1} \end{aligned}$$

Summarizing, in the BHF approximation the finite nucleus Λ self-energy is given by:

$$\Sigma_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},k'_{\Lambda},\omega) = \mathcal{V}_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},k'_{\Lambda},\omega) + i\mathcal{W}_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},k'_{\Lambda},\omega)$$

with

$$\mathcal{V}_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},k_{\Lambda}',\omega) = \mathcal{V}_{1}(k_{\Lambda},k_{\Lambda}',l_{\Lambda},j_{\Lambda}) + \mathcal{V}_{2p1h}^{(1)}(k_{\Lambda},k_{\Lambda}',l_{\Lambda},j_{\Lambda},\omega) - \mathcal{V}_{2p1h}^{(2)}(k_{\Lambda},k_{\Lambda}',l_{\Lambda},j_{\Lambda})$$

$$W_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},k'_{\Lambda},\omega)=W_{2p1h}(k_{\Lambda},k'_{\Lambda},l_{\Lambda},j_{\Lambda},\omega)$$

A self-energy in finite nuclei

s-wave state: He (black), C (red), O (green), Ca (blue), Zr (brown) & Pb (violet)

 $(\omega) \mid \psi > [MeV]$ Expectation value $< \psi \mid \Sigma_{s_{1,2}}$ NSC97c

NSC97e

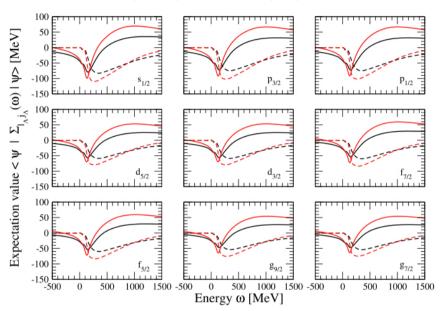
500

Energy ω [MeV]

500 1000 1500 -500

50 E NSC97d

s-, p-, d-, f- and g- wave states for Pb JB (black) & NSC89 (red)



- $|\text{Im} < \Psi | \Sigma | \Psi > |$ larger in Nijmegen models \rightarrow strong ω dependence of Re $< \Psi | \Sigma | \Psi > |$
- Im $\langle \Psi | \Sigma | \Psi \rangle \neq 0$ only for $\omega \geq 0$ & always negative

1500 -500

Im $\langle \Psi | \Sigma | \Psi \rangle$ behaves almost quadratically for energies close to $\omega = 0$

500

NSC97f

0

- Re $<\Psi |\Sigma|\Psi>$ attractive for $\omega < 0$ up to a given value of ω turning repulsive at high ω
- \Rightarrow Up to 500-600 MeV Re $<\Psi$ |Σ|Ψ> more attractive for heavier hypernuclei. At higher ω more repulsive than that of lighter ones

Λ single-particle bound states

 Λ s.p. bound states can be obtained using the real part of the Λ self-energy as an effective hyperon-nucleus potential in the Schoedinger equation

$$\sum_{i=1}^{N_{max}} \left[\frac{\hbar^2 k_i^2}{2m_{\Lambda}} + \mathcal{V}_{l_{\Lambda}j_{\Lambda}}(k_n, k_i, \omega = \varepsilon_{l_{\Lambda}j_{\Lambda}}) \right] \Psi_{il_{\Lambda}j_{\Lambda}m_{j_{\Lambda}}} = \varepsilon_{l_{\Lambda}j_{\Lambda}} \Psi_{nl_{\Lambda}j_{\Lambda}m_{j_{\Lambda}}}$$

solved by diagonalizing the Hamiltonian in a complete & orthonormal set of regular basis functions within a spherical box of radius R_{box}

$$\Phi_{nl_{\Lambda}j_{\Lambda}m_{j_{\Lambda}}}(\vec{r}) = \langle \vec{r}|k_{n}l_{\Lambda}j_{\Lambda}m_{j_{\Lambda}}\rangle = N_{nl_{\Lambda}}j_{l_{\Lambda}}(k_{n}r)\psi_{l_{\Lambda}j_{\Lambda}m_{j_{\Lambda}}}(\theta,\phi)$$

- N_{nlA} \longrightarrow normalization constant
- N_{max} \longrightarrow maximum number of basis states in the box
- $j_{j\Lambda}(k_n r)$ \longrightarrow Bessel functions for discrete momenta $(j_{j\Lambda}(k_n R_{box})=0)$
- $\psi_{l\Lambda j\Lambda mj\Lambda}(\theta,\phi)$ \longrightarrow spherical harmonics the including spin d.o.f.
- $\Psi_{nl\Lambda j\Lambda mj\Lambda} = \langle k_n l_\Lambda j_\Lambda m_{j\Lambda} | \Psi \rangle$ \longrightarrow projection of the state $|\Psi\rangle$ on the basis $|k_n l_\Lambda j_\Lambda m_{j\Lambda}\rangle$

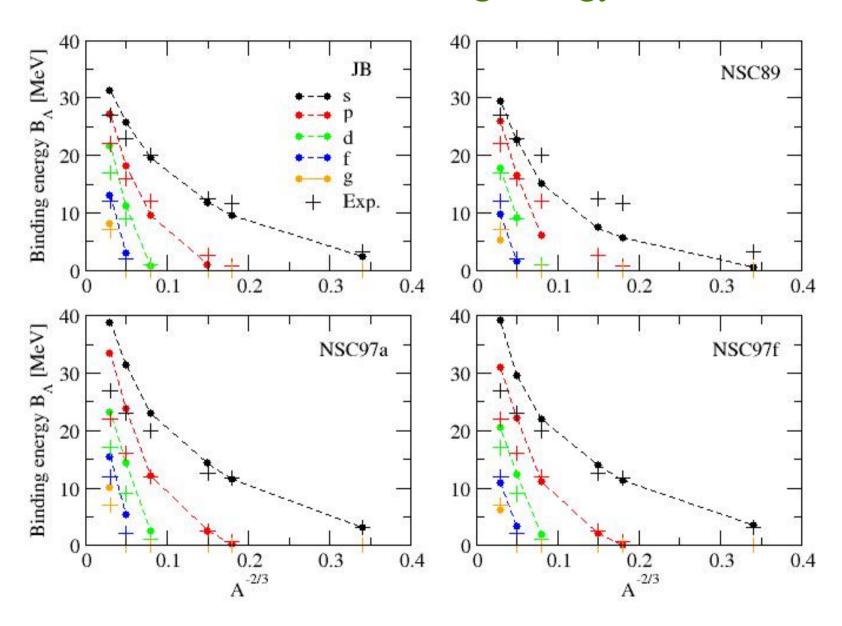
N.B. a self-consistent procedure is required for each eigenvalue

Λ single-particle bound states: Energy

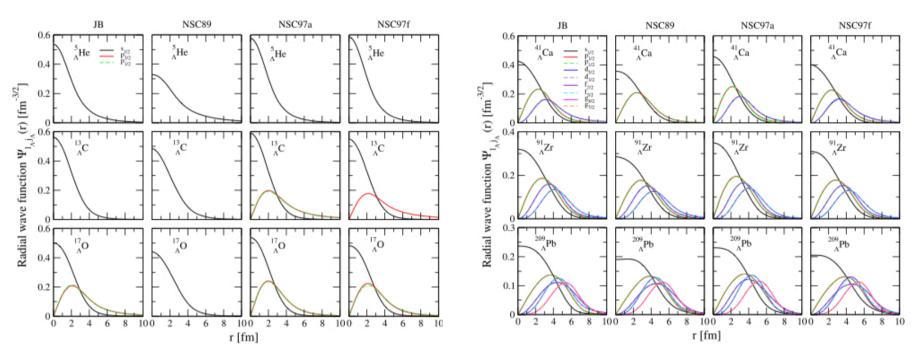
Nuclei	$l_{\Lambda}j_{\Lambda}$	ЈВ	J04	NSC89	NSC97a	NSC97b	NSC97c	NSC97d	NSC97e	NSC97f	Exp.
δHe											(5He)
Λ	s _{1/2}	-2.28	-5.89	-0.58	-3.16	-3.38	-3.94	-4.24	-4.20	-3.59	(⁵ He) -3.12
13.0	, , ,										. 97.1
$^{13}_{\Lambda}{ m C}$		0.40	10.04	£ 60	11.46	11.70	10.76	12.00	12.02	11.27	(13C)
	s _{1/2}	-9.48	-18.94	-5.69	-11.46	-11.79	-12.76	-13.08	-12.82	-11.37	-11.69
	<i>p</i> 3/2		-3.66	_	-0.24	-0.32	-0.63	-0.68	-0.54	-0.01	-0.7 (p)
17	p _{1/2}	-	-4.07	-	-0.12	-0.14	-0.37	-0.35	-0.19	_	16
$^{17}_{\Lambda}O$											(16 O)
	\$1/2	-11.83	-23.40	-7.39	-14.31	-14.65	-15.70	-15.99	-15.68	-14.02	-12.5
	P3/2	-0.87	-8.16	-	-2.57	-2.72	-3.24	-3.33	-3.10	-2.17	-2.5 (p)
	P1/2	-1.06	-8.03	1-	-2.16	-2.22	-2.61	-2.57	-2.30	-1.41	
⁴¹ _Λ Ca											(⁴⁰ Ca)
Λ	\$1/2	-19.60	-36.16	-15.04	-23.09	-23.42	-24.60	-24.74	-24.20	-21.96	-20.0
	p _{3/2}	-9.64	-23.81	-6.92	-12.37	-12.57	-13.40	-13.35	-12.84	-11.09	-12.0 (p)
	p _{1/2}	-9.92	-23.78	-6.29	-12.10	-12.23	-12.95	-12.78	-12.22	-10.45	
	d5/2	-0.70	-11.72	-	-2.80	-2.93	-3.47	-3.38	-3.00	-1.83	-1.0 (d)
	d _{3/2}	-1.01	-11.65	_	-2.43	-2.46	-2.85	-2.61	-2.18	-1.04	
91 ∆Zr		`-									(89Y)
Λ2.	s _{1/2}	-25.80	-46.30	-22.77	-31.38	-31.73	-33.05	-33.06	-32.33	-29.56	-23.0
	p _{3/2}		-37.73	-17.08	-23.92	-24.20	-25.28	-25.22	-24.58	-22.25	-16.0 (p)
	p _{1/2}	-18.30	-38.01	-16.68	-23.82	-24.06	-25.07	-24.92	-24.23	-21.88	10.0 (p)
	d _{5/2}		-28.35	-9.05	-14.41	-14.58	-15.36	-15.09	-14.42	-12.41	-9.0 (d)
	d _{3/2}		-28.44	-8.49	-14.30	-14.40	-15.12	-14.77	-14.06	-11.99	J.0 (a)
	f _{7/2}	-3.05	-18.45	-1.56	-5.46	-5.52	-6.03	-5.59	-4.93	-3.27	-2.0 (f)
	$f_{5/2}$	-2.99	-18.76	-1.00	-5.28	-5.26	-5.69	-5.20	-4.52	-2.86	
209 Pb	0.5/2										(²⁰⁸ Pb)
٨٠٥	s _{1/2}	_31 36	-59.95	-29.52	-38.85	-39.23	-40.63	-40.44	-39.50	-39.30	-27.0
	p _{3/2}		-55.21	-26.01	-33.49	-33.91	-35.13	-34.80	-33.86	-31.03	-22.0 (p)
	p _{1/2}	-27.18	-55.40	-25.72	-33.38	-33.78	-34.94	-34.54	-33.56	-30.72	22.0 (p)
	d _{5/2}	-21.70	-45.08	-17.85	-23.23	-23.54	-24.38	-23.79	-22.86	-20.60	-17.0 (d)
	d _{3/2}	-21.77		-17.65	-23.17	-23.45	-24.27	-23.68	-22.75	-20.51	17.0 (4)
	f _{7/2}		-37.15	-9.67	-15.38	-15.43	-16.04	-15.05	-13.81	-10.98	-12.0 (f)
	f _{5/2}		-37.16	-9.31	-15.35	-15.33	-15.90	-14.87	-13.61	-10.76	12.0 (1)
	89/2	-8.14	-29.91	-5.27	-10.07	-10.14	-10.68	-9.80	-8.71	-6.28	-7.0 (g)
	87/2	-8.26	-30.16	-4.80	-10.01	-10.00	-10.46	-9.49	-8.37	-5.91	(8)
	01/2	0.20	20.10			.0.00			0.01		

- ♦ Qualitatively good agreement with experiment, except for J04 (unrealistic overbinding)
- ♦ Zr & Pb overbound also for NSC97a-f models. These models predict $U_{\Lambda}(0) \sim -40$ MeV compared with -30 MeV extrapolated from data
- ♦ Splitting of p-, d-, fand g-waves of ~ few tenths of MeV due to the small spin-orbit strength of YN interaction

Λ Binding Energy



Λ single-particle bound states: Radial Wave Function



- $\Psi_{s1/2}$ state more and more spread when going from light to heavy hypernuclei probability of finding the Λ at the center of the hypernuclei ($|\Psi_{s1/2}(r=0)|^2$) decreases.
- \diamond Only He falls out this pattern because the energy of the $s_{1/2}$ state is too low, therefore, resulting in a very extended wave function
- ♦ The small spin-orbit splitting of the p-, d-, f- and g-wave states cannot be resolved in the corresponding wave functions

General Remarks on the s.p. Spectral Function

Single-particle Green's function (Lehmann representation):

$$g_{\alpha\beta}(\omega) = \int_{E_0^{N+1} - E_0^N}^{\infty} d\omega' \frac{S_{\alpha\beta}^p(\omega')}{\omega - \omega' + i\eta} + \int_{-\infty}^{E_0^N - E_0^{N-1}} d\omega' \frac{S_{\alpha\beta}^h(\omega')}{\omega - \omega' - i\eta}$$
 Describes propagation of a particle or a hole added to a N-particle system

Describes propagation of a

being

$$S^{p}_{\alpha\beta}(\omega) = \sum_{m} \langle \Psi^{N}_{0} | \hat{c}_{\alpha} | \Psi^{N+1}_{m} \rangle \langle \Psi^{N+1}_{m} | \hat{c}^{\dagger}_{\beta} | \Psi^{N}_{0} \rangle \delta(\omega - (E^{N+1}_{m} - E^{N}_{0})), \ \omega > E^{N+1}_{0} - E^{N}_{0}$$

$$S_{\alpha\beta}^{h}(\omega) = \mp \sum_{n} \langle \Psi_{0}^{N} | \hat{c}_{\beta}^{\dagger} | \Psi_{n}^{N-1} \rangle \langle \Psi_{n}^{N-1} | \hat{c}_{\alpha} | \Psi_{0}^{N} \rangle \delta(\omega - (E_{0}^{N} - E_{n}^{N-1})), \ \omega < E_{0}^{N} - E_{0}^{N-1}$$

Particle & hole part of the s.p. spectral function

Diagonal parts $S_{\alpha\alpha}^{p}$ & $S_{\alpha\alpha}^{h}$ = probability density of adding or removing a particle to the ground state of the N-particle system & finding the resulting N+1 (N-1) one with energy ω -(E^{N+1}₀-E^N₀) or (E^N₀-E^{N-1}₀)- ω

The case of the single-particle Λ spectral function

In the case of a Λ hyperon that is added to a pure nucleonic system (e.g., infinite nuclear matter or an ordinary nuclei), it is clear, that since there are no other Λ 's in the N-particle pure nucleonic system, the Λ can only be added to it and, therefore, the hole part of its spectral function is zero

The Lehmann representation of the single- Λ propagator is simply:

$$g_{\alpha\beta}^{\Lambda}(\omega) = \int_{E_0^{N+\Lambda} - E_0^N}^{\infty} d\omega' \frac{S_{\alpha\beta}^{\Lambda p}(\omega')}{\omega - \omega' + i\eta}$$

Λ Spectral Strength

In any production mechanism of single- Λ hypernuclei a Λ can be formed in a bound or in a scattering state \longrightarrow the Λ particle spectral function is sum of a discrete & a continuum contribution

♦ Discrete contribution

$$S_{l_{\Lambda}j_{\Lambda}}^{p(d)}(k_{n},\omega)=Z_{l_{\Lambda}j_{\Lambda}}|\langle k_{n}l_{\Lambda}j_{\Lambda}m_{j_{\Lambda}}|\Psi\rangle|^{2}\delta(\omega-\varepsilon_{l_{\Lambda}j_{\Lambda}})$$

is a delta function located at the energy of the s.p. bound state with strength given by the Z-factor

$$Z_{l_{\Lambda}j_{\Lambda}} = \left(1 - \frac{\partial \langle \Psi | \Sigma_{l_{\Lambda}j_{\Lambda}}(\omega) | \Psi \rangle}{\partial \omega} \Big|_{\omega = \varepsilon_{l_{\Lambda}j_{\Lambda}}}\right)^{-1}$$

The discrete contribution to the total Λ spectral strength is obtained by summing over all discrete momenta k_n

$$S_{l_{\Lambda}j_{\Lambda}}^{p(d)}(\omega) = Z_{l_{\Lambda}j_{\Lambda}}\delta(\omega - \varepsilon_{l_{\Lambda}j_{\Lambda}})$$

Λ Spectral Strength

♦ Continuum contribution

$$S_{l_{\Lambda}j_{\Lambda}}^{p(c)}(k_{\Lambda},k'_{\Lambda},\omega) = -\frac{1}{\pi} \operatorname{Im} g_{l_{\Lambda}j_{\Lambda}}^{\Lambda}(k_{\Lambda},k'_{\Lambda},\omega)$$

where the single- Λ propagator can be derived from the following form of the Dyson equation

$$g^{\Lambda}_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},k'_{\Lambda},\omega) = \frac{\delta(k_{\Lambda}-k'_{\Lambda})}{k_{\Lambda}^{2}}g^{(0)}_{\Lambda}(k_{\Lambda},\omega) + g^{(0)}_{\Lambda}(k_{\Lambda},\omega)\Sigma^{red}_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},k'_{\Lambda},\omega)g^{(0)}_{\Lambda}(k'_{\Lambda},\omega)$$

Free s.p. propagator

Reducible Λ self-energy

$$\Sigma_{l_{\Lambda}j_{\Lambda}}^{red}(k_{\Lambda},k_{\Lambda}',\omega)=\Sigma_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},k_{\Lambda}',\omega)+\int dq_{\Lambda}q_{\Lambda}^{2}\Sigma_{l_{\Lambda}j_{\Lambda}}(k_{\Lambda},q_{\Lambda},\omega)g_{\Lambda}^{(0)}(q_{\Lambda},\omega)\Sigma_{l_{\Lambda}j_{\Lambda}}^{red}(q_{\Lambda},k_{\Lambda}',\omega)$$

Λ Spectral Strength

Due to the delta function in the Dyson equation is numerically more convenient to obtain the continuum contribution of the Λ spectral function in coordinate space

$$S_{l_{\Lambda}j_{\Lambda}}^{p(c)}(r_{\Lambda},r_{\Lambda}',\omega) = \frac{2}{\pi} \int\limits_{0}^{\infty} dk_{\Lambda} k_{\Lambda}^{2} \int\limits_{0}^{\infty} dk_{\Lambda}' k_{\Lambda}'^{2} j_{l_{\Lambda}}(k_{\Lambda}r_{\Lambda}) S_{l_{\Lambda}j_{\Lambda}}^{p(c)}(k_{\Lambda},k_{\Lambda}',\omega) j_{l_{\Lambda}}(k_{\Lambda}'r_{\Lambda}')$$

The continuum contribution to the total Λ spectral strength is obtained from the following double folding of the spectral function

$$S_{l_{\Lambda}j_{\Lambda}}^{p(c)}(\omega) = \int\limits_{0}^{\infty} dr_{\Lambda} r_{\Lambda}^2 \int\limits_{0}^{\infty} dr_{\Lambda}' r_{\Lambda}'^2 \Psi_{l_{\Lambda}j_{\Lambda}}(r_{\Lambda}) S_{l_{\Lambda}j_{\Lambda}}^{p(c)}(r_{\Lambda}, r_{\Lambda}', \omega) \Psi_{l_{\Lambda}j_{\Lambda}}(r_{\Lambda}')$$

Total Λ spectral strength

$$S_{l_{\Lambda}j_{\Lambda}}^{p}(\omega) = S_{l_{\Lambda}j_{\Lambda}}^{p(d)}(\omega) + S_{l_{\Lambda}j_{\Lambda}}^{p(c)}(\omega)$$

Λ Spectral Strength: Results

s-wave state: He (black), C (red), O (green), s-, p-, d-, f- and g- wave states (NSC97f) Ca (blue), Zr (brown) & Pb (violet) 10^{0} ⁵He NSC89 10⁻² Spectral strength $S^p_{l_{\lambda}j_{\lambda}}(\omega)$ [MeV⁻¹] Spectral strength $S_{_{S_{1/2}}}^{p}(\omega)$ [MeV⁻¹] 10⁻² 10^{-4} NSC97f 10⁻² 10^{-4} 10^{-4} 10-100 0 100 200 300 400 500 -100 0 100 200 300 400 500 Energy ω [MeV] Energy ω [MeV]

- → Discrete contribution: delta function located at the energy of the s.p. bound state with strength given by the Z-factor. Decreases when moving from light to heavy nuclei → ΛN correlations more important when density of nuclear core increases
- \diamondsuit Continuum contribution: strength spread over all positive energies. Structure for ω < 100 MeV reflects the behavior of self-energy. Monotonically reduction for ω > 200

AN correlations: Z-factor

$$Z_{l_{\Lambda}j_{\Lambda}} = \left(1 - \frac{\partial \langle \Psi | \Sigma_{l_{\Lambda}j_{\Lambda}}(\omega) | \Psi \rangle}{\partial \omega} \Big|_{\omega = \varepsilon_{l_{\Lambda}j_{\Lambda}}}\right)^{-1}$$

Z measures the importance of correlations. The smaller the value of Z the more important are the correlations of the system

- ♦ Z is relatively large for all hypernuclei → Λ keeps its identity inside the nucleus & is less correlated than nucleons

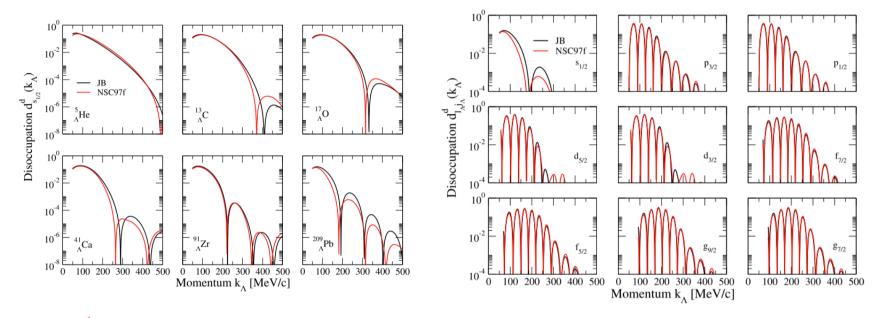
Nuclei	$l_{\Lambda}j_{\Lambda}$	JB	NSC89	NSC97a	NSC97f
⁵ _Λ He	s _{1/2}	0.976	0.983	0.965	0.964
13 _Λ C	s _{1/2}	0.950	0.940	0.933	0.933
••	P3/2	-	-	0.975	0.979
	P1/2		-	0.976	
17 _A O	\$1/2	0.942	0.930	0.923	0.924
	P3/2	0.973	-	0.956	0.959
	P1/2	0.971	-	0.957	0.961
⁴¹ Ca	s _{1/2}	0.920	0.896	0.898	0.898
	P3/2	0.930	0.915	0.911	0.914
	P1/2	0.929	0.914	0.910	0.912
	d _{5/2}	0.952	_	0.932	0.938
	d3/2	0.949	-	0.931	0.939
91 Zr	s _{1/2}	0.904	0.870	0.879	0.876
	P3/2	0.906	0.875	0.884	0.883
	P1/2	0.907	0.876	0.885	0.883
	d _{5/2}	0.910	0.886	0.891	0.893
	d3/2	0.911	0.886	0.891	0.891
	f _{7/2}	0.919	0.903	0.903	0.906
One (See	f _{5/2}	0.920	0.905	0.902	0.907
209 Pb	s _{1/2}	0.884	0.846	0.857	0.856
	P3/2	0.885	0.847	0.858	0.857
	P1/2	0.885	0.847	0.858	0.857
	d _{5/2}	0.896	0.858	0.870	0.869
	d3/2	0.896	0.857	0.869	0.867
	f7/2	0.891	0.852	0.863	0.857
	f _{5/2}	0.891	0.851	0.863	0.855
	89/2	0.892	0.855	0.869	0.862
	87/2	0.892	0.854	0.868	0.860

Disoccupation (discrete contribution)

 $d_{l_{\Lambda}j_{\Lambda}}^{d}(k_{\Lambda}) = \int_{\mu_{\Lambda}}^{\infty} d\omega S_{l_{\Lambda}j_{\Lambda}}^{p(d)}(k_{\Lambda}, \omega) = Z_{l_{\Lambda}j_{\Lambda}} |\langle k_{\Lambda}l_{\Lambda}j_{\Lambda}m_{j_{\Lambda}}|\Psi\rangle|^{2}$

s-wave state: He, C, O, Ca, Zr & Pb JB (blak) & NSC89 (red)

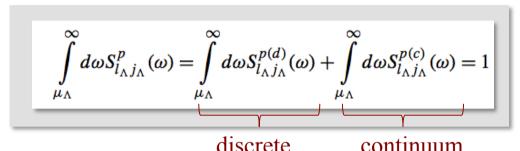
s-, p-, d-, f- and g- wave states for Pb JB (black) & NSC89 (red)



- \Leftrightarrow $\mathbf{d}^{\mathbf{d}}_{1\Lambda \mathbf{j}\Lambda}(\mathbf{k}_{\Lambda})$ gives the probability of adding a Λ of momentum \mathbf{k}_{Λ} in the s.p. state $\mathbf{l}_{\Lambda}\mathbf{j}_{\Lambda}$ of the hypernucleus
- \Rightarrow Intuitively one expects that if k_{Λ} is large the Λ can easily escape from the nucleus & the probability of binding it must be small. Both plots show in fact that $d^{d}_{l\Lambda j\Lambda}(k_{\Lambda})$ decreases when increasing k_{Λ} and is almost negligible for very large values \longrightarrow In hypernuclear production reactions the Λ is mostly formed in a quasi-free state

Total Disoccupation Number

The total spectral strength of the Λ hyperon fulfills the sum rule



The total disoccupation number is $1 \rightarrow$ is always possible to add a Λ either in a bound or a scattering state of a given ordinary nucleus

		discrete		Continuum						
Nuclei		\$1/2	p3/2	P1/2	d5/2	d3/2	f7/2	f5/2	89/2	87/2
⁵ He	Discrete	0.964	-	_	_	_	_	_	_	_
	Continuum	0.023		_		_	_		_	_
	Total	0.987	-	-	_	_	_		_	_
13℃ Λ	Discrete	0.933	0.979	-	-	-	-	25	-	-
22000	Continuum	0.040	0.017	-	-	-	-	-	-	-
100 to 1	Total	0.973	0.996	-	-	-	_	-	-	-
17 _A O	Discrete	0.924	0.959	0.961	-	_	_	_	_	
	Continuum	0.053	0.037	0.036	-	-	-	-	-	-
	Total	0.977	0.996	0.997	-	-	-	_	-	_
ACa	Discrete	0.898	0.914	0.912	0.938	0.939	_	-	_	_
	Continuum	0.071	0.063	0.064	0.048	0.047	_	_	_	_
	Total	0.969	0.977	0.976	0.986	0.986	_	82	-	
$^{91}_{\Lambda}\mathrm{Zr}$	Discrete	0.876	0.883	0.883	0.893	0.891	0.906	0.907	-	-
	Continuum	0.120	0.113	0.113	0.103	0.105	0.089	0.090	-	-
	Total	0.996	0.996	0.996	0.996	0.996	0.995	0.997	-	-
²⁰⁹ _Λ Pb	Discrete	0.856	0.857	0.857	0.869	0.867	0.857	0.855	0.862	0.860
	Continuum	0.138	0.142	0.142	0.129	0.130	0.140	0.141	0.137	0.139
	Total	0.994	0.999	0.999	0.998	0.997	0.997	0.996	0.999	0.999

The final message of this talk

Nucl. Phys. A 958, 48 (2017)

♦ Purpose:

✓ Calculation of finite nuclei Λ spectral function from its self-energy derived within a perturbative manybody approach with realistic YN interactions

♦ Results & Conclusions

- ✓ Binding energies in good agreement with experiment
- ✓ Z-factor relatively large \longrightarrow Λ less correlated than nucleons
- ✓ Discrete cont. to disoc. numb decreases with $k_{\Lambda} \longrightarrow \Lambda$ is mostly formed in a quasi-free state in production reactions
- ✓ Scattering reactions such as (e,e',K⁺) at JLAB & MAMI-C can provide valuable information on the disoccupation of Λ s.p. bound states

- ♦ You for your time & attention
- ♦ The organizers for their invitation

