Future gamma-ray spectroscopic experiment (J-PARC E63) on $^4\Lambda$H

2018/6/26

T. O. Yamamoto
KEK IPNS (Japan)
for the E63 collaboration
CSB in s-shell hypernuclear system studied via γ-ray spectroscopy

- γ-ray spectroscopy on $^4_\Lambda$He (J-PARC E13)

Next step: γ-ray spectroscopy on $^4_\Lambda$H (J-PARC E63)

- Previous studies on $^4_\Lambda$H
- Strategy of new measurement
- Present status

Idea of future experiment

γ-ray spectroscopy of p-shell mirror hypernuclei $^{12}_\Lambda$B

Summary
CSB effect in s-shell hypernuclear structure

Level schema of mirror hypernuclei $^{4}_\Lambda H / ^4_\Lambda He$ (before 2014)

Un expectedly large B_Λ difference
(0.07 MeV in theoretical study with NSC interaction model)

→ Need to examine old data with modern technique
Recent experiment for \textbf{s-shell}

Level schema of mirror hypernuclei

$^4\Lambda_H / ^4\Lambda_He$ (before 2014)

$E_\gamma = 1.09 \pm 0.02$

$E_\gamma = 1.24 \pm 0.05$

$E_\gamma = 1.15 \pm 0.04$

$B_\Lambda (^4\Lambda_He(0^+)), 2015$ (MAMI-A1)

2.157 ± 0.077 MeV

(chance to reduce systematic errors)

A. Esser, S. Nagao et al.,
A1 collaboration., NPA 954 (2016) 149

Precise measurement

Emulsion \rightarrow Decay π^- spectroscopy

The result supports existence of CSB effect in $B_{\Lambda(\text{g.s.)}}$
Recent experiment for s-shell

Level schema of mirror hypernuclei $^4_\Lambda$H / $^4_\Lambda$He

E_γ = 1.09 ± 0.02

E_γ = 1.406 ± 0.002 ± 0.002 [present]

1.406 ± 0.004 MeV

In flight (K-,π-) reaction w/ SKS + Ge detector

CSB effect also in excitation energy

Recent experiment for s-shell

Existence of CSB effect was confirmed (B_{\Lambda(g.s)} and \gamma-ray)

- Strongly spin-dependent:
 \[\Delta B_{\Lambda}(1^+) = 0.03 \pm 0.05 \text{ MeV} \]
 \[\Delta B_{\Lambda}(0^+) = 0.35 \pm 0.05 \text{ MeV} \]
Recent experiment for s-shell

Level schema of mirror hypernuclei

$^4_\Lambda H / ^4_\Lambda He$

Updated

Need high accurate data to investigate origin of CSB and underlying ΛN interaction

Precise γ-ray spectroscopy is powerful tool to study CSB

We will continue measurement using Ge detector

- Existence of CSB effect was confirmed ($B^{}_{\Lambda(g.s)}$ and γ-ray)
- Strongly spin-dependent: $\Delta B^{}_{\Lambda}(1^+) = 0.03 \pm 0.05$ MeV
 $\Delta B^{}_{\Lambda}(0^+) = 0.35 \pm 0.05$ MeV
Future measurement
Gamma-ray spectroscopy on $^{4}_{\Lambda}$H (J-PARC E63)
Gamma-ray data on $^4\Lambda$H

Level schema of mirror hypernuclei $^4\Lambda$H / $^4\Lambda$He

We obtained high precision data (J-PARC E13)

Three old data are available

<table>
<thead>
<tr>
<th>Reference</th>
<th>Excitation Energy [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1] M. Bedjidian et al. (1976)</td>
<td>1.09 ± 0.03</td>
</tr>
<tr>
<td>[2] M. Bedjidian et al. (1979)</td>
<td>1.04 ± 0.04</td>
</tr>
<tr>
<td>Weighted average</td>
<td>1.09 ± 0.02</td>
</tr>
</tbody>
</table>

rather large deviation
Gamma-ray data on $^4_{\Lambda}H$

We obtained high precision data (J-PARC E13)

Level schema of mirror hypernuclei $^4_{\Lambda}H / ^4_{\Lambda}He$

Three old data are available

3H

$^4_{\Lambda}H$

3He

B_{Λ} [MeV]

$^4_{\Lambda}He$

Expected

<table>
<thead>
<tr>
<th>Data Source</th>
<th>E_γ [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1] M. Bedjidian et al. (1976)</td>
<td>1.09 ± 0.03</td>
</tr>
<tr>
<td>[2] M. Bedjidian et al. (1979)</td>
<td>1.04 ± 0.04</td>
</tr>
<tr>
<td>Weighted average</td>
<td>1.09 ± 0.02</td>
</tr>
</tbody>
</table>

rather large deviation
Limitation on old measurement

All γ-ray measurements on $^4_{\Lambda}$H used
- Stopped K^-
- NaI detector

$150 \sim 200 \text{ keV(FWHM)}$ resolution due to detector resolution and Doppler broadening

For higher precision
- Stopped K^- \rightarrow in-flight (K^-, π^-)
- NaI detector \rightarrow Ge detector

Same strategy as $^4_{\Lambda}$He measurement

Expected resolution: $\sim 40 \text{ keV(FWHM)}$
Previous study via in-flight 7Li(K$^-$,π$^-$) @ 0.9 GeV/c

$^4_\Lambda$H (and $^4_\Lambda$He) generates as hyperfragment via the in-flight 7Li(K$^-$,π$^-$)$^7_\Lambda$Li reaction

BNL AGS

Moby Dick

M-May, PRL 51(1983)2085

Highly unbound

1.1 MeV

1.4 MeV

$^7_\Lambda$Li

Bound region

They reported 1.108 ± 0.010 MeV peak as “mixture of $^4_\Lambda$H and $^4_\Lambda$He”

Nal detector energy resolution : 74 keV(FWHM) + ~80keV Doppler broadening
Previous study via in-flight $^7\text{Li}(K^-,\pi^-) @ 0.9 \text{ GeV/c}$

$^4\Lambda\text{H} (\text{and } ^4\Lambda\text{He})$ generates as hyperfragment via the in-flight $^7\text{Li}(K^-,\pi^-) ^7\Lambda\text{Li}$ reaction

They reported 1.108 ± 0.010 MeV peak as “mixture of $^4\Lambda\text{H}$ and $^4\Lambda\text{He}”$

J-PARC E13 \rightarrow 1.4 MeV

BNL AGS

Moby Dick

$^7\Lambda\text{Li}$

Bound region

Highly unbound

Nal detector energy resolution:
74 keV (FWHM) + ~80 keV Doppler broadening

M.May, PRL 51(1983)2085

J-PARC E13 \rightarrow 1.4 MeV

γ-ray

$^7\Lambda\text{Li}$ target

$^7\Lambda\text{Li}^*$

^3He

$^7\Lambda\text{Li}^*$

$^4\Lambda\text{H}^*$

1.1 MeV

1.4 MeV
Previous study via in-flight 7Li($K^-,\pi^-)@0.9\,\text{GeV/c}$

$^4\Lambda\,H$ (and $^4\Lambda\,\text{He}$) generates as hyperfragment via the in-flight 7Li($K^-,\pi^-)^7\Lambda\,\text{Li}$ reaction

We chose this reaction for $^4\Lambda\,H$ measurement
γ-ray spectroscopy of $^{4}_{\Lambda}$H (J-PARC E63)

$^{4}_{\Lambda}$H generates as hyperfragment via the in-flight 7Li($K^{-},\pi^{-})^{7}_{\Lambda}$Li reaction

Similar setup as $^{4}_{\Lambda}$He measurement

SKS spectrometer
- larger acceptance (~100msr)
- + good energy resolution

We can select threshold region of $^{7}_{\Lambda}$Li* → $^{4}_{\Lambda}$H + 3He [Ex=~20MeV] (Suppress Doppler broadening)

~40 keV (FWHM)

Ge detector array (Hyperball-J)

Good energy resolution
γ-ray spectroscopy of \(^4_{\Lambda}H \) (J-PARC E63)

\(^4_{\Lambda}H \) generates as hyperfragment via the in-flight \(^7\text{Li}(K^-,\pi^-)^7\Lambda\text{Li} \) reaction

Similar setup as \(^4_{\Lambda}\text{He} \) measurement

- \(^7\text{Li} \) target
- \(^7\Lambda\text{Li}^* \) decay
- \(^3\text{He} \) emission
- \(^4_{\Lambda}H^* \) decay
- Tagging monochromatic \(\pi^- \) (Support hypernuclear identification)

Beam line spectrometer

SKS spectrometer

Ge detector array (Hyperball-J)

\(\gamma \)-ray

Range counter (additional)
Experimental setup for $^4_\Lambda$H (J-PARC E63)

New detector configuration around target (view from beam upstream)

- **SKS spectrometer**
- **SKS magnet**
- **Exp. Target**
- **Ge detector array**
- **Hyperball-J**
- **Exp. Target**
- **Range counter (additional)**
- **Range counter system**

Thickness:
- ~0.5 cm thick

Layers:
- >15 layers

Coverage:
- $30^W \times 10^H$ cm

Share with other experiment?
- (weak decay, etc.)

$E_x (1^+) \text{ will be measured with } <5 \text{ keV accuracy}$
- (w/6 days beam time)
Gamma-Ray Spectroscopy of Light Λ Hypernuclei II

31 participants from 12 institutes

Y. Akazawa, M. Fujita, N. Ichige, M. Ikeda, T. Koike, K. Miwa, Y. Ogura,
H. Tamura (spokesperson), Y. Sasaki, S. Suto, T. Yamamoto
Department of Physics, Tohoku University, Japan

K. Aoki, T. Takahashi, M. Ukai
Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Japan

K. Hosomi, K. Tanida
Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Japan

P. Evtoukhovitch, Z. Tsamalaidze
Joint Institute for Nuclear Research, Russia

S. Yang
Department of Physics and Astronomy, Seoul National University, Korea

R. Honda
Department of Physics, Osaka University, Japan

K. Shirotori
Research Center for Nuclear Physics, Osaka University, Japan

E. Botta
Dipartimento di Fisica, Università di Torino, and
Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Italy

A. Feliciello
Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Italy

M. Agnello
Dipartimento di Scienze Applicate e Tecnologia, Politecnico di Torino, Italy

J-PARC
E63 (E13-2)
Submitted in 2015
stage-2 approval

- $^4_\Lambda$H excitation energy
- $^7_\Lambda$Li lifetime
 (Λ magnetic moment in nuclear medium)
Byproduct: \(\gamma \)-ray measurement of \(^3\Lambda\)H

Idea from M. Ukai

If \(nn\Lambda \) is bound, \(^3\Lambda\)H (1/2\(^+\), T=1) may be bound

Report from GSI

Chance to measure \(\gamma \)-rays (iso-spin conversion)
Byproduct: γ-ray measurement of $^3\Lambda H$

Idea from M. Ukai

Selecting $E_x > 20$ MeV

$^4\Lambda H$ → $^4He + \pi^-$

$1^+;T=0$

$0^+;T=0$

$^4\Lambda H$ → $^3\Lambda H + \alpha$

$3/2^-;T=1$

$1/2^+;T=1$

$3/2^+;T=0$

$1/2^+;T=0$

$3/2^-;T=0$

~ 12

~ 8

Possible background

Selecting $E_x \approx 10$ MeV

$^3\Lambda H$ → $^3He + \pi^-$

$1/2^+;T=1$

$3/2^+;T=0$

$1/2^+;T=0$

$^3He + \pi^-$

E_x (MeV)

Chance for high statistic (need for $^7\Lambda Li$ lifetime measurement)

(K^-,π^-) $p_n \rightarrow p_\Lambda$ substitutional

Tag 40 MeV pion by range counter

Selecting $E_x > 20$ MeV

$^4\Lambda H$ + 3He → $^3\Lambda H + \alpha$

$3/2^-;T=1$

$1/2^+;T=1$

$3/2^+;T=0$

$1/2^+;T=0$

$^4\Lambda H$ → $^{6}\Lambda Li + ^5\Lambda He + d$

$3/2^-;T=1$

$1/2^+;T=1$

$3/2^+;T=0$

$1/2^+;T=0$

$^3\Lambda H + \alpha$

3.88

0.69

$^7\Lambda Li$

E_{ex} (MeV)

$1/2^+;T=0$

$3/2^-;T=1$

$3/2^+;T=0$

$1/2^+;T=0$

$3/2^-;T=0$

~ 12

~ 8

$^4\Lambda H$ + 3He → $^3\Lambda H + \alpha$

$3/2^-;T=1$

$1/2^+;T=1$

$3/2^+;T=0$

$1/2^+;T=0$

$^4\Lambda H$ → $^{6}\Lambda Li + ^5\Lambda He + d$

$3/2^-;T=1$

$1/2^+;T=1$

$3/2^+;T=0$

$1/2^+;T=0$

$^3\Lambda H + \alpha$

3.88

0.69

$^7\Lambda Li$

E_{ex} (MeV)

$1/2^+;T=0$
0.9 GeV/c K⁻ beam for suppress Doppler broadening and higher cross section → move to J-PARC K1.1 beam line with SKS magnet

J-PARC hadron experimental facility

SKS moved to K1.1

30 GeV proton

Production target (Au)

K1.8BR

K1.8

K1.1

KL

High-p

30 GeV (A line)

Hyperball-J: Established
Range counter: Designing (will be constructed in next year)
Idea of new measurement

Gamma-ray spectroscopy to study CSB effect in \(p \)-shell hypernuclei
Reaction for γ-ray spectroscopy on mirror hypernuclei

Non-charge exchange reaction

$^{12}\Lambda C(\pi^+, K^+)^{12}\Lambda C^* \rightarrow^{12}\Lambda C + \gamma$

Charge exchange reaction

$^{12}\Lambda C(K^-, \pi^0)^{12}\Lambda B^* \rightarrow^{12}\Lambda B + \gamma$

$\pi^0 \rightarrow \gamma \gamma$

$^{12}\Lambda C(\pi^-, K^0)^{12}\Lambda B^* \rightarrow^{12}\Lambda B + \gamma$

$K^0 \rightarrow \pi^+\pi^- (69\%)$

$^{12}\Lambda C(e, e' K^+)^{12}\Lambda B^* \rightarrow^{12}\Lambda B + \gamma$

Need to extend gamma-ray data to neutron rich side
Reaction for γ-ray spectroscopy on mirror hypernuclei

Need to extend gamma-ray data to neutron rich side

Non-charge exchange reaction

\[_{12}^\Lambda C(\pi^+, K^+)_{12}^\Lambda C^* \rightarrow _{12}^\Lambda C + \gamma \]

Charge exchange reaction

\[_{12}^\Lambda C(K^-, \pi^0)_{12}^\Lambda B^* \rightarrow _{12}^\Lambda B + \gamma \]
\[\pi^0 \rightarrow \gamma\gamma \]

\[_{12}^\Lambda C(K^0_s, K^0)_{12}^\Lambda B^* \rightarrow _{12}^\Lambda B + \gamma \]
\[K^0_s \rightarrow \pi^+\pi^- (69\%) \]

\[_{12}^\Lambda C(e, e'K^+)_{12}^\Lambda B^* \rightarrow _{12}^\Lambda B + \gamma \]

Rather easier!
- Reaction tag with only charged particles
- Reasonable beam intensity (for Ge detectors)

Prof. Alessandro’s talk on Friday
Setup for the gamma-ray spectroscopy

Same setup with $^4\Lambda\text{H}$ measurement
- Beam line spectrometer + SKS
- Hyperball-J
- Range counter (similar configuration)

Beam momentum: 1.05 GeV/c

Setup for the gamma-ray spectroscopy

$^{12}\text{C}(\pi^-, K^0)\rightarrow 12\Lambda B^* \rightarrow 12\Lambda B + \gamma$

$K^0_s \rightarrow \pi^+\pi^- (69\%)$

Designing of detector system is ongoing
CSB in s-shell hypernuclear system studied via γ-ray spectroscopy

- γ-ray spectroscopy on $^{4}_\Lambda$He (J-PARC E13)

 \[E_x(^{4}_\Lambda\text{He}(1^+)) = 1.406 \pm 0.004 \text{ MeV} \]

 CSB effect also appear in excitation energy + spin-dependence

- Next step: γ-ray spectroscopy on $^{4}_\Lambda$H (J-PARC E63)

 - In-flight $^7\text{Li}(K^-,\pi^-)$ reaction + Ge detector
 - Common setup as $^{4}_\Lambda$He measurement + range counter system
 - Better than 5 keV accuracy w/ 6 days beamtime
 (stage-2 approval)

- Idea of γ-ray spectroscopy to study CSB in p-shell
Backup
Toward the exp. completeness for s-shell

Gamma-ray spectroscopy of $^4_{\Lambda}H$ w/ a few keV accuracy

Our Next step
J-PARC E63

Decay π^- spectroscopy ($^4_{\Lambda}H$) [MAMI-C]

Done

Gamma-ray spectroscopy of $^4_{\Lambda}He$ [J-PARC E13]

Done

Counter experiment ($^4_{\Lambda}He$) [J-PARAC HIHR]

Need J-PARC HEF extension
Present status of CSB in s-shell

- Existence of CSB effect was confirmed (\(B_{\Lambda\text{g.s}} \) and \(\gamma \)-ray)
- Difference in 0\(^+\) and 1\(^+\): \(\Delta B_{\Lambda}(1^+) = 0.03 \pm 0.05 \) MeV
 \(\Delta B_{\Lambda}(0^+) = 0.35 \pm 0.05 \) MeV

\[\text{CSB effect calc. w/ } \Lambda \Sigma \text{ mixing}\]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta B_{\Lambda}(1^+))</td>
<td>0.28(5)</td>
<td>0.03(5)</td>
<td>-0.01</td>
<td>0.03</td>
<td>-0.19</td>
</tr>
<tr>
<td>(\Delta B_{\Lambda}(0^+))</td>
<td>0.35(5)</td>
<td>0.35(5)</td>
<td>0.07</td>
<td>0.22</td>
<td>0.14</td>
</tr>
</tbody>
</table>

D. Gazda, A. Gal, NPA 954 (2016) 161

\(\Lambda \Sigma \) coupling may be key of CSB effect

High accurate data of CSB effect may provide new information to investigate underlying \(\Lambda N \) interaction

\[\text{Strongly spin-dependent}\]
Yield estimation of $^{4}_\Lambda H$

<table>
<thead>
<tr>
<th></th>
<th>BNL exp</th>
<th>E63</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total K-</td>
<td>10 G Kaon</td>
<td>5 G Kaon</td>
</tr>
<tr>
<td>Target thickness</td>
<td>8 g/cm2</td>
<td>15 g/cm2</td>
</tr>
<tr>
<td>π^- spectrometer</td>
<td>Moby-dick (18 msr)</td>
<td>SKS (35 msr < 6°)</td>
</tr>
<tr>
<td>$1^+ \rightarrow 0^+ \gamma$ yield</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>γ-ray Efficiency</td>
<td>6%</td>
<td>3% (× 0.8 live)</td>
</tr>
<tr>
<td>$^4_\Lambda H(1^+)$ yield</td>
<td></td>
<td>12,500</td>
</tr>
<tr>
<td>$^4_\Lambda H(0^+)$ yield</td>
<td></td>
<td>16,200</td>
</tr>
<tr>
<td>Direct + γ-feeding</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Decay counter configuration for lifetime measurement

PhysRevC.43.849

Range counter system for hypernuclear π- decay in BNL

Plastic scintillator
Total 7.6cm thickness

(A) MWPC

(B) Timing scintillator

(C) Range counter

(D) Veto counter

Optimum missing mass gate of $^7_\Lambda\text{Li}$
Certain states will be enhanced.

Range counter Total E resolution
~ 15%(FWHM) @50 MeV

Lifetimes of $^3_\Lambda\text{H}$, $^4_\Lambda\text{H}$ can be measured

(a) $^3_\Lambda\text{H} \rightarrow ^3\text{He} + \pi$

(b) $^4_\Lambda\text{H} \rightarrow ^4\text{He} + \pi$

(c) $^\Lambda\text{He} \rightarrow \pi^- + \text{other}$

(d) $^6\text{Li} + \Lambda \rightarrow p + \pi^-$ (in-flight)
CSB data in p-shell hypernuclei

Theoretical study: $10 \sim 100$ keV CSB effect in p-shell

Existing data on B_Λ

<table>
<thead>
<tr>
<th>hypernuclei</th>
<th>B_Λ (g.s.)</th>
<th>reaction</th>
<th>ΔB_Λ (g.s.)</th>
<th>with reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^7_\Lambda$He</td>
<td>5.16 \pm 0.08</td>
<td>5.60 \pm 0.17 [70, 71]</td>
<td>-</td>
<td>-0.44 ± 0.19</td>
</tr>
<tr>
<td>$^7_\Lambda$Be</td>
<td>5.16 \pm 0.08</td>
<td>-</td>
<td>6.80 \pm 0.03</td>
<td>+0.04 \pm 0.06</td>
</tr>
<tr>
<td>$^8_\Lambda$Be</td>
<td>6.80 \pm 0.05</td>
<td>-</td>
<td>6.84 \pm 0.05</td>
<td>-</td>
</tr>
<tr>
<td>$^8_\Lambda$Li</td>
<td>8.50 \pm 0.12</td>
<td>8.36 \pm 0.16 [72]</td>
<td>-0.21 ± 0.22</td>
<td>-0.07 ± 0.24</td>
</tr>
<tr>
<td>$^9_\Lambda$B</td>
<td>8.29 \pm 0.18</td>
<td>-</td>
<td>9.11 \pm 0.22</td>
<td>-0.22 ± 0.25 (-0.50 \pm 0.21)</td>
</tr>
<tr>
<td>$^{10}_\Lambda$B</td>
<td>8.89 \pm 0.12</td>
<td>8.60 \pm 0.18 [12]</td>
<td>-0.22 ± 0.25</td>
<td>+0.04 \pm 0.21*</td>
</tr>
<tr>
<td>$^{10}_\Lambda$Be</td>
<td>$-0.03 \pm 0.19^*$</td>
<td>-0.57 ± 0.19</td>
<td>-0.57 ± 0.19</td>
<td>-0.72 ± 0.18</td>
</tr>
</tbody>
</table>

Experiment with $(e,e'K^+)$ reaction (JLAB)

$\rightarrow A=7, 10$ hypernuclei (\sim100 keV accuracy)

Difficulty: Need accurate data in both mirror pair
Features

- **Large photo-peak efficiency**
 \[\varepsilon \sim 6\% \text{ @ } 1 \text{ MeV with 32 Ge detectors} \]
- **Fast readout system**
- **Low temp. Ge detector**
 for radiation hardness
 \[\text{Mechanical cooling} \]
- **Fast background suppressor**
 \[\text{PWO counter} \]