Studies for charge symmetry breaking effect in hypernuclei with nuclear emulsion

M. Yoshimoto1, J. Yoshida2, K. Nakazawa1 and J-PARC E07 Collaboration

1. Gifu University
2. Advanced Science Research Center, JAEA

Revised in slide no. 5, 23 and 24.
Outlines

1. Nuclear emulsion
 - history
 - detector
 - specification

2. Past experiments

3. J-PARC E07 experiment

A hypernucleus
Very Brief History of nuclear emulsion

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors/Institute</th>
<th>Discovery/Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1910</td>
<td>S. Kinoshita</td>
<td>Observation of alpha particle with photographic emulsion</td>
</tr>
<tr>
<td>1947</td>
<td>C. F. Pawell et al.</td>
<td>Discovery of π-meson in cosmic ray.</td>
</tr>
<tr>
<td>1949</td>
<td>G. Rochester et al.</td>
<td>Discovery of $K^+ \rightarrow \pi^+\pi^+\pi^-$ with nuclear emulsion</td>
</tr>
<tr>
<td>1977</td>
<td>E531 experiment</td>
<td>First Neutrino oscillation experiment.</td>
</tr>
<tr>
<td>1985</td>
<td>WA75</td>
<td>Detection of open bottom meson with accelerator</td>
</tr>
<tr>
<td>1988</td>
<td>KEK-PS E176 exp.</td>
<td>Search for double hypernuclei and H dibaryon with counter-emulsion hybrid method</td>
</tr>
<tr>
<td>1999-</td>
<td>KEK-PS E373 exp.</td>
<td>Search for double hypernuclei with the hybrid method</td>
</tr>
<tr>
<td>2000</td>
<td>DONUT experiment</td>
<td>Direct observation of τ neutrino.</td>
</tr>
<tr>
<td>2008-</td>
<td>OPERA experiment</td>
<td>Discovery of τ neutrino appearance</td>
</tr>
</tbody>
</table>
Discovery of π-meson in cosmic ray (1947)

C. F. Pawell et al. Nature 159 186 (1947)
→ H. Yukawa, Nobel prize in 1949 → C. F. Pawell, Nobel prize in 1950
Detection of antiprotons in nuclear emulsion

E. Segre & O. Chamberlain

The structure of nuclear emulsion plate:

- **Charged particles**
- **Detector elements** = Silver halide crystals 10^{14} /cm3
- \rightarrow The highest spatial resolution as tracking detector

- **Gelatin binder**
- **200 nm**
- **0.2 μm**

Image with electronic microscope developed by Fujifilm.
The ionization following the passage of the charged particles generates electron-hole pairs in the silver bromide crystal.

The electron reduces silver ions and makes a latent image (silver atoms).

\[
\begin{align*}
\text{Ag}^+ + e^- &\rightarrow \text{Ag} \\
\text{Ag} + \text{Ag}^+ + e^- &\rightarrow \text{Ag}_2 \\
\text{Ag}_{n-1} + \text{Ag}^+ + e^- &\rightarrow \text{Ag}_n
\end{align*}
\]

Chemical development:
Supply silver with reducing agent
\[\text{Ag}^+ + e^- \rightarrow \text{Ag} \]
Grow latent images to an **observable** size

Fixing:
Remove unwanted AgBr
\[2 \text{Na}_2\text{S}_2\text{O}_3 + \text{AgBr} \rightarrow \text{Na}_3[\text{Ag}(\text{S}_2\text{O}_3)_2] + \text{NaBr} \]
Very Brief History of nuclear emulsion

1910: S. Kinoshita
Observation of alpha particle with photographic emulsion

1947: C. F. Pawell et al.
Discovery of π-meson in cosmic ray.

1949: G. Rochester et al.
Discovery of $K^+ \rightarrow \pi^+\pi^+\pi^-$ with nuclear emulsion

1955: E. Segre & O. Chamberlain
Detection of antiprotons.

1971: K. Niu et al.
Discovery of open charm meson with cosmic ray.

1977: E531 experiment
First Neutrino oscillation experiment.

1985: WA75
Detection of open bottom meson with accelerator

1988: KEK-PS E176 exp.
Search for double hypernuclei and H dibaryon with counter-emulsion hybrid method

1999-: KEK-PS E373 exp.
Search for double hypernuclei with counter-emulsion method

2000: DONUT experiment
Direct observation of τ neutrino.

2008-: OPERA experiment
Discovery of τ neutrino appearance

25 June 2018
HYP2018 in Portsmouth Virginia, U.S.A.
How to determine the energy and identify the particles

1. Energy-loss: Bethe-Bloch equation

\[-\left\langle \frac{dE}{dx} \right\rangle = K z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 W_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right].\]

Range-Energy relation
Grain linear density measurement

2. Multiple coulomb scattering

\[\theta_0 = \frac{13.6 \text{ MeV}}{\beta_{cp}} z \sqrt{x/X_0} \left[1 + 0.038 \ln(x/X_0) \right].\]
Mirror hypernuclei

Normal nuclei

\(^4\text{He}\)

\[\begin{align*}
\Lambda^4\text{He} & \rightarrow \pi^- + ^4\text{He} \\
& \rightarrow \pi^- + ^1\text{H} + ^3\text{H} \\
& \rightarrow \pi^- + ^2\text{H} + ^2\text{H}
\end{align*}\]

\[\begin{align*}
\Lambda^4\text{He} & \rightarrow \pi^- + ^1\text{H} + ^3\text{He} \\
& \rightarrow \pi^- + ^1\text{H} + ^1\text{H} + ^2\text{H}
\end{align*}\]

Hypernuclei

\[\Delta B_\Lambda = B_\Lambda(^4\Lambda\text{He}) - B_\Lambda(^4\Lambda\text{H})\]

Mesonic decays w/o neutron

25 June 2018

HYP2018 in Portsmouth Virginia, U.S.A.
Measurement of B_{Λ}

$$Q_0 = M_\Lambda + M_{Z^{-1}} - \sum m_i$$

$$B_{\Lambda} = Q_0 - Q$$

Total visible energy in emulsion

1. Range measurement error
2. Emulsion density and shrinkage factor measurement error
3. Range straggling

Emulsion can measure B_{Λ} of various nuclides in the same detector. Thus, the other systematic errors will be canceled.
\(B_\Lambda \) past results in nuclear emulsion

Table 3

Binding energies of light hypernuclei measured in emulsion. In addition to the quoted statistical errors, there are systematic errors (\(\sim 0.04 \) MeV) which have been minimised by measuring \(M_\Lambda \) in the same emulsion stack.

<table>
<thead>
<tr>
<th>Hypernuclide</th>
<th>(B_\Lambda /)MeV</th>
<th>(B_\Lambda /)MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^3\Lambda H)</td>
<td>0.13 ± 0.05</td>
<td>(^6\Lambda Li)</td>
</tr>
<tr>
<td>(^4\Lambda H)</td>
<td>2.04 ± 0.04</td>
<td>(^9\Lambda Be)</td>
</tr>
<tr>
<td>(^4\Lambda He)</td>
<td>2.39 ± 0.03</td>
<td>(^9\Lambda B)</td>
</tr>
<tr>
<td>(^5\Lambda He)</td>
<td>3.12 ± 0.02</td>
<td>(^{10}\Lambda Be)</td>
</tr>
<tr>
<td>(^6\Lambda He)</td>
<td>4.18 ± 0.10</td>
<td>(^{10}\Lambda B)</td>
</tr>
<tr>
<td>(^7\Lambda He)</td>
<td>\text{not averaged}</td>
<td>(^{11}\Lambda B)</td>
</tr>
<tr>
<td>(^7\Lambda Li)</td>
<td>5.58 ± 0.03</td>
<td>(^{12}\Lambda B)</td>
</tr>
<tr>
<td>(^7\Lambda Be)</td>
<td>5.16 ± 0.08</td>
<td>(^{12}\Lambda C)</td>
</tr>
<tr>
<td>(^8\Lambda He)</td>
<td>7.16 ± 0.70</td>
<td>(^{13}\Lambda C)</td>
</tr>
<tr>
<td>(^8\Lambda Li)</td>
<td>6.80 ± 0.03</td>
<td>(^{14}\Lambda C)</td>
</tr>
<tr>
<td>(^8\Lambda Be)</td>
<td>6.84 ± 0.05</td>
<td>(^{15}\Lambda N)</td>
</tr>
</tbody>
</table>

ΔB_Λ past results in nuclear emulsion

<table>
<thead>
<tr>
<th>Multiplet pair</th>
<th>ΔB_Λ/MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>4^ΛHe–4^ΛH</td>
<td>+0.35 ± 0.04</td>
</tr>
<tr>
<td>8^ΛBe–8^ΛLi</td>
<td>+0.04 ± 0.06</td>
</tr>
<tr>
<td>9^ΛB–9^ΛLi</td>
<td>−0.21 ± 0.22</td>
</tr>
<tr>
<td>10^ΛB–10^ΛBe</td>
<td>−0.22 ± 0.25</td>
</tr>
<tr>
<td>12^ΛC–12^ΛB</td>
<td>−0.57 ± 0.19</td>
</tr>
</tbody>
</table>

The **systematics** error is dominant.
The **statistical** error is dominant.

If we get **an order of magnitude higher events** and apply the latest range and emulsion calibration method, we will discuss ΔB_Λ of the multiplet pairs up to ^12C with **high accuracy**.
Beam exposure
J-PARC E07 in 2016 and 2017

Cover with SSD and Ge detector

Emulsion mover

Diamond target
\((^{12}\text{C})\)

K\(^-\)

1.8 GeV/c

SSD

K\(^-\)

Thin

Thick

Thick

Thin

K\(^+\)
Chemical development for E07 in Gifu Univ.

345mm
~1mm

350mm

Thickness

Presoak 5 deg.
Dev. 5 deg.
Stop 5 deg.
Fix 5 deg.

Main talks on the E07 experiment will be given by J. Yoshida tomorrow.

60 plates/cycle (total 1298 plates)
~5 days/cycle from presoak to fix
J-PARC E07
Nuclear Emulsion

Elemental composition

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>39.6</td>
</tr>
<tr>
<td>C</td>
<td>20.6</td>
</tr>
<tr>
<td>N</td>
<td>5.9</td>
</tr>
<tr>
<td>O</td>
<td>11.3</td>
</tr>
<tr>
<td>Ag</td>
<td>11.2</td>
</tr>
<tr>
<td>Br</td>
<td>11.1</td>
</tr>
</tbody>
</table>

Density: 3.6 – 3.9 g/cm³
Shrinkage factor: 1.6 – 1.9

Requires calibration using alpha decay (Z=2) and muon (Z=1) from π⁺ decay

Thick emulsion plate after chemical development

34.5 cm x 35.0 cm
Estimation of single hypernuclei

All events = Overall method

Direct process

3 : 1 preliminary
via Ξ⁻ atom

n(K⁻, K⁰) Ξ⁻ = 2 : 1
p(K⁻, K⁺) Ξ⁻

2 : 1

un-triggered

triggered Ξ⁻

Hybrid method

K⁻ beam: \(\sim 10^{10}\) in total

<table>
<thead>
<tr>
<th></th>
<th>Hybrid</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td># of events</td>
<td>1</td>
<td>(~30)</td>
</tr>
<tr>
<td>Area to analyze</td>
<td>1</td>
<td>(~1000)</td>
</tr>
</tbody>
</table>
“Vertex Picker”

Fully automated microscopic stage

High resolution CMOS
2048*1088 pixels
High frame rate
300fps

Wide FOV
x20 dry lens (NA0.35)
565 × 300 μm²

Piezoelectric drive
Stroke 200 micron
Period 1.3 Hz (current)
Picture 32picts /cycle

<table>
<thead>
<tr>
<th>Camera/processor</th>
<th>For hybrid method</th>
<th>For vertex picker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame rate</td>
<td>60 fps</td>
<td>300 fps</td>
</tr>
<tr>
<td>resolution</td>
<td>512 × 440</td>
<td>2048 × 1088</td>
</tr>
<tr>
<td>Field of view(μm²)</td>
<td>140 × 110</td>
<td>565 × 300</td>
</tr>
<tr>
<td>Image processing</td>
<td>CPU</td>
<td>CPU & GPU</td>
</tr>
</tbody>
</table>
Vertex Picker
Search all region for vertex like event.

Spatial resolution
\(\delta x = 0.9 \text{ um}, \ \delta z = 8 \text{ um} \)

High resolution microscopy
Analyze in detail.

Spatial resolution
\(\delta x = 0.36 \text{ um}, \ \delta z = 1.4 \text{ um} \)

multi vertexes = candidates

Accumulated image

Developed by J. Yoshida
NIM A847 86–92 (2017)
Result of vertex picker

Total 1,718,515 vertex candidates

An E07 emulsion plate
Vertex picker system

vertex candidates
150,334 events

2-vertexes cand.
282 events

2-vertexes
248 events

w/ thin track*
107 events

w/o thin track
141 events

others
34 events

High resolution microscopy

* The thin tracks are not identified as π-meson.
Estimation with all the E07 emulsion plates

~1.7G vertex candidates

~3M two vertexes

~1M two vertexes w/ thin track

Almost all events are single vertex or fake events

Two third will be w/o thin track

It would be to obtain an order of magnitude more events approximately.

cf. 27K mesonic decay
Nuclear Physics B52 (1973) 1-30.
Mesonic decay of single hypernuclear event

<table>
<thead>
<tr>
<th>Track</th>
<th>Range (μm)</th>
<th>Theta θ (deg.)</th>
<th>Phi φ (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>5.3 ± 0.5</td>
<td>18.9 ± 2.1</td>
<td>58.2 ± 1.3</td>
</tr>
<tr>
<td>#2</td>
<td>29.0 ± 1.7</td>
<td>132.3 ± 1.8</td>
<td>237.3 ± 1.9</td>
</tr>
<tr>
<td>#3</td>
<td>12520 ± 20</td>
<td>125.1 ± 1.4</td>
<td>193.1 ± 3.3</td>
</tr>
</tbody>
</table>

Invariant mass [MeV/c²]

<table>
<thead>
<tr>
<th>Measured</th>
<th>3923.3 ± 0.3*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear DB</td>
<td>3922.57 ± 0.04</td>
</tr>
</tbody>
</table>

*Calibration was not finished.

This decay is only allowed by kinematic analysis.

\[\Lambda^4H \rightarrow \pi^- + d + d \]

Not confirmed.

25 June 2018

HYP2018 in Portsmouth Virginia, U.S.A.

Analyzed by May Sweet
Summary and prospects

- There are many uncertainties in the past results of the emulsion experiments, and some issues can be solved by increasing events.
- Emulsions can discuss various single hypernuclei in the same detector with sub-MeV accuracy.
- Development and analysis of reading the E07 emulsion plates is ongoing.
- According to the estimate, 1,000K two vertexes w/ thin track will be acquired.
- We plan to start full-scale analysis using the overall method with vertex picker from 2019. The new results of B_Λ will be released in a few years.