Multi-configuration calculations of hypernuclear photoproduction spectra to shed light on new capability

<u>**T. Motoba**</u> (Osaka E-C Univ. / Yukawa Inst., Kyoto Univ.) A. Umeya (Nippon Institute of Technology) K. Itonaga (Gifu University)

> HYP2018 Conference June 24-29, 2018 Portsmouth, VA

1. Basic motivations

(1) p-shell nuclei and hypernuclei provide a variety of interesting phenomena (shell-, cluster-, and coexistent characters), depending on E_x and mass. (2) Progress of high-precision experiments in hypernuclear spectroscopy (γ -ray, (e,e'K+)) (3) Detailed look in Jlab (e,e'K+) spectroscopic data requires an extended description with multiconfiguration parity-mixing mediated by hyperon (4) Focusing on multi-configuration shell-model **applications** to ${}^{10}B(\gamma,K+){}^{10}{}_{\Lambda}Be$ and ${}^{12}C(\gamma,K+){}^{12}{}_{\Lambda}B$.

2. High-precision hypernuclear reaction spectroscopy, esp., in (e,e'K⁺) at JLab.

Figure taken from H. Tamura et al., Nucl. Phys. A 914 (2013)

 $1/2^{-1}$

¹⁵O

 ${}^{15}_{\Lambda}$ N

0.026

γ-ray spectroscopy (s- & sd-shell)

Figure taken from S.B. Yang, et al., Phys. Rev. Lett. 120, (2018).
Theory: Umeya and Motoba, Nucl. Phys. A954, 242(2016),
(taking account of both positive and negative parity core states)

2(b). (e,e'K+) reaction spectroscopy

Success of *high-resolution* experiments at JLab

¹²C(e,e'K⁺) ¹²_ΛB

Hall A: M. lodice et al., PRL 99 (2007) ∆E=0.67 MeV

Hall C: L. Tang et al., PRC 90 (2014) ∆E=0.54 MeV

These JLab experiments confirmed the theoretical predictions on one hand, (e,e'K+) #4 but, at the same time, #6 E05-115 200 Counts/200keV an extra peak (#4) not 150 100 predicted so far attracts a new theoretical 300 $^{12}C(\gamma,K^+)^{12}_{\Lambda}B$ $\Lambda_{3^+}(\boldsymbol{p})$ (nb/sr/MeV)challenge. 2 250 $E\gamma = 1.3 \text{ GeV}$ H. Hotchi et al., P.R.C 200 $\theta_{\rm K}=3^{\circ}$ **(S**) <u>64(2001). ∆E=1.45 MeV</u> NSC97f 150 d²σ/dΩdE 6B #5 100 2^{-} 50 #2 #3 5 -10 0 5 10 15 5 10 1520 250 -B, (Mev EXCITATION ENERGY $E_{\rm x}$ (MeV) (π+,K+)¹²

Exp XS and DWIA estimates are in good agreement. The framework of treating the reaction is proved to be powerful.

12C(γ,K+) Cross sec. calculated in DWIA at E_γ = 1.5GeV, θ_K(Lab)=7deg DWIA + SLA amplitudes

Table I. Comparison of excitation energies of ${}^{12}_{\Lambda}B$ and its photoproduction cross sections $d\sigma/d\Omega$ (nb/sr). E01-011

E05-115 Experiment [9] $\theta_{\gamma K} \approx 6.8^{\circ}$				CAL: SLA [16] at $\theta_K = 7^\circ$				CAL: S6B [17]	
Peak	$-B_{\Lambda}(\text{MeV})$	E_x (MeV)	$d\sigma/d\Omega$	J_f	E_x (MeV)	$d\sigma/d\Omega$	Sum	$d\sigma/d\Omega$	Sum
# 1-1	-11.524	$(0.0)_{GS}$		1^{-}_{1}	$(0.0)_{GS}$	21.1		10.5	
# 1-2	-11.345	(0.179)	101.0	2^{-}_{1}	(0.186)	89.3	100.4	63.1	73.6
# 2	-8.415	(3.109)	33.5	1^{-}_{2}	(2.398)	48.4	56.1	19.0	24.1
				0_{1}^{-}	(3.062)	7.7		5.2	
				2^{-}_{2}	(5.022)	7.0		4.9	
# 3	-5.475	(6.049)	26.0	$2_{3}^{=}$	(6.267)	11.8	23.8	8.4	15.5
				1^{-}_{3}	(6.389)	5.0		2.3	
#4	-2.882	(8.857)	20.5						
				2_{1}^{+}	(11.000)	1.3		1.4	
# 5	-1.289	(10.235)	31.5	1^{+}_{1}	(11.120)	8.2	9.5	5.1	6.5
#6	-0.532	(10.992)	87.7	3+	(11.081)	77.6	130.7	57.1	81.1
				2^{+}_{2}	(11.610)	53.2		24.0	
				1_{2}^{+}	(12.129)	6.1		7.1	
# 8	0.973	(12.497)	28.5	2^{+}_{3}	(12.784)	20.0	29.8	9.1	20.4
				1^{+}_{3}	(13.176)	3.7		4.2	

3. An extended treatment of multi-config. wave functions---just to explain a new concept

Standard configuration assumed so far: (in case of ${}^{12}{}_{\Lambda}B$)

Model space for ¹¹B core

(a) ordinary model space J_{core}^{-} $(0s)^4 (0p)^7$ (0p-0h)

Ordinary model space for ${}^{12}_{\Lambda}B$ hypernuclei

(a)
$$J_{\text{core}}^{-} \otimes 0s^{\Lambda} \Rightarrow {}_{\Lambda}^{12}B(J^{-})$$
 (b) $J_{\text{core}}^{-} \otimes 0p^{\Lambda} \Rightarrow {}_{\Lambda}^{12}B(J^{+})$

Two kinds of extensions to include both natural and unnatural parity core states

Extention (1) 1*p*-1*h* core excitation is taken into account

(c)
$$J^+_{\text{core}} \otimes 0s^{\Lambda} \Rightarrow {}^{12}_{\Lambda} B(J^+)$$
 (d) $J^+_{\text{core}} \otimes 0p^{\Lambda} \Rightarrow {}^{12}_{\Lambda} B(J^-)$

Extention (2) Configurations mixed by AN interaction

(a)
$$J_{\text{core}}^{-} \otimes 0s^{\Lambda} \oplus J_{\text{core}}^{+} \otimes 0p^{\Lambda} \Rightarrow {}_{\Lambda}^{12}B(J^{-})$$

(b)
$$J_{\text{core}}^{-} \otimes 0p^{\Lambda} \oplus J_{\text{core}}^{+} \otimes 0s^{\Lambda} \Rightarrow {}_{\Lambda}^{12}B(J^{+})$$

$$T^{HB}(J_{\text{core}}^{+}) \otimes \Lambda(0p) \Rightarrow {}_{\Lambda}^{12}B(J^{-})$$

$$T^{HB}(J_{\text{core}}^{+}) \otimes \Lambda(0p) \Rightarrow {}_{\Lambda}^{12}B(J^{+}) \longrightarrow Mixing$$

$$T^{HB}(J_{\text{core}}^{-}) \otimes \Lambda(0p) \Rightarrow {}_{\Lambda}^{1$$

Our new theoretical challenge: Both extensions (1)+(2) are taken into account simultaneously to describe ${}^{12}{}_{\Lambda}B$ "parity-mixing mediated by Λ " (a new concept seen only in hypernucleus)

¹²^{$$\Lambda$$} B(*J*_H⁻)= { ¹¹B(*J*_c⁻)₀ x Λ_s }⁽⁰⁾ + { ¹¹B(*J*_c⁺)₁ x Λ_p }⁽²⁾

¹²^{$$\Lambda$$} B($J_{\rm H}^{+}$) = { ¹¹B($J_{\rm c}^{-}$)₀ x Λ_p }⁽¹⁾ + { ¹¹B($J_{\rm c}^{+}$)₁ x Λ_s }⁽¹⁾

→ Energy levels, Proton-pickup S factors, → → DWIA cross section of ${}^{12}C$ (e,e'K+) ${}^{12}{}_{\Lambda}B$

New transition components connected via (γ ,K⁺) in extended model space proton is converted -- $\rightarrow \Lambda$ in *s* or *p* orbits

(In the past cals, only green arrows are taken into account.)

$${}^{12}{}_{\Lambda}B(J_{H}^{-}) = \{([s^{4}]p^{7}; J_{c}^{-})_{0} \times \Lambda_{s}\}^{(0)} + \{([s^{4}]p^{6}(sd)^{1}; J_{c}^{+})_{1} \times \Lambda_{p}\}^{(2)} + \{([s^{3}]p^{8}; J_{c}^{+})_{1} \times \Lambda_{p}\}^{(2)}$$

$${}^{12}C(0^{+})_{0+2h_{0}} = |[s^{4}]p^{8} > + |[s^{4}]p^{7}(fp)^{1} > + |[s^{4}]p^{6}(sd)^{2} > + |[s^{3}]p^{8}(sd)^{1} > + |[s^{2}]p^{10} >$$

$${}^{12}{}_{\Lambda}B(J_{H}^{+}) = \{([s^{4}]p^{7}; J_{c}^{-})_{0} \times \Lambda_{p}\}^{(1)} + \{([s^{4}]p^{6}(sd)^{1}; J_{c}^{+})_{1} \times \Lambda_{s}\}^{(1)} + \{([s^{3}]p^{8}; J_{c}^{+})_{1} \times \Lambda_{s}\}^{(1)} + \{([s^{3}]p^{8}; J_{c}^{+})_{1} \times \Lambda_{s}\}^{(1)}$$

Problems to be checked: What kind of effective interactions should be used in describing the WF in the extended model.

< This is not the end of story, but the beginning. >

Before discussing the *reason for no peak result on #4 peak* observed in ${}^{12}_{\Lambda}B$, let us look next at the theoretical result for

¹⁰B(γ,K⁺)¹⁰_ΛBe.

At the same time, we perform calculations for the recoilless ${}^{9}Be(K^{-},\pi^{-}) {}^{9}{}_{\Lambda}Be$ and ${}^{10}B(K^{-},\pi^{-}){}^{10}{}_{\Lambda}B$ reactions in order to get insight for the different situation.

4. Parity-mixed multi-configuration treatment for ¹⁰B(γ,K⁺)¹⁰_ΛBe

The wave function consists of two kinds of configurations: core-parity mixed by Λ

$${}^{10}_{\Lambda}Be(J_{\rm H}^{-}) = \Sigma[{}^{9}Be(J_{c}^{-}) \times s_{\Lambda}]^{(0)} + \Sigma[{}^{9}Be(J_{c}^{+}) \times p_{\Lambda}]^{(2)}$$

$${}^{10}_{\Lambda}Be(J_{\rm H}^{+}) = \Sigma[{}^{9}Be(J_{c}^{-}) \times p_{\Lambda}]^{(1)} + \Sigma[{}^{9}Be(J_{c}^{+}) \times s_{\Lambda}]^{(1)}$$

The target g.s. wave function is described correspondingly

$${}^{10}B(J_g^+) = \Sigma[{}^{9}Be(J_c^-) \times j_p^{\mathbb{N}}] + \Sigma[{}^{9}Be(J_c^+) \times j_{s,sd}^{\mathbb{N}}]$$

For nuclear parts one may adopt other sophisticated shell models , cluster models, AMDs, etc. 15

The first (γ,K⁺) prediction made so far within the standard model

Shell model: T. Motoba,
M. Sotona, K. Itonaga, P.T.P.
Suppl. 117, 123 (1994).

The first data came recently

T. Gogami et al., P.R. C **93** (2016)

Major predicted peaks are clearly confirmed, **but...** again we have extra yields (# **a**) that are not explained in the previous theory.

Theoretical energy levels (w/o parity-mixing)

[32] Shell model:

T. Motoba, M. Sotona, K. Itonaga, P.T.P. Suppl. **117**, 123 (1994). T. Motoba, P. Bydzovsky, M. Sotona, K. Itonaga, P.T.P. Suppl.**185** (2010). [33] Shell model: D.J. Millener, N.P.A **881**, 298 (2012). [23] Cluster model: E. Hiyama, Y. Yamamoto, P.T.P. **128**, 105 (2012). [34] AMD model: M. Isaka et al., Few-Body Syst. 54, 1219 (2013)

JLab exp. T. Gogami et al., P.R. C 93, 034314 (2016)

Energy levels obtained in the parity-mixed multiconfiguration calculations (α-breaking included)

Jlab: ¹⁰B(e,e'K+)¹⁰_ABe Exp. T. Gogami et al., P.R. C **93** (2016)

New theoretical result of **10B**(γ , K+)**10**^A**Be** obtained with the parity-mixed multiconfiguration wave functions. The new model can explain remarkably the extra bump #a.

Comparison of energies and cross sections for 5 peaks

		$E_{\gamma} = 1.5 \text{ GeV}$			EXP = T. Gogami et al, PRC93 (2016)						
⁹ Be (<i>J</i> _i) Λ ¹⁰ B ⁱ		3e (<i>J_k</i>) CAL		$\theta = 7 \deg$				EXP	Fit I		
Ji	Ei (exp)	E _i (cal)	J _k	E _x	- <i>B</i> ∧	dσ/dΩ		ехр	E _x	- B ∧	dσ/dΩ
	C2S	C2S		[MeV]	[MeV]	[nb	/sr]	peak	[MeV]	[MeV]	[nb/sr]
3/2-	0.000	0.000	1-	0.000	-8.600	9.609	21.62	#1	0.00	9 55+0 07	17.0+0.5
	1.0(rel)	1.0(rel)	2-	0.165	-8.435	12.008	21.02	#1	0.00	-0.55±0.07	17.0±0.5
E (0 -	0.400	0.044	0-	0.710	5 000	11.054					
5/2-	2.429	2.644	2	2.712	-5.888	11.654	21.05	#2	2.78±0.11	-5.76±0.09	16.5±0.5
	0.958	1.020	3-	2.860	-5.740	9.391					
7/2-	6.380	6.189	3-	6.183	-2.417	7.625				0.00.044	405.00
	0.668	0.942	4-	6.370	-2.230	13.505	21.13	#3	6.26±0.16	-2.28±0.14	10.5 ± 0.3
				_							
			$2^{+}(3)$	7.807	-0.793	4.495	9.46		Dro	ad pool	# ~
			1+(3)	7.935	-0.665	4.968			ВГО	аа реак	#a 🔨
Co	nsistir	anf	3+(2)	8.712	0.112	6.150		(#a	8 34+0 41	-0 20+0 40	23.2+0.7
	1515011	g oj	2+(4)	8.828	0.228	1.431	19.91		0.0120.11	0.2020.10	
sev	ieral s	tates	2+(5)	9.002	0.402	9.893	(29.37)				
			3+(3)	9.059	0.459	2.434					
7/0-	11 292	10.2/1	0-	10 105	1 505	2 012					
112	1 200	1 355	<u> </u>	10.105	1.303	17 085	21.90	#4	10.83±0.10	2.28±0.07	17.2±0.5
	1.200	1.000	4	10.928	2 228	4 508					
			1 (3)	11 319	2.220	11 185	29.54				
			4'(3) 2+(5)	11 5/10	2.710	12 750	(51.44)				
			3.(3)	11.543	2.943	13.759					

Agreement is satisfactory (slight overestimates with SLA) 20

Parity-mixed w.f. of states in the "extra" #a

$J_n^{\pi}(-B_{\Lambda}[\text{MeV}])$	$[J_{\rm core}^{\pi}]j^{\Lambda}$	$[J_{\rm core}^{\pi}]j^{\Lambda}$	$[J_{\rm core}^{\pi}]j^{\Lambda}$
XS [nb/sr]			
$2^+_3(-0.739)$		$[3/2^1](p_{3/2}p_{1/2})^{\Lambda}$	$[5/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$
4.49		82.5%	15.8%
$1_3^+(-0.665)$		$[3/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$	$[5/2_1^-]p_{3/2}^{\Lambda}$
4.97		79.5%	17.9%
$2^+_4(0.228)$	$[5/2^+_2]s^{\Lambda}_{1/2}$	$[3/2^1](p_{3/2}p_{1/2})^{\Lambda}$	$[5/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$
1.43	87.5%	9.4%	2.4%
$2_5^+(0.402)$	$[5/2^+_2]s^{\Lambda}_{1/2}$	$[3/2^1](p_{3/2}p_{1/2})^{\Lambda}$	$[5/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$
9.89	11.3%	70.9%	10.8%
$3_2^+(0.112)$	$[5/2^+_2]s^{\Lambda}_{1/2}$	$[3/2_1^-]p^{\Lambda}_{3/2}$	$[5/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$
6.15	31.6%	55.4%	9.7%
3 ⁺ ₃ (0.459)	$[5/2^+_2]s^{\Lambda}_{1/2}$	$[3/2_1^-]p^{\Lambda}_{3/2}$	$[5/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$
2.43	67.5%	27.1%	2.7%

Our new concept is realized here in ${}^{10}_{\Lambda}$ Be. 21

5. Two new calculations performed so as to make the situation clear

5(a) The recoilless ⁹Be(K-, π -) ⁹_ABe reaction

schematic picture for easy understandin	9∧Be Ba	nd structure 3,4,5 [–]	5	4 [_] 3 [_]	Core deformation causes energy
4+	4+	1,2,3	3-	$\frac{2^{-}}{1^{-}} \Lambda($	splitting of <i>p</i> -state. <i>p</i> _)
2^+	2+	····· ¹⁻ ···· Λ	(p //) 1 ⁻ (K=0 ⁻)	(K=1 ⁻)	These structure characteristic
<u> </u>	$\frac{0^+}{I_{\rm C} \times s_{\rm A}}$	$I_{\rm C} \times p_{\Lambda}$	∫ genuine hypernuclea	⁹ Be-analog ar	was shown with a cluster model. (1983) 22

Energy levels of ⁸Be and ${}^{9}_{\Lambda}$ Be obtained with multi-configuration shell-model calculation

OUR IDEA: Substitutional states among so many levels can be identified through the *recoilless* (K-, π -) reaction 24

Recoilless (K⁻, π^-) ⁹ Be reaction: EXP vs. CAL

Energy levels of ⁹Be and obtained with multi-configuration calculation

be identified through the *recoilless* (K-,p-) reaction

5(b) The recoilless ${}^{10}B(K-,p-){}^{10}{}_{\Lambda}B$ reaction to identify the $\Lambda(p_{\perp})$ energy

(K⁻, π^-) reaction on ¹⁰B(3+)=" $\alpha\alpha$ "+p+n with recoilless condition $\Delta L=\Delta S=0$

CONCLUDE: $\alpha \alpha$ -like core deformation causes splitting of Λp -states, then low-energy $\Lambda(p_{\prime\prime})$ can mix with ⁹Be(J^+) $\Lambda(s)$. **These parity**mixed w.f. at E_∧≈0 MeV can explain the extra peak #a.

Conclusion-1. Mechanism of core-parity mixing mediated by the Λ hyperon is based on

REASON: ($\alpha \alpha$ -like) core nuclear deformation causes

- \rightarrow strong coupling between *p*-state Λ and core deformation (rotation) is realized in ${}^{9,10}_{\Lambda}Be$ and ${}^{10}_{\Lambda}B$.
- $\rightarrow \Lambda p$ -state splits into $\Lambda(p_{//})$ and $\Lambda(p_{\perp})$
- \rightarrow the lower $\Lambda(p_{//})$ comes down in energy and ${}^{9}\text{Be}(J^{-}) \times \Lambda(p_{//})$ couples easily with ${}^{9}\text{Be}(J^{+}) \times \Lambda(s)$.

Therefore, such new type w.f. (coupling) should appear in $^{9,10}{}_{\Lambda}{\rm Be}$ and $^{10}{}_{\Lambda}{\rm B}$ due to the core deformation.

but "not" in spherical systems (w/o enough deformation).

Conclusion-2. Such new type of mixing might not occur in "spherical" systems such as ¹² B, 12,13 C

A concluding remark: A new question if the extra peak #4 in Hall C exp. can survive in future exp. w/ better statistics.

Conclusion-3. A characteristic and dynamical coupling between a hyperon and deformation (rotation) is applicable to other hypernuclei.

Emphasize: The finding of peak #**a** in ${}^{10}B(e,e'K^+){}^{10}{}_{\Lambda}Be$ is a novel evidence for genuine hypernuclear w.f. with parity-mixing realized in "deformed" hypernuclei.

Emphasize: The s. p. energies of hyperon for l > 0 should be extracted only from hypernuclei with a (nearly) spherical core.

(free from strong rotational coupling).

Appendix-1: ¹³ C case Hiyama, Kamimura, Motoba, Yamada, Yamamoto, PRL 85 (2000)

Appendix-2: Transition from spherical to rotational characters in low-lying $^{145-155}$ Sm isotopes: E(1/2-) and E(3/2-)

Spherical \rightarrow rot.

cf. JM Yao's talk and

Mei, Hagino, Yao, Motoba, P.R.C **96** (2017)

$E(1/2_1^{-})$ and $E(3/2_1^{-})$ in hypernuclear $_{\Lambda}$ Sm isotopes

Buck-up slides follow:

Proton-pickup S-factors

Experimental S-factors are in very good agreement.