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The A(e, e′K+)YA cross section

? Amplitude of the process

e(k) + A(pA)→ e′(k′) + K+(pK) +Y A(pY A)

L. YUAN et al. PHYSICAL REVIEW C 73, 044607 (2006)
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FIG. 1. A schematic representation of the (a) mesonic and
(b) electromagnetic production processes.

normal nuclear densities, and this information can serve
as a normalization point, to extrapolate the interaction to
matter-densities found in neutron stars, where mixtures of
nucleons and hyperons could form a stable system [4].

Traditionally, hypernuclei have been produced with sec-
ondary beams of kaons or pions, as shown in Fig. 1(a). Because
the (K−, π−) reaction is exothermic, the three-momentum
transfer to the " can be chosen to be small. In this situation
the cross section to substitution states (i.e., states where
the " acquires the same shell quantum numbers as those
of the neutron which it replaces) is relatively large. On
the other hand, the (π+, K+) reaction has three-momentum
transfers comparable to the nuclear Fermi-momentum, and the
cross section preferentially populates states with high angular
momentum transfers [5,6]. Neither of these two reactions has
significant spin-flip amplitude at forward angles where the
cross sections are experimentally accessible. Thus all these
spectra are dominated by transitions to non-spin-flip states.

Aside from early emulsion experiments, mesonic reaction
spectroscopy of hypernuclei has generally provided hypernu-
clear spectra with energy resolutions !2 MeV. This is due to
the intrinsic resolutions of secondary mesonic beamlines, and
the target thicknesses required to obtain sufficient counting
rates. One previous study did achieve a spectrum resolution of
approximately 1.5 MeV for the "C hypernucleus, using a thin
target and devoting substantial time to data collection [7].

Although, specific hypernuclear states below nucleon emis-
sion threshold can be located within "1 keV by detecting
deexcitation gammas [8,9] in coincidence with a hypernuclear
production reaction, such experiments become more difficult
in heavier systems due to the number of transitions which
must be unambiguously assigned in an unknown spectrum. It
should be noted however, that resolutions of a few hundred keV
are also sufficient for many studies, since reaction selectivity
and angular dependence potentially allows extraction of the
spectroscopic factors to specific states [10]. A reaction also
provides a full spectrum of states which can be clearly
identified with a specific hypernucleus. Indeed the excitation
strength of the spectrum is of interest, as the impulse
approximation assumes that the reaction proceeds through
the interaction of the incident projectile with a nucleon in
a single-particle state within the nuclear medium. Thus as
an example apropos to the experiment reported here, if the
theoretical spectrum does not reproduce the experimental
one, it is possible that propagator renormalization within the
medium could be significant [11], requiring a modification of
the single-particle picture of the reaction.

Electroproduction of hypernuclei is illustrated by Fig. 1(b).
Electroproduction traditionally has been used for precision
studies of nuclear structure, as the exchange of a photon can be
accurately described by a first order perturbation calculation.
In addition, electron beams have excellent spatial and energy
resolutions. Previously, electron accelerators had poor duty
factors, significantly impairing high singles rate, coincidence
experiments. However, modern, continuous beam accelerators
have now overcome this limitation, and although the cross
section for nuclear kaon electroproduction is smaller than
that for hypernuclear production by the (π, K) reaction for
example, this can be compensated by increased beam intensity.
Targets can be physically small and thin (10–100 mg cm−2),
allowing studies of almost any isotope. The potential result
for (e, e′K+) experiments, is an energy resolution of a few
hundred keV with reasonable counting rates up to at least
medium weight hypernuclei [12].

The (e, e′K+) reaction, because of the absorption of the
spin 1 virtual photon, has high spin-flip probability even at
forward angles. In addition, the three-momentum transfer to
a quasifree " is high, approximately 300 MeV/c at 0◦ for
1500 MeV incident photons, so the resulting reaction is
expected to predominantly excite spin-flip transitions to
spin-stretched states [13]. Spin-flip states are not strongly
excited in hadronic production, and the (e, e′K+) reaction
acts on a proton rather than a neutron, creating proton-
hole, "-particle states, charge symmetric to those previously
studied with meson beams. Precision experiments, comparing
mirror hypernuclei, are needed in fact, to extract the charge
asymmetry in the "N potential.

An initial experiment [14], in Hall C at Thomas Jefferson
National Acceleration Facility (JLab) has been previously
reported, and this paper discusses the experiment in more
detail, presenting an improved "B spectrum as well as a
previously unpublished spectrum of the 7Li(e, e′K+)7

"He
reaction.

II. EXPERIMENTAL DETAILS

In electroproduction, the " and K+ particles are created
associatively via an interaction between a virtual photon and
a proton in the nucleus, p(γ , K+)". The hypernucleus, "A,
is formed by coupling the " to the residual nuclear core,
(Z-1), as shown in Fig. 1(b). In electroproduction, the energy
and three-momentum of the virtual photon are defined by ω =
Ee −E

′

e and $q = $pe − $p
′

e, respectively. The square of the four-
momentum transfer of the electron is then given by −Q2 =
t = ω2 − q2 .

As will be shown below, the number of (virtual) photons
falls rapidly as the scattered electron angle increases (increas-
ing t), and thus the distribution of (virtual) photons also peaks
in the forward direction. In addition, the nuclear transition
matrix element causes the cross section for hypernuclear
production to fall rapidly with the angle between the reaction
kaon and the (virtual) photon. Thus experiments must be
done within a small angular range around the direction of
the incident electron. To accomplish this, the experimental
geometry requires two spectrometer arms, one to detect the
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? Cross section (i, j = 1, 2, 3)

dσ ∝ LijW ij
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? The lepton tensor Lµν , fully specified by the measured electron
kinematical variables

L =

 η+ 0 −
√
εLη+

0 η− 0
−
√
εLη+ 0 εL

 ,
η± =

1
2

(1 ± ε) , ε =

(
1 − 2

|q|2

Q2 tan2 θe

2

)−1

, εL = −
Q2

ω2 ε

? Target response tensor

W ij = 〈i|Ji
A(q)|f 〉〈f |Jj

A(q)|i〉 δ(4)(q + pi − pf )
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? Building blocks

|i〉 = |A〉 , Ji
A =

A∑
n=1

ji(n) , |f 〉 = |K+,Y A〉

? The current ji drives the elementary process

e + N → Y + K+

? Impulse approximation: at momentum transfer |q|−1 � d , d being the
average nucleon-nucleon separation distance in the target nucleus, the
beam particles interact with individual (bound, moving) nucleons
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The (e, e′p) cross section, as an example

? Transition amplitude of the process

e + A→ e′ + p + (A − 1)n

? Factorization ansatz

〈(A − 1)n p |jµ|A〉 =
∑

k

Mn(k) 〈p|jµ|k〉

Mn(k) = { 〈(A − 1)n| ⊗ 〈k| }|A〉

? Cross section
dσA ∝ dσNP(pm,Em)

pm = |p − q| , Em = ω − Tp , Tp =

√
p2 + m2 − m
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Enter the spectral function

? Definition
P(k,E) =

∑
n

|Mn(k)|2δ(E + EA − EA−1)

probability of removing a nucleon of momentum k from the target
nucleus, leaving the residual nucleus with excitation energy E

? Relation to the nucleon self-enrgy (consider uniform matter, for
simplicity)

P(k,E) =
1
π

ImΣ(k,E)
[E − k2/2M − ReΣ(k,E)]2 + [ImΣ(k,E)]2
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Mean field vs correlation effects

? Consider uniform nuclear matter, as an example

P(k,E) = PMF(k,E) + Pcorr(k,E)

? Mean field, or “pole” contribution

PMF(k,E) =
1
π

Z2
k ImΣ(k, εk)

[E − εk]2 + [Zk Im Σ(k, εk)]2

εk =
k2

2m
+ Re Σ(k, εk) , Zk = |〈−k|ak|0〉|2

The spectroscopic factor Zk yields the normalization of the
single-particle state

? The correlation contribution is a broad background, extending to large
values of momentum and energy
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Uniform nuclear matter at equilibrium density
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Local Density Approximation (LDA)

P(k,E) = PMF(k,E) + Pcorr(k,E)

? PMF(k,E)→ from (e, e′p) data
? Pcorr(k,E)→ from uniform nuclear matter calculations at different

densities

PMF(k,E) =
∑

n

Zn|φn(k)|2 Fn(E − En)

Pcorr(k,E) =

∫
d3r ρA(r) PNM

corr(k,E; ρ = ρA(r))

? Pure mean field

Zn → 1 , Fn(E − En)→ δ(E − En) , Pcorr(k,E)→ 0
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208Pb(e, e′p) missing energy spectra (NIKHEF data)
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Spectroscopic factors of 208Pb (NIKHEF data)
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for nucleons at surface:
binding energy # excitation energy for nuclear vibrations
            fragmentation  especially at Fermi edge (surface)

nucleons in the interior: deep hole states
larger binding energies             more difficult to excite
           z!  approaches occupation number n of nuclear matter

theoretical curves:
nuclear matter calculation: Correlated Basis Function Theory
Benhar, Fabrocini, Fantoni: NPA 505 (1985) 267
modified for finite nuclei:PRC 41(1990) R24
Modification of Im $ to reproduce exp. width of the hole states

n  = $ z! + nc
!

If fragmentation occurs spectroscopic factors 
of different states have to be summed up:

SRC

LRC
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Back to (e, e′K)

? The approach underlying the spectral function formalism can be
generalized to describe the nuclear (e, e′K) cross section

? Introducing some additional simplifying assumptions one gets the simple
expression

dσA ∝

∫
d3pdE dσN P(p,E)PY (|pm + p|,Em + E)

pm = q − pK , Em = ω − TK
? The spectral function PY (pY ,EY ) describes the probability of adding the

hyperon Y , with momentum pY and energy EY to a nucleus
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Λ spectral function in nuclear matter

? In the absence of ΛN interactions

PΛ(pY ,EY ) = δ[EΛ − εΛ(pY )]

? The general expression in terms of the self-energy still holds

PΛ(k,E) =
1
π

ImΣΛ(k,E)
[E − TΛ − ReΣΛ(k,E)]2 + [ImΣΛ(k,E)]2

? Calculation of the self-energy ΣΛ in oxygen and of the full spectral
function in nuclear matter are available
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Λ self-energy in oxygen

? The Λ self-energy in nuclei has been studied by Hjorth-Jensen et al, NPA
605, 458 (1996), and Vidaña et al, NPA 644, 201 (1998).

? Ground state expectation value of the Λ self-energy in 17O . Solid lines:
Julich potential; dashed lines: Nijmegen potential
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Λ binding energies in 208Pb

? Courtesy I. Vidaña. Columns correspond to different YN potentials

Nuclei Orbit Juel89 Juel04 NSC89 NSC97A NSC97B NSC97C NSC97D NSC97E NSC97F Exp.

91
Λ Zr (89

Λ Y)

1s1/2 −25.80 −46.38 −22.77 −31.38 −32.15 −33.48 −33.55 −32.86 −29.56 −23.0

1p3/2 −18.19 −37.85 −17.08 −23.92 −24.66 −25.74 −25.73 −25.13 −22.25 −16.0 (1p)

1p1/2 −18.30 −38.15 −16.68 −23.82 −24.51 −25.53 −25.43 −24.78 −21.88

1d5/2 −11.46 −28.47 −9.78 −14.66 −14.84 −15.616 −15.36 −14.72 −12.79 −9.0 (1d)

1d3/2 −11.45 −28.55 −9.22 −14.55 −14.66 −15.381 −15.06 −14.38 −12.39

1f7/2 −3.16 −18.55 −1.87 −5.53 −5.60 −6.63 −5.65 −5.01 −3.39 −2.0 (1f)

1f5/2 −3.14 −18.85 −1.27 −5.37 −5.35 −5.78 −5.29 −4.63 −3.01

209
Λ Pb (208

Λ Pb)

1s1/2 −31.36 −59.88 −29.52 −38.85 −39.14 −40.52 −40.40 −39.55 −39.30 −27.0

1p3/2 −27.13 −55.18 −26.01 −33.49 −33.47 −34.63 −34.30 −33.39 −31.03 −22.0 (1p)

1p1/2 −27.18 −55.37 −25.72 −33.38 −33.33 −34.44 −34.04 −33.09 −30.72

1d5/2 −21.52 −45.00 −18.12 −22.44 −22.77 −23.54 −22.91 −21.98 −19.86 −17.0 (1d)

1d3/2 −21.58 −44.99 −17.96 −22.39 −22.69 −23.45 −22.83 −21.91 −19.81

1f7/2 −12.77 −37.11 −9.73 −14.63 −14.68 −15.24 −14.17 −12.89 −10.10 −12.0 (1f)

1f5/2 −12.90 −37.10 −9.40 −14.61 −14.60 −15.12 −14.02 −12.73 −9.91

1g9/2 −9.87 −33.75 −6.86 −11.22 −11.30 −11.82 −10.78 −9.56 −6.96 −7.0 (1g)

1g7/2 −10.01 −34.03 −6.36 −11.17 −11.17 −11.60 -10.47 −9.20 −6.57

TABLE II: Λ single-particle energies in 91
Λ Zr and 209

Λ Pb for different YN potentials.

2
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Λ spectral function in nuclear matter

? The Λ spectral function in nuclear matter has been computed by
Robertson and Dickhoff, PRC 70, 044301 (2004), using the Nijmegen
soft core (NSC89) YN potential

state. By definition, this represents a product state of a ! sp
state and the correlated NM ground state. This will not be an
eigenstate as long as there are !N interactions present in the
Hamiltonian. The actual energy eigenstates of the composite
system of a ! in NM may be denoted by

!!""E#$ . "59#

The sp spectral function (see for example Fig. 3) involves the
overlap between the simple physical state of Eq. (58) and the
complicated eigenstate of Eq. (59) which includes all inter-
actions between the ! and the nuclear medium. The extent to
which there is overlap illustrates how well the ! sp state
survives intact in the medium. For the case of no interactions
between the ! and the nucleons, the overlap is perfect, since
the state of Eq. (58) is an eigenstate in this situation. This is
evidenced by the # function spectral distribution appropriate
for a free particle, as indicated by a dashed line at the kinetic
energy in Fig. 3. Interactions between the ! and nucleons are
responsible for the transition from the simple # function
structure to the more complex distribution of sp strength re-
alized in NM. The mechanism behind the spreading of sp
strength can be understood as the mixing of a sp state at a
given energy with two-particle one-hole "2p-1h# states
which span a continuum of energies. This is graphically il-
lustrated in Fig. 4 where part a) identifies the noninteracting
! and part b) shows the interaction that couples this state to
the available 2p-1h states. Although the sp state is no longer
an eigenstate of the many-body Hamiltonian, its quantum
numbers are still conserved by the interaction. The total
strength associated with the original sp state, though frag-
mented, is fixed. This is reflected in the sum rule of Eq. (11).
Details of the strength distribution are determined by the
density of 2p-1h states which increases with energy and the
strength with which the interaction couples these states to the
unperturbed sp state. This information is summarized in the
imaginary part of the self-energy, shown for example in Fig.
5. Note that the decomposition in partial wave contributions
emphasizes the dominance of the 3S1 channel.

From Eq. (28), the imaginary part of the self-energy may
be written as

Im $!"k,%# & %
k!'kF

Im&kk!!G"% + (N"k!#!kk!$ , "60#

where the nucleon hole spectral function has been replaced
by the corresponding mean-field form given by Eq. (8). It

FIG. 3. Spectral function for a ! with k=100 MeV/c. The ver-
tical dashed line indicates the position of a delta-function spectral
distribution for the limiting case of a free particle. Because of the
30 MeV binding for a ! in nuclear matter, it is convenient to shift
the horizontal axis by 40 MeV for plotting on a log scale.

FIG. 4. In part (a) a free ! occupies a sp state at a fixed energy.
Part (b) displays the !N interaction which permits coupling to in-
termediate 2p-1h states which span a range of energies, the density
of states increasing with energy as schematically shown.

FIG. 5. Imaginary part of the ! self-energy for k=100 MeV/c.
The broken curves represent contributions to the overall self-energy
from the 3S1 (dash) and 1S0 (dot) partial wave channels.

CORRELATION EFFECTS ON ! PROPAGATION IN… PHYSICAL REVIEW C 70, 044301 (2004)
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Compare N and Λ spectral functions in nuclear matter

z!k" = #1 !
P
!
$

"F

#

d$!
Im %&!k;$!"
!"&

qp!k" ! $!"2%!1

. !75"

Comparing to Eq. (29), the strength in the qp peak, z!k", is
seen to exhibit a greater sensitivity to the structure of
Im %&!k ;$" than does the peak position, "&

qp. The z-factor
(Fig. 15) is most accurate as a measure of strength in the
peak of the spectral function for low values of k.

A nuclear matter calculation for nucleons similar to this
one [37] yields a particle spectral function shown in Fig. 16,
for a momentum just above kF. The z-factor obtained from
this calculation is zN!kF"=0.72, which is substantially re-
duced compared to z&!0"=0.87 for a similar & qp state.
These two momentum values are compared because each qp
sits at the lowest possible excitation energy for a qp in the
respective systems. In Ref. [37], the depletion of the qp
strength is explained in terms of couplings to 2h-1p states,
which moves approximately 10% of the sp strength to ener-
gies below "F, and coupling to 2p-1h states, which distrib-
utes another 18% to higher energies in the particle domain.
The corresponding fraction of sp strength in the particle do-
main is 13% for the lambda, compared to 18% for nucleons.
A more detailed look at the distribution of strength as a func-
tion of energy is given in Fig. 17. This figure displays for
four different momenta the fraction of the sp strength that is
recovered as a function of energy by intergating this strength
up to that energy. This figure shows that most of the strength
is accounted for at energies corresponding to 2 GeV. In the
case of nucleons interacting by means of the Reid interaction
the strength has to be gathered up to energies of 10 GeV [37]
illustrating the harder core of this interaction.

The relative effects of tensor and short-range correlations
can be untangled to some extent. Turning off the 3S1! 3D1
tensor coupling in the Reid potential for nucleons indicates
that this interaction is responsible for depleting the qp
strength by about 6.5%, almost all within 1000 MeV of "F
[37]. Similarly, turning off the &N-%N coupling in the
NSC89 potential reveals that tensor effects are responsible
for almost half of the reduction in the & qp strength. A value
of z&!0"=0.94 is obtained when coupling to %N states is cut
off.

C. The !N Threshold
The effects associated with the inclusion of the %N chan-

nel are illustrated in Figs. 18 and 19. In NM the %N thresh-

old opens at an energy about 90 MeV above the self-
consistently determined &N threshold. The mass difference
is m%!m&=77 MeV, but the & is bound in NM by about
30 MeV whereas the % binding is about half as much. Again,
the imaginary part of the self-energy provides a picture of
how the %NN!1 2p-1h states influence & sp properties. The
imaginary part of the self-energy is plotted in Fig. 18 for the
case where coupling to the %N states is turned off.

Turning off the %N coupling leads to a recovery of 7% of
the strength in the qp peak as the z-factor increases from 0.86
to 0.93. A reduction in spectral strength is observed at all
energies, but is particularly apparent at, and just above, the
%N threshold. There are two reasons %NN!1 2p-1h states are
most influential in this energy region. First, a “threshold ef-
fect” is responsible for the sharp cusp in Im %& near
100 MeV. This behavior may be understood physically in the
same way as the cusp observed in the %N elastic scattering
cross-section [56]. In scattering theory, the elastic cross-
section may be calculated from the bare two-body interaction
via the on-shell elements of the T-matrix. In NM, an effec-
tive interaction, such as the G-Matrix is a generalization of
the free-space T matrix. Structure arises in the &N G matrix
as a consequence of the strong coupling to the nearby %N
channel [57]. From Eq. (28), the imaginary part of the self-
energy shares the same structure as the imaginary part of the
G matrix.

Second, isospin conservation in the strong &N interaction
forbids excitation of nuclear ph states via !-exchange. How-

FIG. 16. Nucleon particle spectral function (solid) for k
=316 MeV/c with lambda spectral function (dashed) at k
=60 MeV/c for comparison.

FIG. 17. Single-particle strength integrated from "T
& to "max as a

function of "max for different momenta. k=10 MeV (solid), k
=110 MeV (dot), k=210 MeV (dash), k=310 MeV (dot-dash).

FIG. 15. Quasi-particle strength as a function of k.
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one [37] yields a particle spectral function shown in Fig. 16,
for a momentum just above kF. The z-factor obtained from
this calculation is zN!kF"=0.72, which is substantially re-
duced compared to z&!0"=0.87 for a similar & qp state.
These two momentum values are compared because each qp
sits at the lowest possible excitation energy for a qp in the
respective systems. In Ref. [37], the depletion of the qp
strength is explained in terms of couplings to 2h-1p states,
which moves approximately 10% of the sp strength to ener-
gies below "F, and coupling to 2p-1h states, which distrib-
utes another 18% to higher energies in the particle domain.
The corresponding fraction of sp strength in the particle do-
main is 13% for the lambda, compared to 18% for nucleons.
A more detailed look at the distribution of strength as a func-
tion of energy is given in Fig. 17. This figure displays for
four different momenta the fraction of the sp strength that is
recovered as a function of energy by intergating this strength
up to that energy. This figure shows that most of the strength
is accounted for at energies corresponding to 2 GeV. In the
case of nucleons interacting by means of the Reid interaction
the strength has to be gathered up to energies of 10 GeV [37]
illustrating the harder core of this interaction.

The relative effects of tensor and short-range correlations
can be untangled to some extent. Turning off the 3S1! 3D1
tensor coupling in the Reid potential for nucleons indicates
that this interaction is responsible for depleting the qp
strength by about 6.5%, almost all within 1000 MeV of "F
[37]. Similarly, turning off the &N-%N coupling in the
NSC89 potential reveals that tensor effects are responsible
for almost half of the reduction in the & qp strength. A value
of z&!0"=0.94 is obtained when coupling to %N states is cut
off.

C. The !N Threshold
The effects associated with the inclusion of the %N chan-

nel are illustrated in Figs. 18 and 19. In NM the %N thresh-

old opens at an energy about 90 MeV above the self-
consistently determined &N threshold. The mass difference
is m%!m&=77 MeV, but the & is bound in NM by about
30 MeV whereas the % binding is about half as much. Again,
the imaginary part of the self-energy provides a picture of
how the %NN!1 2p-1h states influence & sp properties. The
imaginary part of the self-energy is plotted in Fig. 18 for the
case where coupling to the %N states is turned off.

Turning off the %N coupling leads to a recovery of 7% of
the strength in the qp peak as the z-factor increases from 0.86
to 0.93. A reduction in spectral strength is observed at all
energies, but is particularly apparent at, and just above, the
%N threshold. There are two reasons %NN!1 2p-1h states are
most influential in this energy region. First, a “threshold ef-
fect” is responsible for the sharp cusp in Im %& near
100 MeV. This behavior may be understood physically in the
same way as the cusp observed in the %N elastic scattering
cross-section [56]. In scattering theory, the elastic cross-
section may be calculated from the bare two-body interaction
via the on-shell elements of the T-matrix. In NM, an effec-
tive interaction, such as the G-Matrix is a generalization of
the free-space T matrix. Structure arises in the &N G matrix
as a consequence of the strong coupling to the nearby %N
channel [57]. From Eq. (28), the imaginary part of the self-
energy shares the same structure as the imaginary part of the
G matrix.

Second, isospin conservation in the strong &N interaction
forbids excitation of nuclear ph states via !-exchange. How-

FIG. 16. Nucleon particle spectral function (solid) for k
=316 MeV/c with lambda spectral function (dashed) at k
=60 MeV/c for comparison.

FIG. 17. Single-particle strength integrated from "T
& to "max as a

function of "max for different momenta. k=10 MeV (solid), k
=110 MeV (dot), k=210 MeV (dash), k=310 MeV (dot-dash).

FIG. 15. Quasi-particle strength as a function of k.
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Correlation strength in the Λ spectral function

? The approach underlying the spectral function formalism can be
generalized to describe the nuclear (e, e′K) cross section

ever, this is a strongly allowed process for the !N interac-
tion, preferentially exciting !NN!1 2p-1h states in the en-
ergy range of a few hundred MeV. Turning off the
"-exchange component of the bare interaction (Fig. 18) dem-
onstrates that it is partly responsible for the !N channel’s
influence on the #, but apparently the non-tensor part of the
#N-!N coupling plays just as significant a role, even in the
“tensor” region. The nucleon spectral function manifests a
similar feature in the energy range dominated by the tensor
interaction [39]. For nucleons the influence of the tensor
force on the distribution of the sp strength corresponds to
moving a similar amount of strength away from the peak as
the amount corresponding to the effect of SRC [37].

The effect on the spectral function is to induce additional
structure in the vicinity of the threshold energy (Fig. 19). The
spectral signature of this new channel is a reduction of
strength just below threshold followed by an enhancement
immediately above threshold which slowly dies out at in-
creasing energy. The location of the !N threshold is depen-
dent on the total momentum of the #N pair. The self-energy
involves an average over all values of Q that can be realized
for a # with a given momentum, k, and a nucleon hole which
can have a range of momentum according to the nuclear

density. This averaging smears out the location of the “cusp”
structure in the self-energy and in the spectral function.

D. The high-energy region
Away from the qp peak, at high-energy, the size and struc-

ture of the spectral function is primarily determined by two
factors. The density of 2p-1h states increases like $1/2 at
high energy. This growth in spectral strength with energy is
moderated by the strength of the coupling to these high en-
ergy states. A lambda with a reasonably low momentum
couples to a nucleon hole state only with a low relative mo-
mentum. The high-energy #N two-particle states couple
most strongly to high relative momentum and the strength of
the potential matrix elements between these two states de-
pends on the short-range characteristics of the two-body in-
teraction. A harder core allows a stronger coupling between
states and correspondingly more spectral strength at high en-
ergy (see the following paragraph). The fact that structure in
the high-energy region of the spectral function is primarily
determined by the short-range behavior of the two-body in-
teraction should be tempered by the knowledge that the
short-range part of baryon-baryon interactions are poorly
known. Typical potentials are designed, within whatever
model, to fit only low-energy experimental data which does
little to constrain the details of the repulsive core. This situ-
ation can be taken in two ways. On the one hand, the high-
energy tail of the spectral function is just as uncertain in
detail as the core of the interaction from which it is derived.
On the other hand, it is also just as experimentally inacces-
sible and any observable which can be related to the detail of
the tail in the spectral strength distribution could be used to
gain insight into the behavior of the bare two-body interac-
tion at short-range. In Fig. 20 the similarities of the tail of the
spectral strength for different momenta is illustrated.

Sum rule. There exists a sum rule relating the energy-
weighted integral of the spectral function to the matrix ele-
ments of V in a very direct manner [58]. Writing the result
from Ref. [58] for the case of a # in NM,

!
%F

&

d$ $Sp
#"k;$# =

k2

2m#

+
1

"2"#3 ! d3k!nh"k!#$k!k!! %V%k!k!! & ,

"76#

where nh"k# is the occupation probability of the sp nucleon
state with momentum k,

FIG. 18. (Color online) Im !# for the case where #N-!N cou-
pling is included (solid curve), without coupling (dashed) and when
"-exchange is turned off in V (dotted). Plotting with respect to
self-consistently determined # threshold energy ensures that the !N
threshold is in the same location for each curve. The value of the
momentum in this plot corresponds to k=10 MeV/c.

FIG. 19. Spectral function in the vicinity of the !N threshold
with #N-!N coupling (solid) and without (dashed). Note that the #
threshold differs by about 30 MeV between the two cases. The
momentum value in this example corresponds to k'100 MeV/c.

FIG. 20. (Color online) Spectral function for three values of k#

show the k-independence of the high energy tail for k=10 MeV/c
(solid curve), 110 MeV/c (dashed), and 210 MeV/c (dash-dot).
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Outlook

? Extracting information on the hyperon-nucleon interaction from (e, e′K)
data requires a state-of-the-art treatment of nucleon-nucleon sector

? Electron scattering studies have provided ample evidence that the
formalism based on spectral functions is best suited to capture the
prominent features of nuclear dynamics: from single nucleon properties
to the effects of short- and long-range correlations

? The extension of the spectral function approach to the calculation of the
(e, e′K) cross section, while being non trivial, appears to be feasible

? Thanks to the stunning progress of powerful and accurate many-body
approaches, such as the G-matrix based techniques, the self consistent
Green’s function scheme and the Monte Carlo method, the input required
to develop realistic models of the hyperon spectral functions may soon
be available.
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