Many-body theory of the $A(e, e'K^+)_Y A$ process

Omar Benhar

INFN and Department of Physics "Sapienza" Università di Roma. I-00185 Roma, Italy

Hypernuclear Workshop JLab, May 27-29, 2014

・ロト ・御 ト ・ ヨト ・ ヨト … ヨ

- ★ The (e, e'K) cross section
- ★ The (e, e'p) cross section and the nuclear spectral function
- ★ Generalization of the spectral function formalism to describe the (e, e'K) process
- ★ The Λ self-energy and spectral function
- ★ Outlook

★ Amplitude of the process

 $e(k) + A(p_A) \rightarrow e'(k') + K^+(p_K) + A(p_{YA})$

★ Cross section (i, j = 1, 2, 3)

 $d\sigma \propto L_{ij}W^{ij}$

* The lepton tensor $L_{\mu\nu}$, fully specified by the measured electron kinematical variables

$$L = \begin{pmatrix} \eta_+ & 0 & -\sqrt{\epsilon_L \eta_+} \\ 0 & \eta_- & 0 \\ -\sqrt{\epsilon_L \eta_+} & 0 & \epsilon_L \end{pmatrix},$$
$$\eta_{\pm} = \frac{1}{2} (1 \pm \epsilon) \quad , \quad \epsilon = \left(1 - 2\frac{|\mathbf{q}|^2}{Q^2} \tan^2 \frac{\theta_e}{2}\right)^{-1} \quad , \quad \epsilon_L = -\frac{Q^2}{\omega^2} \epsilon$$

★ Target response tensor

$$W^{ij} = \langle i | J_A^i(q) | f \rangle \langle f | J_A^j(q) | i \rangle \,\delta^{(4)}(q + p_i - p_f)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

★ Building blocks

$$|i\rangle = |A\rangle$$
 , $J_A^i = \sum_{n=1}^A j^i(n)$, $|f\rangle = |K^+, YA\rangle$

* The current j^i drives the elementary process

 $e + N \rightarrow Y + K^+$

★ Impulse approximation: at momentum transfer $|\mathbf{q}|^{-1} \ll d$, *d* being the average nucleon-nucleon separation distance in the target nucleus, the beam particles interact with individual (bound, moving) nucleons

The (e, e'p) cross section, as an example

★ Transition amplitude of the process

 $e + A \rightarrow e' + p + (A - 1)_n$

★ Factorization *ansatz*

$$\langle (A-1)_n p | j_{\mu} | A \rangle = \sum_k M_n(k) \langle p | j^{\mu} | k \rangle$$
$$M_n(k) = \{ \langle (A-1)_n | \otimes \langle k | \} | A \rangle$$

★ Cross section

 $d\sigma_A \propto d\sigma_N P(p_m, E_m)$

$$p_m = |\mathbf{p} - \mathbf{q}|$$
, $E_m = \omega - T_p$, $T_p = \sqrt{\mathbf{p}^2 + m^2 - m^2}$

★ Definition

$$P(k, E) = \sum_{n} |M_{n}(k)|^{2} \delta(E + E_{A} - E_{A-1})$$

probability of removing a nucleon of momentum k from the target nucleus, leaving the residual nucleus with excitation energy E

★ Relation to the nucleon self-enrgy (consider uniform matter, for simplicity)

 $P(k,E) = \frac{1}{\pi} \frac{\mathrm{Im}\Sigma(k,E)}{[E - k^2/2M - \mathrm{Re}\Sigma(k,E)]^2 + [\mathrm{Im}\Sigma(k,E)]^2}$

Mean field vs correlation effects

★ Consider uniform nuclear matter, as an example

 $P(k, E) = P_{MF}(k, E) + P_{corr}(k, E)$

★ Mean field, or "pole" contribution

$$P_{MF}(k, E) = \frac{1}{\pi} \frac{Z_k^2 \operatorname{Im}\Sigma(k, \epsilon_k)}{[E - \epsilon_k]^2 + [Z_k \operatorname{Im}\Sigma(\mathbf{k}, \epsilon_k)]^2}$$
$$\epsilon_k = \frac{k^2}{2m} + \operatorname{Re}\Sigma(k, \epsilon_k) \quad , \quad Z_k = |\langle -\mathbf{k}|a_{\mathbf{k}}|0\rangle|^2$$

The spectroscopic factor Z_k yields the normalization of the single-particle state

★ The correlation contribution is a broad background, extending to large values of momentum and energy

Uniform nuclear matter at equilibrium density

Omar Benhar (INFN, Roma)

May 29, 2014 9 / 20

Local Density Approximation (LDA)

 $P(k, E) = P_{MF}(k, E) + P_{corr}(k, E)$

- ★ $P_{MF}(k, E)$ → from (e, e'p) data
- ★ $P_{corr}(k, E)$ → from uniform nuclear matter calculations at different densities

$$P_{MF}(k,E) = \sum_{n} Z_n |\phi_n(k)|^2 F_n(E-E_n)$$

$$P_{\rm corr}(k,E) = \int d^3r \,\rho_A(r) \, P_{\rm corr}^{NM}(k,E;\rho=\rho_A(r))$$

★ Pure mean field

$$Z_n \to 1$$
 , $F_n(E - E_n) \to \delta(E - E_n)$, $P_{\text{corr}}(k, E) \to 0$

$^{208}Pb(e, e'p)$ missing energy spectra (NIKHEF data)

Omar Benhar (INFN, Roma)

May 29, 2014 11 / 20

Spectroscopic factors of ²⁰⁸*Pb* (NIKHEF data)

Back to (e, e'K)

- ★ The approach underlying the spectral function formalism can be generalized to describe the nuclear (e, e'K) cross section
- ★ Introducing some additional simplifying assumptions one gets the simple expression

$$d\sigma_A \propto \int d^3p dE \ d\sigma_N \ P(p,E) P_Y(|\mathbf{p}_m + \mathbf{p}|, E_m + E)$$

 $\mathbf{p}_m = \mathbf{q} - \mathbf{p}_K \quad , \quad E_m = \omega - T_K$

★ The spectral function $P_Y(p_Y, E_Y)$ describes the probability of adding the hyperon *Y*, with momentum p_Y and energy E_Y to a nucleus

13/20

* In the absence of ΛN interactions

$$P_{\Lambda}(p_Y, E_Y) = \delta[E_{\Lambda} - \epsilon_{\Lambda}(p_Y)]$$

★ The general expression in terms of the self-energy still holds

$$P_{\Lambda}(k,E) = \frac{1}{\pi} \frac{\mathrm{Im}\Sigma_{\Lambda}(k,E)}{[E - T_{\Lambda} - \mathrm{Re}\Sigma_{\Lambda}(k,E)]^{2} + [\mathrm{Im}\Sigma_{\Lambda}(k,E)]^{2}}$$

★ Calculation of the self-energy Σ_{Λ} in oxygen and of the full spectral function in nuclear matter are available

Λ self-energy in oxygen

The Λ self-energy in nuclei has been studied by Hjorth-Jensen *et al*, NPA 605, 458 (1996), and Vidaña *et al*, NPA 644, 201 (1998).

* Ground state expectation value of the Λ self-energy in ¹⁷O. Solid lines: Julich potential; dashed lines: Nijmegen potential

Omar Benhar (INFN, Roma)

Hypernuclear Workshop

A binding energies in ^{208}Pb

* Courtesy I. Vidaña. Columns correspond to different YN potentials

$^{209}_{\Lambda} \rm Pb$											$\binom{208}{\Lambda}$ Pb)
	$1s_{1/2}$	-31.36	-59.88	-29.52	-38.85	-39.14	-40.52	-40.40	-39.55	-39.30	-27.0
	$1p_{3/2}$	-27.13	-55.18	-26.01	-33.49	-33.47	-34.63	-34.30	-33.39	-31.03	-22.0 (1p)
	$1p_{1/2}$	-27.18	-55.37	-25.72	-33.38	-33.33	-34.44	-34.04	-33.09	-30.72	
	$1d_{5/2}$	-21.52	-45.00	-18.12	-22.44	-22.77	-23.54	-22.91	-21.98	-19.86	-17.0 (1d)
	$1d_{3/2}$	-21.58	-44.99	-17.96	-22.39	-22.69	-23.45	-22.83	-21.91	-19.81	
	$1f_{7/2}$	-12.77	-37.11	-9.73	-14.63	-14.68	-15.24	-14.17	-12.89	-10.10	-12.0 (1f)
	$1f_{5/2}$	-12.90	-37.10	-9.40	-14.61	-14.60	-15.12	-14.02	-12.73	-9.91	
	$1g_{9/2}$	-9.87	-33.75	-6.86	-11.22	-11.30	-11.82	-10.78	-9.56	-6.96	-7.0 (1g)
	$1g_{7/2}$	-10.01	-34.03	-6.36	-11.17	-11.17	-11.60	-10.47	-9.20	-6.57	

Λ spectral function in nuclear matter

 The Λ spectral function in nuclear matter has been computed by Robertson and Dickhoff, PRC 70, 044301 (2004), using the Nijmegen soft core (NSC89) *YN* potential

Compare N and Λ spectral functions in nuclear matter

Correlation strength in the Λ spectral function

★ The approach underlying the spectral function formalism can be generalized to describe the nuclear (e, e'K) cross section

Outlook

- ★ Extracting information on the hyperon-nucleon interaction from (e, e'K) data requires a state-of-the-art treatment of nucleon-nucleon sector
- ★ Electron scattering studies have provided ample evidence that the formalism based on spectral functions is best suited to capture the prominent features of nuclear dynamics: from single nucleon properties to the effects of short- and long-range correlations
- ★ The extension of the spectral function approach to the calculation of the (e, e'K) cross section, while being non trivial, appears to be feasible
- ★ Thanks to the stunning progress of powerful and accurate many-body approaches, such as the G-matrix based techniques, the self consistent Green's function scheme and the Monte Carlo method, the input required to develop realistic models of the hyperon spectral functions may soon be available.