Hypernuclear physics: past, present, and future John Millener Brookhaven National Laboratory

Studies of Λ hypernuclei

- $n(K^-, \pi^-)\Lambda$ stopped or in-flight; first emulsions $\Rightarrow B_\Lambda$, then CERN, BNL, KEK, Frascati
- $n(\pi^+, K^+)\Lambda BNL, KEK$ 1985 2001
- Hypernuclear γ -ray spectroscopy with Hyperball $(\pi^+, K^+ \gamma)$ at KEK and $(K^-, \pi^- \gamma)$ at BNL 1998 2005
- $p(e, e'K^+)\Lambda$ JLab, Hall A and Hall C Ongoing

Hypernucleus	# events	$B_{\Lambda} \pm \Delta B_{\Lambda}$	Hypernucleus	# events	$B_{\Lambda} \pm \Delta B_{\Lambda}$
		MeV			MeV
$^{3}_{\Lambda}\mathrm{H}(1/2^{+})$	204	0.13 ± 0.05	$^9_{\Lambda}$ Li	8	8.50 ± 0.12
$^4_{\Lambda}\mathrm{H}(0^+)$	155	2.04 ± 0.04	$^9_{\Lambda}{ m Be}$	222	6.71 ± 0.04
$^4_{\Lambda}{ m He}$	279	2.39 ± 0.03	$^9_{\Lambda}{ m B}$	4	8.29 ± 0.18
$^{5}_{\Lambda}\mathrm{He}$	1784	3.12 ± 0.02	$^{10}_{\Lambda}\mathrm{Be}$	3	9.11 ± 0.22
$^{6}_{\Lambda}\mathrm{He}$	31	4.18 ± 0.10	$^{10}_{\Lambda}\mathrm{B}$	10	8.89 ± 0.12
$^{7}_{\Lambda}\mathrm{He}$	16	not averaged	$^{11}_{\Lambda}{ m B}(5/2^+)$	73	10.24 ± 0.05
$^{7}_{\Lambda}\mathrm{Li}$	226	5.58 ± 0.03	$^{12}_{\Lambda}\mathrm{B}(1^-)$	87	11.37 ± 0.06
$^{7}_{\Lambda}\mathrm{Be}$	35	5.16 ± 0.08	$^{12}_{\Lambda}\mathrm{C}$	6	10.80 ± 0.18
$^{8}_{\Lambda}\mathrm{He}$	6	7.16 ± 0.70	$^{13}_{\Lambda}\mathrm{C}$	6	11.69 ± 0.12
$^{8}_{\Lambda}\mathrm{Li}(1^{-})$	787	6.80 ± 0.03	$^{14}_{\Lambda}\mathrm{C}$	3	12.17 ± 0.33
$^{8}_{\Lambda}\mathrm{Be}$	68	6.84 ± 0.05	$^{15}_{\Lambda}\mathrm{N}$	14	13.59 ± 0.15

Experimental Λ separation energies, B_{Λ} from emulsion studies

S-Shell Λ Hypernuclei

Hypernucleus	$J^{\pi}(gs)$	$B_{\Lambda} MeV$	J^{π}	$E_x MeV$
$^{3}_{\Lambda}\mathrm{H}$	$1/2^{+}$	0.13(5)		
$^4_\Lambda { m H}$	0^+	2.04(4)	1+	1.04(5)
$^4_{\Lambda}{ m He}$	0^+	2.39(3)	1+	1.15(4)
$^{5}_{\Lambda}\mathrm{He}$	$1/2^{+}$	3.12(2)		

Ab Initio Calculations

- A = 3, 4 A. Nogga et al., PRL 88 (2002) 172501 Faddeev and Faddeev-Yakubovsky
- A = 4 E. Hiyama et al., PRC 65 (2002) 011301(R) Jacobi-coordinate Gaussian basis
- A = 3, 4, 5 H. Nemura et al., PRL 89 (2002) 142504 Stochastic variation with correlated Gaussians

M. Bedjidian et al., Phys. Lett. B 83, 252 (1979)

J^{π}	# events	Г	B_{Λ}
		keV	MeV
0^{+}	64	< 100	0.14(5)
2^{+}	193	~ 600	0.20(5)
2^{+}	48	~ 150	0.95(5)

Upper 2⁺ strong in $(e, e'K^+)$; 3⁺ predicted 0.07 MeV higher $\Rightarrow B_{\Lambda}$ for p_{Λ} peak is 0.16 MeV

Iodice PRL 99, 052501 (2007) \Rightarrow 10.93 MeV between s_{Λ} and p_{Λ} peaks; centroid of gs doublet at 0.13 MeV $\Rightarrow B_{\Lambda}$ for $^{12}_{\Lambda}$ C = 11.22 MeV

Can play similar games with FINUDA, KEK E336, and Hall C data

D. H. Davis NPA 804 (2008) 5

Update: Millener, Dover, Gal PRC 38, 2700 (1988)

Woods-Saxon V = 30.05 MeV, r = 1.165 fm, a = 0.6 fm

Hotchi et al., Phys. Rev. C 64 (2001) 044302

 $B_{\Lambda} = 19.97 \pm 0.13 \text{ MeV}$

Hotchi et al., Phys. Rev. C 64 (2001) 044302 $B_{\Lambda} = 23.11 \pm 0.10 \text{ MeV}$

 $(e, e'K^+)$ vs. (π^+, K^+)

- Large and similar momentum transfers; can get to inner Λ orbits; past maximum of transition form factor; small cross sections falling with increasing q.
- (π^+, K^+) more selective because of strong pion absorption; advantage or disadvantage for $(e, e'K^+)$?
- Can use Λ and Σ^0 peaks from $p(e, e'K^+)Y$ to calibrate B_{Λ} ; have to normalize (π^+, K^+) to known results e.g. from emulsion.
- Have the intuitive result that if one sums over all final states $(J_f j_{\Lambda})$ in the weak-coupling limit, the cross section is proportional to the nucleon C^2S for target to core state.
- No chance of resolving these multiplets; have to pick target to give a clean spectrum of Λ single-particle states.

Shell-model calculations

- Both $|p^n \alpha_c J_c T \times s_\Lambda\rangle$ and $|p^n \alpha_c J_c T_c \times s_\Sigma\rangle$ configurations included. In general, T_c can take three values.
- Supermultiplet basis $|p^n[f_c]\beta_c(L_cS_c)J_cT_c\rangle$ is very good for p shell \Rightarrow states with different $[f_c]$ (often T_c) well separated.
- p-shell interactions fitted with tensor interaction constrained to give cancellation in ${}^{14}C \beta$ decay; single-particle LS spacing constrained by data at the beginning of the shell.
- Need NΛ-NΛ (parametrized, Δ,..), NΛ-NΣ (see following slides), and NΣ-NΣ (for T=1/2 and T=3/2; from YNG-type interaction) two-body matrix elements. All can be represented in the same way.
- Diagonal energies of Λ and Σ states differ by ~ 80MeV, plus core energy differences, plus contributions from YN interactions.

$$V = \sum_{\alpha} C(\alpha) \left[\left[a_{j_{\mathrm{N}}}^{+} \tilde{a}_{j_{\mathrm{N}}'} \right]^{J_{\alpha}T_{\alpha}} \left[a_{j_{\mathrm{Y}}}^{+} \tilde{a}_{j_{\mathrm{Y}}'} \right]^{J_{\alpha}T_{\alpha}} \right]^{00}$$

Need full set of one-body density-matrix elements for the core nucleus.

 $V_{\Lambda N} = V_0(r) + V_{\sigma}(r) \ s_N \cdot s_{\Lambda} + V_{LS}(r) \ l_{N\Lambda} \cdot (s_{\Lambda} + s_N) + V_{ALS}(r) \ l_{N\Lambda} \cdot (s_{\Lambda} - s_N) + V_T(r) \ S_{12}$

$$V_0 = 1/4 \, {}^1V_C + 3/4 \, {}^3V_C \qquad V_\sigma = {}^3V_C - {}^1V_C$$

For
$$p_N s_Y$$
 $V_{\Lambda N} = \overline{V} + \Delta s_N \cdot s_\Lambda + S_\Lambda l_N \cdot s_\Lambda + S_N l_N \cdot s_N + T S_{12}$

Summed over nucleons, the operators with Δ and S_{Λ} are $S_{core} \cdot s_{\Lambda}$ and $L_{core} \cdot s_{\Lambda}$

Parameters in MeV							
	\bar{V}	Δ	S_{Λ}	S_N	T		
$N\Lambda$ - $N\Lambda$ $A = 7-?$		0.430	-0.015	-0.390	0.030		
A = 11 - 16		0.330	-0.015	-0.350	0.024		
$N\Lambda$ - $N\Sigma$	1.45	3.04	-0.085	-0.085	0.157		

Doublet spacings in p-shell hypernuclei

	J_u^{π}	J_l^{π}	$\Lambda\Sigma$	Δ	S_{Λ}	S_N	T	ΔE^{th}	ΔE^{exp}
$^{7}_{\Lambda}$ Li	$3/2^{+}$	$1/2^{+}$	72	628	-1	-4	-9	693	692
$^{7}_{\Lambda}{ m Li}$	$7/2^{+}$	$5/2^{+}$	74	557	-32	-8	-71	494	471
$^{8}_{\Lambda}{ m Li}$	2^{-}	1-	151	396	-14	-16	-24	450	(442)
$^9_\Lambda { m Li}$	$5/2^{+}$	$3/2^{+}$	116	530	-17	-18	-1	589	
$^9_\Lambda { m Li}$	$3/2_2^+$	$1/2^{+}$	-80	231	-13	-13	-93	-9	
$^9_{\Lambda}{ m Be}$	$3/2^{+}$	$5/2^{+}$	-8	-14	37	0	28	44	43
$^{11}_{\Lambda}\mathrm{B}$	$7/2^{+}$	$5/2^{+}$	56	339	-37	-10	-80	267	264
$^{11}_{\ \Lambda} \mathrm{B}$	$3/2^{+}$	$1/2^{+}$	61	424	-3	-44	-10	475	505
$^{12}_{\Lambda}{ m C}$	2^{-}	1-	61	175	-12	-13	-42	153	161
$^{15}_{~\Lambda}{ m N}$	$3/2_2^+$	$1/2_{2}^{+}$	65	451	-2	-16	-10	507	481
$^{16}_{\Lambda}{ m O}$	1-	0^{-}	-33	-123	-20	1	188	23	26
$^{16}_{\Lambda}{ m O}$	2^{-}	1_{2}^{-}	92	207	-21	1	-41	248	224

	$^{7}_{\Lambda}{ m Li}$	$^{8}_{\Lambda}{ m Li}$	$^9_\Lambda { m Li}$	$^9_{\Lambda}{ m Be}$	$^{10}_{\Lambda}{ m B}$	$^{11}_{\Lambda}{ m B}$	$^{12}_{\Lambda}{ m B}$	$^{13}_{\Lambda}{ m C}$	$^{15}_{\Lambda}{ m N}$	${}^{16}_{\Lambda}{ m N}$
	$1/2^{+}$	1-	$3/2^{+}$	$1/2^{+}$	1-	$5/2^{+}$	1-	$1/2^{+}$	$3/2^{+}$	1-
Λ - Σ	78	160	183	4	35	66	103	28	59	62
Δ	419	288	350	0	125	203	108	-4	40	94
S_{Λ}	0	-6	-10	0	-13	-20	-14	0	12	6
S_N	94	192	434	207	386	652	704	841	630	349
T	-2	-9	-6	0	-15	-43	-29	-1	-69	-45
Sum	589	625	952	211	518	858	869	864	726	412
Expt	5.58	6.80	8.50	6.71	8.89	10.24	11.37	11.69		13.76
		6.84	8.29		9.11					*
\overline{V}	-0.94	-1.02	-1.06		-1.05	-1.04	-1.05	-0.96		-0.93

 $\Lambda\text{-}\Sigma$ and spin-dependent contributions to ground-state binding energies

* $B_{\Lambda} = 13.76(16)$ MeV: F. Cusanno et al. PRL 103, 202501 (2009)

To get a rough \overline{V} , take $B_{\Lambda}(^{5}_{\Lambda}He) = 3.12$ MeV as s_{Λ} single-particle energy, and subtract sum from experimental B_{Λ} value.

Double one-pion exchange ΛNN interaction

Gal, Soper, and Dalitz: Ann. Phys. (N.Y.) 63, 53 (1971)

Independent of Λ spin. Averaged over s_{Λ} wave function gives

$$V_{NN}^{eff} = \sum_{klm} Q_{lm}^k(r_1, r_2) \left[\sigma_1, \sigma_2\right]^k \cdot \left[C_l(\hat{r}_1), C_m(\hat{r}_2)\right]^k \tau_1 \cdot \tau_2$$

Parameters in MeV						
Q_{00}^{0}	Q_{22}^{0}	Q_{22}^{1}	$Q_{02}^2 = Q_{20}^2$	Q_{22}^2		
0.026	1.037	-0.531	-0.049	0.245		

- Q_{00}^0 and Q_{22}^0 give repulsive contributions to B_{Λ} that depend quadratically on the number of p-shell nucleons in the core.
- Q_{22}^1 represents an anti-symmetric spin-orbit interaction that behaves rather like S_N

$^{12}\mathrm{C}(0^+,2^+) imes p_{\Lambda} ext{ states of } ^{13}_{\Lambda}\mathrm{C}$

 $B_{\Lambda} = 11.69 \pm 0.12 \text{ MeV}$ $3/2^{-}/1/2^{-}$ $E_{x} = 10.83/10.98 \text{ MeV}$

 $^{11}B(e,e'K^{+})^{11}_{\Lambda}Be$

5958 —	0.241	- 2+	$ \begin{array}{c} 7292 \\ 7131 \\ 6310 \\ 6252 \\ \hline \end{array} $	$ = 3/2^{-} \\ 1/2^{-} \\ 5/2^{-} \\ 7/2^{-} \\ 7/2^{-} $	$\mathcal{L} = 1$ $\mathcal{L} = 3$	$\begin{array}{c} 0.009 \\ 0.013 \\ 0.009 \\ 0.250 \end{array}$	$\begin{array}{c} 0.031 \\ 0.006 \\ 0.225 \\ 0.291 \\ \end{array}$
	C^2S		5818 - 5799 -	$\frac{3/2^{-}}{5/2^{-}}$ $\frac{5/2^{-}}{2^{-}/2^{-}}$	$\mathcal{L}=2$ $\mathcal{L}=2$	$\begin{array}{c} 0.135 \\ 0.031 \\ 0.011 \\ 0.524 \end{array}$	0.119 0.229 0.940
3368 _	1.404	- 2+	$ \begin{array}{c} 3890 \\ 3652 \\ 3578 \\ 3429 \\ 3420 \end{array} $	$\frac{3/2}{1/2^{-}} \\ \frac{3/2^{-}}{3/2^{-}} \\ \frac{7/2^{-}}{5/2^{-}} \\ \frac{3}{5/2^{-}} $	$\mathcal{L}{=}1$ $\mathcal{L}{=}3$	$\begin{array}{c} 0.534 \\ 0.220 \\ 0.035 \\ 0.278 \\ 1.363 \end{array}$	$\begin{array}{c} 0.208 \\ 0.055 \\ 0.371 \\ 1.937 \\ 1.251 \end{array}$

Future Hypernuclear γ -ray Spectroscopy

- Hyperball-J at J-PARC (Tamura)
- $(K^-, \pi^- \gamma)$ $p_K = 1.1 \text{ or } 1.5 \text{ GeV/c}$
- Larger spin-flip amplitudes test case ${}^4_{\Lambda}$ He $1^+ \rightarrow 0^+$
- $\bullet\,$ p-shell and light sd-shell nuclei as targets. First $^{19}{\rm F}$
- $(K^-, \pi^0 \gamma)$ also possible

$(e, e'K^+)$ at JLab and Mainz

• This worshop.

J-PARC and **GSI**

• Many other aspects of Strangeness Nuclear Physics