THE STRANGENESS PHYSICS PROGRAM AT GLAS

RESONANCE STUDIES

Daniel S. Carman Jefferson Laboratory

OUTLINE

- Introduction & Landscape
- CLAS Strangeness Program
- CLAS $\gamma^{(*)}p \rightarrow KY$ Data
- Theoretical Progress & Plans
- Summary & Conclusions

Introduction

The *N*^{*} program is one of the key physics foundations of Hall B

Jefferson Lab

 CLAS was designed to measure γN and γ*N cross sections and spin observables over a broad kinematic range for exclusive reaction channels.

> πΝ, ωΝ, φΝ, ρΝ, ηΝ, η'Ν, ππΝ ΚΥ, Κ*Υ, ΚΥ*

- Different final states provide complementarity due to the different couplings and mix of resonant/non-resonant process.

The constituent quark model predicts a spectrum of states, many of which have not been seen experimentally.

- *N** studies dominated by pionic channels
- KY channels important contributors in resonance region
- Study of the N* spectrum and N* structure vs. distance scale reflects the underlying d.o.f. of the nucleon

Daniel S. Carman Hypernuclear Workshop at JLab - May 27 – 29, 2014 Page 2

Experimental Search for New States

$N^*, \Delta^* \rightarrow KY Landscape$

N* → KY			0	ld A	* → K	Σ	N* → KY			Nev	$\Delta^* \rightarrow K\Sigma$			
State	Rating	BR % (ΚΛ)	BR % (KΣ)	State	Rating	BR % (ΚΣ)	State	Rating	BR % (ΚΛ)	BR % (KΣ)	State	Rating	BR % (KΣ)	
N*(1650)	****	3–11	-	∆*(1700)	****	-	N*(1650)	****	10±5	-	∆*(1620)	****	-	
N*(1675)	****	< 1	-	∆*(1750)	*	-	N*(1675)	****	-	-	∆*(1700)	****	-	
N*(1680)	****			<u> </u>	**		N*(1680)	****	-	-	∆*(1750)	*	-	
N (1000)		-	-	Δ (1900)		-	N*(1700)	***	-	-	∆*(1900)	**	5±3	
N*(1700)	***	< 3	-	∆*(1905)	****	-	N*(1710)	***	23±7	-	∆*(1905)	****	-	
N*(1710)	***	5–25	-	∆*(1910)	***	-	N*(1720)	****	-	-	∆*(1910)	****	9±5	
N*(1720)	***	1–15	-	∆*(1920)	***	2.1	N*(1875)	***	4±2	15±8	∆*(1920)	***	4±2	
N*(1900)	**	0–10	-	∆*(1930)	***	-	N*(1880)	**	2±1	17±7	∆*(1930)	***	-	
N*(1990)	**	-	-	Δ*(1940)	*	-	N*(1895)	**	18±5	13±7	∆*(1940)	***	-	
				۸*(1950)	****	-	N*(1900)	**	16±5	5±2	∆*(1950)	****	0.4±0.1	
				- (····)			N*(1990)	**	-	-	∆*(2000)	**	-	
				∆*(2000)	* *	-	N*(2000)	**	_	-				

[Beringer et al. (PDG), PRD 86, 010001 (2012)]

[Anisovich et al., EPJ A 48, 15 (2012)] Bonn-Gatchina coupled-channels fits

Daniel S. Carman Hypernuclear Workshop at JLab - May 27 – 29, 2014 Page 4

CLAS Strangeness Program

Solution The initial thrust of the CLAS measurement program focused on exclusive production of ground-state Λ and Σ hyperons.

Measurement of hyperon polarizations: recoil, transferred

 Λ polarization "self-analyzing" via decay frame angular distribution.

- Program has grown to include studies of:
 - vector meson production (K*Y)
 - excited hyperon production (KY*)
 - semi-inclusive hyperon processes (YX)
- New focus on "complete" experiments

Complete Experiments: $\gamma N \rightarrow KY$

Full cross section can be written in terms of 16 experimental observables

$$\begin{split} \frac{1}{\sigma_0} d\sigma(\theta, \phi) &= 1 + \Sigma \cdot [P_L^{\gamma} \cos 2\phi \ - \ P_y^T \cdot P_{y'}^{\Lambda}] + T \cdot [P_y^T \ - \ P_L^{\gamma} \cdot P_{y'}^{\Lambda} \cos 2\phi] + P \cdot [P_{y'}^{\Lambda} \ - \ P_L^{\gamma} \cdot P_y^T \cos 2\phi] \\ &+ E \cdot [-P_c^{\gamma} \cdot P_z^T \ - \ P_L^{\gamma} \cdot P_x^T \cdot P_{y'}^{\Lambda} \sin 2\phi] + F \cdot [P_L^{\gamma} \cdot P_z^T \sin 2\phi \ + \ P_c^{\gamma} \cdot P_x^T \cdot P_{y'}^{\Lambda}] \\ &+ G \cdot [P_c^{\gamma} \cdot P_x^T \ + \ P_L^{\gamma} \cdot P_z^T \cdot P_{y'}^{\Lambda} \sin 2\phi] \ + \ H \cdot [-P_L^{\gamma} \cdot P_x^T \sin 2\phi \ - \ P_c^{\gamma} \cdot P_z^T \cdot P_{y'}^{\Lambda}] \\ &+ C_{x'} \cdot [P_c^{\gamma} \cdot P_{x'}^{\Lambda} \ - \ P_L^{\gamma} \cdot P_y^T \cdot P_{z'}^{\Lambda} \sin 2\phi] \ + \ C_{z'} \cdot [P_c^{\gamma} \cdot P_{z'}^{\Lambda} \ + \ P_L^{\gamma} \cdot P_{x'}^{\Lambda} \sin 2\phi] \\ &+ O_{x'} \cdot [P_L^{\gamma} \cdot P_{x'}^{\Lambda} \sin 2\phi \ + \ P_c^{\gamma} \cdot P_y^T \cdot P_{z'}^{\Lambda}] \ + \ O_{z'} \cdot [P_L^{\gamma} \cdot P_{z'}^{\Lambda} \sin 2\phi \ - \ P_c^{\gamma} \cdot P_y^T \cdot P_{x'}^{\Lambda}] \\ &+ L_{x'} \cdot [P_z^T \cdot P_{x'}^{\Lambda} \ + \ P_L^{\gamma} \cdot P_x^T \cdot P_{z'}^{\Lambda} \cos 2\phi] \ + \ L_{z'} \cdot [P_z^T \cdot P_{z'}^{\Lambda} \ - \ P_L^{\gamma} \cdot P_{x'}^{\Lambda} \cos 2\phi] \\ &+ T_{x'} \cdot [P_x^T \cdot P_{x'}^{\Lambda} \ - \ P_L^{\gamma} \cdot P_z^T \cdot P_{z'}^{\Lambda} \cos 2\phi] \ + \ T_{z'} \cdot [P_x^T \cdot P_{z'}^{\Lambda} \ + \ P_L^{\gamma} \cdot P_{x'}^T \cdot P_{x'}^{\Lambda} \cos 2\phi] \end{split}$$

Not all observables are independent [Chiang and Tabakin, PRC 55, 2054 (1997)]

- Need only 8 (carefully chosen) observables to separate amplitudes at any given W.
- With full experimental decomposition of the reaction amplitudes, it is expected that models can then determine the N* content of the reactions.

$\textbf{CLAS} \; \gamma \textbf{N} \rightarrow \textbf{KY} \; \textbf{Program}$

Photon Beam		Target			Recoil			Target – Recoil								
					<i>x</i> '	<i>y</i> '	<i>z</i> '	<i>x</i> '	<i>x</i> '	<i>x</i> '	У'	У'	<i>y</i> '	<i>z</i> '	<i>z</i> '	<i>z</i> '
		x	y	z		-		x	у	z	x	у	z	x	у	z
unpolarized	σο		Т			Р		<i>T_{x'}</i>		L _{x'}		Σ		T _{z'}		L _z ,
linearly P _y	Σ	н	Р	G	O _{x'}	Т	O _{z'}	L _z ,	C _{z'}	T _{z'}	Ε		F	L _{x'}	<i>C</i> _{x'}	<i>T_{x'}</i>
circular P _y		F		E	C _{x'}		Cz'		<i>0</i> _{z'}		G		н		<i>0</i> _{x'}	
γp γn Circularly polarized photons/unpolarized target Polarized beam/longitudinally polarized target Circularly polarized photons/unpolarized target Polarized beam/longitudinally polarized target																
 Polarized beam/longitudinal-transverse target Polarized beam/longitudinal-transverse target Data collection complete; analysis in progress 																
Jefferson Lab Daniel S. Carman Hypernuclear Workshop at JLab - May 27 – 29, 2014 Page 7																

- Dominated by t-channel exchange
- Core N* set S₁₁(1650), P₁₁(1710), P₁₃(1720)
- Data show 2^{nd} structure at ~1.9 GeV
- Models suggest $D_{13}(1900)$ or $P_{13}(1900)$

- Dominated by s-channel exchange
- No PDG states listed with N* \rightarrow K Σ
- Typically use same core set of N* from $\mathsf{K}\Lambda$
- Structure at 1.9 GeV from Δ^* states?

Differential Cross Sections

Recoil Polarization

Electroproduction Data

CLAS photoproduction data sets have been used extensively in coupled-channel fits and "advanced" single-channel models.

- Electroproduction data have not been employed on the same scale.
- Inclusion of electroproduction data in these fits is underway.

The electroproduction data have several critical roles to play:

• Studies of finite Q² processes are sensitive to both L and T photo-couplings.

 $\frac{d\sigma}{d\Omega} = (\sigma_T + \epsilon \sigma_L) + \epsilon \sigma_{TT} \cos 2\Phi + \sqrt{\epsilon(1+\epsilon)} \sigma_{LT} \cos \Phi + h\sqrt{\epsilon(1-\epsilon)} \sigma_{LT'} \sin \Phi$

- The LT and TT structure functions provide signatures of interfering partial wave strengths that can differentiate among production mechanisms.
- •The structure functions are particularly useful to gain control over the parameterization of the background diagrams.
- The Q² dependence of the data gives access to the γ^*NN^* transition FFs.

The electroproduction data provide constraints on the production amplitudes complementary to the photoproduction data.

K⁺Λ Structure Functions

$K^+\Sigma^0$ Structure Functions

Electroproduction Predictions

Transferred Polarization $\vec{e}p \rightarrow e'K^{\dagger}\vec{\Lambda}$

Theory Ambiguities $N^* \rightarrow K^+\Lambda$

PDG status for 30 years: Core set of states: $S_{11}(1650)$, $P_{11}(1710)$, $P_{13}(1720)$ Recent emergence of: $P_{13}(1900)$ (from γp fits)

- Coupled-Channel Model (Bonn): [Anisovich et al., EPJA 48, 15 (2012)]
 Most relevant: S₁₁(1650), P₁₁(1710), D₁₃(1895), P₁₃(1900)
 Other required states: P₁₃(1720), P₁₁(1880), S₁₁(1895), F₁₅(2000), D₁₃(2150), G₁₇(2190)
- Coupled-Channel Model (EBAC): [Kamano et al., PRC 88, 035209 (2013)]
 Most relevant: S₁₁(1650), P₁₁(1710), P₁₃(1900)
 Other required states: D₁₅(1675), F₁₅(1680), D₁₃(1700), P₁₃(1720)
- Isobar Model (Mart): [Mart and Kholili, PRC 86, 022201 (2012)]
 Most relevant: S₁₁(1650), P₁₃(1720), P₁₁(1880), P₁₃(1900), D₁₃(2080)

Models agree in some respects but full consistency is lacking:

- Include electroproduction data in fits – sensitivity beyond yp data alone! --

Jefferson Lab Daniel S. Carman Hypernuclear Workshop at JLab - May 27 – 29, 2014 Page 19

$N^* \rightarrow K^+ \Lambda$ Amplitude Analysis

Reasonable correspondence with Bonn-Gatchina/EBAC fits:

- cross section fits allow dominant N* states to be "seen"
- confirm P-wave character for state at 1.9 GeV
- other contributions could be investigated including spin observables

Jefferson Lab _____ Daniel S. Carman Hypernuclear Workshop at JLab - May 27 – 29, 2014 ____ Page 20

New KY Proposal for CLAS12

Measure exclusive K⁺Λ and K⁺Σ⁰ electroproduction cross sections from an unpolarized proton target with polarized electron beam.

 $E_b = 11 \text{ GeV}, Q^2 = 4 - 12 \text{ GeV}^2, W = 1.6 - 3.0 \text{ GeV}, \cos \theta_{\kappa}^* = [-1:1]$

Key Motivations:

Jefferson Lab

- Study spectrum and structure of high-lying baryon states at high Q².
- Develop reaction models for extraction of electrocoupling amplitudes that incorporate transition from M-B to quark-gluon degrees of freedom.
- KY data needed to provide independent information for high-mass states inaccessible with Nπ final states.

Submitted to PAC42

Daniel S. Carman Hypernuclear Workshop at JLab - May 27 – 29, 2014 Page 21

Summary/Conclusions

The CLAS strangeness physics program:

- Designed to measure cross sections and all combinations of beam, target, and recoil polarization states.
 - Precision data broad kinematic coverage
 - Program includes "complete" experiments on both proton and neutron targets
- CLAS data dominates the world's strangeness physics database for both photoand electroproduction cross sections and spin observables.

Main points from this talk:

- CLAS KY data has played an important role in understanding the N* spectrum.
 - Strong evidence for $P_{13}(1900)$ (missing quark model state) established
 - Photo- and electroproduction data are complementary to constrain models
- Progress in developing advanced dynamical coupled-channels models.
 - Dominant N* states coupling to KY determined; consistency issues to be understood
 - Initial focus on photoproduction data; electroproduction data fits planned
- The N* → KY experimental program will continue with CLAS12 to study the spectrum and structure of N* states for Q² up to 12 GeV².

CLAS ep Data Set Overview

#	Run	E _b (GeV)	Trig.
1	e1c	2.567	900
2	e1c	4.056	370
3	e1c	4.247	620
4	e1c	4.462	420
5	e1d	4.817	300
6	e1-6	5.754	4500
7	e1f	5.499	5000
8	e1g	3.178	2500

• K⁺ Λ recoil pol. transfer

Jefferson Lab

- $W=1.6-2.7 \text{ GeV}, < Q^{2>}=1.9 \text{ GeV}^2$
- to be submitted (2014)

Publications:

- $K^+\Lambda$ beam-recoil pol. transfer
 - W=1.6-2.15 GeV, Q²=0.3 1.5 GeV² [Carman et al., PRL 90, 131804 (2003)]
- K⁺ $\Lambda \, \sigma_{\! L} / \sigma_{\! T}$ ratio from pol. transfer data
 - W=1.72-1.98 GeV, Q²~0.7 GeV² [Raue & Carman, PRC 71, 065209 (2005)]
- K⁺ Λ , K⁺ Σ^0 separated structure functions
 - W=thr-2.4 GeV, Q²=0.5-2.8 GeV²
 - σ_{U} , σ_{LT} , σ_{TT} , σ_{L} , σ_{T} K⁺ Λ , K⁺ Σ^{0} [*Ambrozewicz et al., PRC 75, 045203 (2007)*]
 - W=thr-2.6 GeV, Q²=1.4-3.9 GeV²
 - σ_{U} , σ_{LT} , σ_{TT} , $\sigma_{LT'}$ K⁺ Λ , K⁺ Σ^{0} [Carman et al., PRC 87, 025204 (2013)]
- K+ Λ fifth structure function $\sigma_{\text{LT}'}$
 - W=1.6-2.1 GeV, Q²=0.65, 1.0 GeV² [Nasseripour et al., PRC 77, 065208 (2008)]
- K⁺ Λ , K⁺ Σ^0 beam-recoil pol. transfer
 - W=thr-2.6 GeV, Q²=1.6-2.6 GeV² [Carman et al., PRC 79, 065205 (2009)]

Daniel S. Carman Hypernuclear Workshop at JLab - May 27 – 29, 2014 Page 24

Legendre Analysis

Structures in W dependence of C_L moments at the same W in all Q² bins are consistent with s-channel resonance contributions. [Carman et al., PRC 87, 025204 (2013)]

Reaction models are needed for the extraction of the N^* parameters.

Jefferson Lab Daniel S. Carman Hypernuclear Workshop at JLab - May 27 – 29, 2014 Page 25

L/T Separation

Structure Function Fits

