Hyperonic Three-Body Forces & Neutron Stars

Isaac Vidaña CFC, University of Coimbra

Hypernuclear Workshop May 27th – 29th 2014, Jefferson Lab Newport News, VA (USA) This study is part of the Ph.D. Thesis of Domenico Logoteta (Univ. Coimbra, 2013)

in collaboration also with

C. Providência

A. Polls

I. Bombaci

Some known facts about Neutron Stars

- Formed in: type II, Ib or Ic SN
- Mass: $M \sim 1 2 M_{\odot}$
- Radius: $R \sim 10 12 \text{ km}$
- Density: $\rho \sim 10^{14}$ 10^{15} g/cm³

 $\rho_{universe} \sim ~10^{-30}~g/cm^3$ $\rho_{sun} ~~ ~ 1.4 ~~ g/cm^3$ $\rho_{earth}~\sim~5.5~g/cm^3$

- Baryonic number: $N_{\rm b} \sim 10^{57}$ ("giant nuclei")
- Magnetic field: $B \sim 10^{8...15} G (10^{4...11} T)$

Earth

Magnet

 $10^{5}G$

Sunspots

 $4.5x10^{5}G$

Largest continuous field in lab. (FSU, USA)

$2.8x10^7G$

Largest magnetic pulse in lab. (Russia)

- Electric field: $E \sim 10^{18} \text{ V/cm}$
- Temperature: $T \sim 10^{6...11} \text{ K}$
- Rotational period distribution
 two types of pulsars:

• pulsars with P ~ ms

Shortest rotational period PSR in Terzan 5: $P_{J1748-2446ad} = 1.39 \text{ ms}$

• Accretion rates: 10^{-10} to 10^{-8} M_{\odot}/year

Anatomy of a Neutron Star

Hyperons in Neutron Stars

Hyperons in NS considered by many authors since the pioneering work of Ambartsumyan & Saakyan (1960)

Phenomenological approaches

- Relativistic Mean Field Models: Glendenning 1985; Knorren et al. 1995; Shaffner-Bielich & Mishustin 1996, Bonano & Sedrakian 2012, ...
- ♦ Non-realtivistic potential model: Balberg & Gal 1997
- ♦ Quark-meson coupling model: Pal et al. 1999, …
- ♦ Chiral Effective Lagrangians: Hanauske et al., 2000
- Density dependent hadron field models: Hofmann, Keil & Lenske 2001

Microscopic approaches

- ♦ Brueckner-Hartree-Fock theory: Baldo et al. 2000; I. V. et al. 2000, Schulze et al. 2006, I.V. et al. 2011, Burgio et al. 2011, Schulze & Rijken 2011
- ♦ DBHF: Sammarruca (2009)
- $V_{\text{low }k}$: Djapo, Schaefer & Wambach, 2010

Sorry if I missed somebody Hyperons are expected to appear in the core of neutron stars at $\rho \sim (2-3)\rho_0$ when μ_N is large enough to make the conversion of N into Y energetically favorable.

Effect of Hyperons in the EoS and Mass of Neutron Stars

Measured Neutron Star Masses (up to $\sim 2006-2008$)

$$M_{\rm max} [EoS] > 1.4 - 1.5 M_{\odot}$$

Hyperons in NS (up to ~ 2006-2008)

Phenomenological: M_{max} compatible with 1.4-1.5 M_{\odot}

Microscopic : $M_{max} < 1.4-1.5 M_{\odot}$

Recent measurements of high masses \rightarrow life of hyperons more difficult

Eccentric Binary Millisecond Pulsars

Paulo C. C. Freire

Arecibo Observatory, HC 3 Box 53995, Arecibo PR 00612, USA West Virginia University, PO Box 6315, Morgantown WV 26505, USA

Abstract. In this paper we review recent discovery of millisecond pulsars (MSPs) in eccentric binary systems. Timing these MSPs we were able to estimate (and in one case precisely measure) their masses. These results suggest that, as a class, MSPs have a much wider range of masses $(1.3 \text{ to } > 2M_{\odot})$ than the normal and mildly recycled pulsars found in double neutron star (DNS) systems $(1.25 < M_p < 1.44M_{\odot})$. This is very likely to be due to the prolonged accretion episode that is thought to be required to form a MSP. The likely existence of massive MSPs makes them a powerful probe for understanding the behavior of matter at densities larger than that of the atomic nucleus; in particular, the precise measurement of the mass of PSR J1903+0327 $(1.67 \pm 0.01M_{\odot})$ excludes several "soft" equations of state for dense matter.

The precise measurement of the mass of PSR J1903+0328 (1.67 +/-0.01 M_{sun}) excludes several "soft" EoS for dense matter

Keywords: Neutron Stars, Pulsars, Binary Pulsars, General Relativity, Nuclear Equation of State PACS: 97.60.Gb; 97.60.Jd; 97.80.Fk; 95.30.Sf; 26.60; 91.60.Fe

✓ binary sytem (P=95.17 d) ✓ high eccentricity (ϵ =0.437) ✓ companion mass: ~1 M_{\odot} ✓ pulsar mass: $M = 1.67 \pm 0.11 M_{\odot}$

Two-solar mass neutron star measured

LETTER

Nature 464, 1081 (2010)

doi:10.1038/nature09466

A two-solar-mass neutron star measured using Shapiro delay

P. B. Demorest¹, T. Pennucci², S. M. Ransom¹, M. S. E. Roberts³ & J. W. T. Hessels^{4,5}

to exist in our Universe, the composition and properties of which are still theoretically uncertain. Measurements of the masses or radii of these objects can strongly constrain the neutron star matter equation of state and rule out theoretical models of their composition^{1,2}. The observed range of neutron star masses, however, has hitherto been too narrow to rule out many predictions of 'exotic' non-nucleonic components3-6. The Shapiro delay is a general-relativistic increase in light travel time through the curved space-time near a massive body7. For highly inclined (nearly edge-on) binary millisecond radio pulsar systems, this effect allows us to infer the masses of both the neutron star and its binary companion to high precision^{8,9}. Here we present radio timing observations of the binary millisecond pulsar [1614-2230^{10,11} that show a strong Shapiro delay signature. We calculate the pulsar mass to be $(1.97 \pm 0.04)M_{\odot}$, which rules out almost all currently proposed2-5 hyperon or boson condensate equations of state (Mo, solar mass). Quark matter can support a star this massive only if the quarks are strongly interacting and are therefore not 'free' quarks12.

Neutron stars are composed of the densest form of matter known long-term data set, parameter covariance and dispersion measure varito exist in our Universe, the composition and properties of which ation can be found in Supplementary Information.

> As shown in Fig. 1, the Shapiro delay was detected in our data with extremely high significance, and must be included to model the arrival times of the radio pulses correctly. However, estimating parameter values and uncertainties can be difficult owing to the high covariance between many orbital timing model terms⁴. Furthermore, the χ^2 surfaces for the Shapiro-derived companion mass (M_2) and inclination angle (*i*) are often significantly curved or otherwise non-Gaussian¹⁵. To obtain robust error estimates, we used a Markov chain Monte Carlo (MCMC) approach to explore the post-fit χ^2 space and derive posterior probability distributions for all timing model parameters (Fig. 2). Our final results for the model

Table 1 Physical parameters for PSR J1614-2230

Parameter	Value	
Ecliptic longitude (λ)	245.78827556(5)°	
Ecliptic latitude (B)	-1.256744(2)°	
Proper motion in λ	9.79(7) mas yr ⁻¹	
Proper motion in B	-30(3) mas yr ⁻¹	
Parallax	0.5(6) mas	

The mass 1.97 +/- 0.04 M_{sun} of the pulsar PSR J1614+2230 rules out almost all currently proposed hyperon or boson condensate EoS. Quark matter can support such a massive star only if quarks are strongly interacting (not "free quarks")

Binary millisecond pulsar PSR J1614+2230 Shapiro delay signature

$$\Delta t = -\frac{2GM}{c^3} \log\left(1 - \vec{R} \cdot \vec{R}'\right)$$

On April 26th 2013 the discovery of the most massive (up to now) pulsar (PSR J0348+0432) was made public

Science	AAAS.ORG FEEDBACK HELP LIBRARIANS		
Science	GUEST ALERTS ACCESS RIGH		
NAAAS	NEWS SCIENCE JOURNALS CAREERS MULTIMEDIA COLLECTIONS		
Science The V	Vorld's Leading Journal of Original Scientific Research, Global News, and Commentary.		
Science Home Current	Issue Previous Issues Science Express Science Products My Science About the Journal		
Home > Science Magazine >	26 April 2013 > Antoniadis et al., 340 (6131):		
Article Views	Science 26 April 2013: <pre>< Prev Table of Contents Next ></pre>		
Abstract	Vol. 340 no. 6131 DOI: 10.1126/science.1233232		
> Full Text	DESEARCH ADTICLE		
Full Text (PDF)	RESEARCH ARTICLE		
Figures Only	 A Massive Pulsar in a Compact Relativistic Binary 		
> Supplementary	John Antoniadis , Paulo C. C. Freire ¹ , Norbert Wex ¹ , Thomas M. Tauris ^{2,1} , Ryan S. Lynch ³ ,		
Materials			
Podcast Interview	arcen W. T. Hacsale ^{8,9} Victoria M. Kasni ³ Vladielav I. Kondratiav ^{8,10} Norbert Lanner ²		
	Thomas R. Marsh ¹¹ , Maura A. McLaughlin ¹² , Timothy T. Pennucci ¹³ , Scott M. Ransom ¹⁴ ,		
VERSION HISTORY	Ingrid H. Stairs ¹⁵ , Joeri van Leeuwen ^{8,9} , Joris P. W. Verbiest ¹ , David G. Whelan ¹³		
Correction for this article	+ Author Affiliations		
Article Tools			
* Save to My Folders	ABSTRACT STRUCTURED ABSTRACT EDITOR'S SUMMARY		
Download Citation			
Alert Me When Article	Many physically motivated extensions to general relativity (GR) predict substantial deviations in the properties of spacetime surrounding massive neutron stars. We report the measurement of a 2.01 \pm 0.04 solar mass (M_{\odot}) pulsar in a 2.46-hour orbit with a 0.172 \pm 0.003 M_{\odot} white dwarf. The high pulsar mass and the compact orbit make this system a sensitive laboratory of a previously untested strong-field gravity regime. Thus far, the observed orbital decay agrees with GR, supporting its validity even for the extreme conditions present in the system. The resulting constraints on deviations support the use of GR-based templates for ground-based gravitational wave detectors. Additionally, the system strengthens recent constraints on the properties of dense matter and provides insight to binary stellar astrophysics and pulsar recycling.		
is Cited			
Post to CiteULike			
' E-mail This Page			
* Rights & Permissions			
Commercial Reprints and E-Prints			
View PubMed Citation			

- ✓ binary system (P=2.46 h)
- \checkmark very low eccentricity
- \checkmark companion mass: $0.172 \pm 0.003 M_{\odot}$
- ✓ pulsar mass: $M = 2.01 \pm 0.04 M_{\odot}$

Measured Neutron Star Masses (2014)

updated from Lattimer 2013

Observation of $\sim 2 M_{sun}$ neutron stars

Dense matter EoS stiff enough is required such that

 $M_{\rm max} [EoS] > 2M_{\odot}$

Can hyperons still be present in the interior of neutron stars in view of this constraint ?

The Hyperon Puzzle

"Hyperons \rightarrow "soft (or too soft) EoS" not compatible (mainly in microscopic approaches) with measured (high) masses. However, the presence of hyperons in the NS interior seems to be unavoidable."

- \checkmark can YN & YY interactions still solve it ?
- \checkmark or perhaps hyperonic three-body forces ?
- ✓ what about quark matter ?

Can Hyperonic TBF solve this puzzle?

Natural solution based on: Importance of NNN force in Nuclear Physics (Considered by several authors: Chalk, Gal, Usmani, Bodmer, Takatsuka, Loiseau, Nogami, Bahaduri, IV)

Two-meson exchange Hyperonic TBF

Vertices: consistent with YN and YY

Repulsion at high densities due to Z-diagram as in NNN

Baryon-excitation contribution $(\pi$ -, *K*-exchange)

$$V_{NNY}^{M_1M_2,B} = C_{NNY}^{M_1M_2,B} \left(\hat{O}_A \left\{ X_{12}(\vec{r}_{12}), X_{23}(\vec{r}_{23}) \right\} + \hat{O}_B \left[X_{12}(\vec{r}_{12}), X_{23}(\vec{r}_{23}) \right] \right)$$

 $\hat{O}_A, \hat{O}_B \rightarrow \text{ isospin structure}$

$$\begin{split} X_{ij}(\vec{x}) &= \vec{\sigma}_i \cdot \vec{\sigma}_j Y_{ij}(x) + \hat{S}_{ij}(\hat{x}) T_{ij}(x) \\ Y_{ij}(x) &= \frac{\partial^2 Z_{ij}}{\partial x^2} + \frac{2}{x} \frac{\partial Z_{ij}}{\partial x}, \quad T_{ij}(x) = \frac{\partial^2 Z_{ij}}{\partial x^2} - \frac{1}{x} \frac{\partial Z_{ij}}{\partial x} \\ Z_{12}(x) &= \frac{4\pi}{m_{M_1}} \int \frac{d\vec{k}}{(2\pi)^3} \frac{e^{-i\vec{k}\cdot\vec{x}}}{k^2 + m_{M_1}^2} F_{B_1B_1M_1}(k^2) F_{B_2BM_1}(k^2) \\ Z_{23}(x) &= \frac{4\pi}{m_{M_2}} \int \frac{d\vec{q}}{(2\pi)^3} \frac{e^{-i\vec{q}\cdot\vec{x}}}{q^2 + m_{M_2}^2} F_{B_3B_3M_2}(q^2) F_{B_2BM_2}(q^2) \end{split}$$

Isospin structure: operators $\hat{O}_{\rm A}$ & $\hat{O}_{\rm B}$

$V_{NNY}^{M_1M_2,B} = C_{NNY}^{M_1M_2,B} \left(\hat{O}_A \left\{ X_{12}(\vec{r}_{12}), X_{23}(\vec{r}_{23}) \right\} + \hat{O}_A \left[X_{12}(\vec{r}_{12}), X_{23}(\vec{r}_{23}) \right] \right)$])
--	----

$V_{NNY}^{M_1M_2,B}$	\hat{O}_{A}	$\hat{O}_{_B}$
$V_{NN\Lambda}^{\pi\pi,\Sigma^*}, V_{NN\Lambda}^{\pi\pi,\Sigma}, V_{NN\Sigma}^{\pi\pi,\Sigma^*}, V_{NN\Sigma}^{\pi\pi,\Lambda}, V_{NN\Sigma}^{KK,\Lambda}, V_{NN\Sigma^{\leftrightarrow}NN\Lambda}^{\pi\pi,\Sigma^*}$	$ec{m{ au}}_1\!\cdot\!ec{m{ au}}_3$	
$V_{_{NN\Sigma}}^{_{\pi\pi,\Delta}}$	$\left\{ec{ au}_1\cdotec{ au}_2,ec{ au}_2\cdotec{I}_3 ight\}$	$\frac{1}{4} \left[\vec{\tau}_1 \cdot \vec{\tau}_2, \vec{\tau}_2 \cdot \vec{I}_3 \right]$
$V_{NN\Sigma \leftrightarrow NN\Lambda}^{\pi\pi,\Delta}$	$\left\{ec{ au}_1\!\cdot\!ec{ au}_2, ec{ au}_2\!\cdot\!ec{ ho}_3 ight\}$	$\frac{1}{4} \left[\vec{\tau}_1 \cdot \vec{\tau}_2, \vec{\tau}_2 \cdot \vec{\rho}_3 \right]$
$V_{_{NN\Lambda}}^{_{KK,\Sigma^{*}}}$	$\left\{\vec{1}_1\cdot\vec{\tau}_2,\vec{\tau}_2\cdot\vec{1}_3\right\}$	$-\frac{1}{2} \left[\vec{1}_1 \cdot \vec{\tau}_2, \vec{\tau}_2 \cdot \vec{1}_3 \right]$
$V^{KK,\Sigma}_{NN\Lambda}$	$\left\{\vec{1}_1\cdot\vec{\tau}_2,\vec{\tau}_2\cdot\vec{1}_3\right\}$	$\left[ec{1}_1\cdotec{ au}_2,ec{ au}_2\cdotec{1}_3 ight]$
$V^{KK,\Lambda}_{NN\Lambda}$	1	

$V_{NNY}^{M_1M_2,B}$	\hat{O}_{A}	$\hat{O}_{\scriptscriptstyle B}$
$V_{_{NN\Sigma}}^{_{K\!K,\Sigma^*}}$	$\left\{ec{ au}_1\!\cdot\!ec{ au}_2,ec{ au}_2\!\cdot\!ec{ au}_3 ight\}$	$-\frac{1}{2} \left[\vec{\tau}_1 \cdot \vec{\tau}_2, \vec{\tau}_2 \cdot \vec{\tau}_3 \right]$
$V_{_{NN\Sigma}}^{_{KK,\Sigma}}$	$\left\{ec{ au}_1\!\cdot\!ec{ au}_2, ec{ au}_2\!\cdot\!ec{ au}_3 ight\}$	$\left[ec{ au}_1\!\cdot\!ec{ au}_2,ec{ au}_2\!\cdot\!ec{ au}_3 ight]$
$V_{NN\Sigma \Leftrightarrow NN\Lambda}^{KK,\Sigma^*}$	$\left\{ar{ ho}_1\!\cdot\!ar{ au}_2,\!ar{ au}_2\!\cdot\!ar{ au}_3 ight\}$	$-\frac{1}{2} \big[\vec{\rho}_1 \cdot \vec{\tau}_2, \vec{\tau}_2 \cdot \vec{\tau}_3 \big]$
$V_{NN\Sigma \leftrightarrow NN\Lambda}^{KK,\Sigma}$	$\left\{ar{ ho}_1\cdotar{ au}_2,ar{ au}_2\cdotar{ au}_3 ight\}$	$\left[ec{ ho}_1\!\cdot\!ec{ au}_2,\!ec{ au}_2\!\cdot\!ec{ au}_3 ight]$
$V_{NN\Sigma \leftrightarrow NN\Lambda}^{KK,\Lambda}$	$ec{ ho}_1\!\cdot\!ec{ au}_2$	

 $V_{NNY}^{M_1M_2,B} = C_{NNY}^{M_1M_2,B} \left(\hat{O}_A \left\{ X_{12}(\vec{r}_{12}), X_{23}(\vec{r}_{23}) \right\} + \hat{O}_A \left[X_{12}(\vec{r}_{12}), X_{23}(\vec{r}_{23}) \right] \right)$

Isospin structure: operators \hat{O}_{A} & \hat{O}_{B} (cont')

 $\sigma\sigma$ -exchange contribution

$$\begin{split} V_{NNY}^{\sigma\sigma,\bar{B}} &= C_{NNY}^{\sigma\sigma,\bar{B}} \left(-4Z_{12}(r_{12})Z_{23}(r_{23})\nabla_{r_{2}}^{2} - 4Z_{12}^{'}(r_{12})Z_{23}(r_{23})\hat{r}_{12} \cdot \nabla_{r_{2}^{'}} \right. \\ &- 4Z_{12}(r_{12})Z_{23}^{'}(r_{23})\hat{r}_{23} \cdot \nabla_{r_{2}^{'}} - \left(Y_{12}(r_{12})Z_{23}(r_{23}) + Z_{12}(r_{12})Y_{23}(r_{23})\right) \\ &- \hat{r}_{12} \cdot \hat{r}_{23}Z_{12}^{'}(r_{12})Z_{23}^{'}(r_{23}) - 2i\left(Z_{12}^{'}(r_{12})Z_{23}(r_{23})\vec{\sigma}_{2} \cdot \hat{r}_{12} \times \nabla_{r_{2}^{'}} + Z_{12}(r_{12})Z_{23}^{'}(r_{23})\vec{\sigma}_{2} \cdot \hat{r}_{23} \times \nabla_{r_{2}^{'}}\right)\right) \\ &+ Z_{12}(r_{12})Z_{23}^{'}(r_{23})\vec{\sigma}_{2} \cdot \hat{r}_{23} \times \nabla_{r_{2}^{'}}\right) \delta\left(\vec{r}_{1} - \vec{r}_{1}^{'}\right) \delta\left(\vec{r}_{2} - \vec{r}_{2}^{'}\right) \delta\left(\vec{r}_{3} - \vec{r}_{3}^{'}\right) \end{split}$$

• $\omega\omega$ -exchange contribution

$$\begin{aligned} V_{NNY}^{\omega\omega,\bar{B}} &= C_{NNY}^{\omega\omega,\bar{B}} \left(\left(\left(1 + \vec{\sigma}_1 \cdot \vec{\sigma}_2 + \vec{\sigma}_1 \cdot \vec{\sigma}_2 + \vec{\sigma}_2 \cdot \vec{\sigma}_3 \right) \hat{r}_{12} \cdot \hat{r}_{23} - \vec{\sigma}_1 \cdot \hat{r}_{23} \vec{\sigma}_2 \cdot \hat{r}_{12} - \vec{\sigma}_2 \cdot \hat{r}_{23} \vec{\sigma}_3 \cdot \hat{r}_{12} \right) \\ &- \vec{\sigma}_1 \cdot \hat{r}_{23} \vec{\sigma}_3 \cdot \hat{r}_{12} \right) Z_{12}^{'}(r_{12}) Z_{23}^{'}(r_{23}) - 2i Z_{12}^{'}(r_{12}) Z_{23}(r_{23}) \left(\vec{\sigma}_2 + \vec{\sigma}_3 \right) \cdot \hat{r}_{12} \times \nabla_{r_3^{'}} \\ &- 2i Z_{12}(r_{12}) Z_{23}^{'}(r_{23}) \left(\vec{\sigma}_2 + \vec{\sigma}_3 \right) \cdot \hat{r}_{23} \times \nabla_{r_2^{'}} - 4 Z_{12}(r_{12}) Z_{23}(r_{23}) \nabla_{r_1^{'}} \cdot \nabla_{r_3^{'}} \right) \\ &\delta \left(\vec{r}_1 - \vec{r}_1^{'} \right) \delta \left(\vec{r}_2 - \vec{r}_2^{'} \right) \delta \left(\vec{r}_3 - \vec{r}_3^{'} \right) \end{aligned}$$

• $\sigma \omega$ -exchange contribution

$$\begin{split} V_{NNY}^{\sigma\omega,\bar{B}} &= C_{NNY}^{\sigma\omega,\bar{B}} \left(\left(\left(1 + \vec{\sigma}_{2} \cdot \vec{\sigma}_{3} \right) Z_{12}(r_{12}) Y_{23}(r_{23}) - 2i Z_{12}(r_{12}) Z_{23}'(r_{23}) \left(\vec{\sigma}_{2} + \vec{\sigma}_{3} \right) \cdot \hat{r}_{23} \times \nabla_{r_{2}'} \right. \\ &+ 2i Z_{12}'(r_{12}) Z_{23}'(r_{23}) \left(\vec{\sigma}_{2} + \vec{\sigma}_{3} \right) \cdot \hat{r}_{12} \times \hat{r}_{23} + 2i Z_{12}(r_{12}) Z_{23}'(r_{23}) \vec{\sigma}_{2} \cdot \hat{r}_{23} \times \nabla_{r_{3}'} \right. \\ &+ 2Z_{12}'(r_{12}) Z_{23}(r_{23}) \hat{r}_{12} \cdot \nabla_{r_{3}'} + 2Z_{12}(r_{12}) Z_{23}'(r_{23}) \hat{r}_{23} \cdot \nabla_{r_{3}'} + 4Z_{12}(r_{12}) Z_{23}(r_{23}) \nabla_{r_{2}'} \cdot \nabla_{r_{3}'} \right. \\ &- \frac{1}{3} \left(\vec{\sigma}_{2} \cdot \vec{\sigma}_{3} Y_{12}(r_{12}) + \hat{S}_{23}(\hat{r}_{23}) T_{23}(r_{23}) \right) Z_{12}(r_{12}) \right) \\ &+ D_{NNY}^{\sigma\omega,\bar{B}} \left(-Y_{12}(r_{12}) + Y_{23}(r_{23}) - 4Z_{12}'(r_{12}) Z_{23}'(r_{23}) - 3Z_{12}'(r_{12}) \nabla_{r_{2}'} \cdot \hat{r}_{12} \right) \\ &+ i \vec{\sigma}_{2} \cdot \left(2 \nabla_{r_{23}} \times \nabla_{r_{12}} - 5 \nabla_{r_{2}'} \times \hat{r}_{23} \right) Z_{12}(r_{12}) Z_{23}(r_{23}) \\ &+ \left(\vec{r}_{12} \leftrightarrow \vec{r}_{23}, \vec{r}_{1}' \leftrightarrow \vec{r}_{1}', \vec{r}_{2}' \leftrightarrow \vec{r}_{2}', \vec{\sigma}_{1}' \leftrightarrow \vec{\sigma}_{3} \right) \right) \delta(\vec{r}_{1} - \vec{r}_{1}') \delta(\vec{r}_{2} - \vec{r}_{2}') \delta(\vec{r}_{3} - \vec{r}_{3}') \end{split}$$

But that's only the beginning of the full story there are MANY, MANY, MANY more forces & contributions

BHF approximation of Hyperonic Matter

Energy per particle

•
$$\frac{E}{A}(\rho,\beta) = \frac{1}{A} \sum_{B} \sum_{k \le k_{F_B}} \left(\frac{\hbar^2 k^2}{2m_B} + \frac{1}{2} \operatorname{Re}\left[U_B(\vec{k}) \right] \right)$$

Infinite sumation of two-hole line diagrams

Bethe-Goldstone Equation

•
$$G(\omega) = V + V \frac{Q}{\omega - E - E' + i\eta} G(\omega)$$

$$\bullet \quad E_B(k) = \frac{\hbar^2 k^2}{2m_B} + \operatorname{Re}\left[U_N(k)\right] + m_B$$

Partial sumation of pp ladder diagrams

$$\sum_{i=1}^{i} \sum_{j=1}^{i} \left(+ \right) = \left(+ \right) + \left(+ \right) +$$

Three-Body Forces within the BHF approach

TBF can be introduced in our BHF approach by adding effective density-dependent two body forces to the baryon-baryon interactions V when solving the Bethe-Goldstone equation

$$V_{B_iB_j}^{eff}\left(\vec{r}_{ij}\right) = \int W_3\left(\vec{r}_i,\vec{r}_j,\vec{r}_k\right) n\left(\vec{r}_i,\vec{r}_j,\vec{r}_k\right) d^3\vec{r}_k$$

 $W_3(\vec{r}_i, \vec{r}_j, \vec{r}_k)$: genuine TBF $n(\vec{r}_i, \vec{r}_j, \vec{r}_k)$: three-body correlation function

From the genuine NNN,NNY, NYY and YYY TBF ...

NNY → NN, NY

NYY \rightarrow NY, YY

 $YYY \rightarrow YY$

Effective NN density-dependent 2BF from NNY

- $V_{NN}^{\omega\omega Y,\bar{B}}\left(\vec{r}\right) = C_{NNY}^{\omega\omega,\bar{B}}\rho_{Y}\left[V_{C}^{\omega\omega}\left(\vec{r}\right) + V_{S}^{\omega\omega}\left(\vec{r}\right)\vec{\sigma}_{1}\cdot\vec{\sigma}_{2} + V_{T}^{\omega\omega}\left(\vec{r}\right)S_{12}\left(\hat{r}\right)\right]$
- $V_{NN}^{\sigma\omega Y,\bar{B}}(\vec{r}) = C_{NNY}^{\sigma\omega,\bar{B}}\rho_N V_C^{\sigma\omega}(\vec{r})$

Effective NA density-dependent 2BF from NNA

- $V_{N\Lambda}^{KKN,\Lambda}(\vec{r}) = C_{NN\Lambda}^{KK,\Lambda}\rho_N \left[V_S^{KK}(\vec{r})\vec{\sigma}_1 \cdot \vec{\sigma}_2 + V_T^{KK}(\vec{r})S_{12}(\hat{r}) \right]$
- $V_{N\Lambda}^{KKN,\Sigma/\Sigma^*}(\vec{r}) = C_{NN\Lambda}^{KK,\Sigma/\Sigma^*}\rho_N \left[V_S^{KK}(\vec{r})\vec{\sigma}_1 \cdot \vec{\sigma}_2 + V_T^{KK}(\vec{r})S_{12}(\hat{r}) \right] \vec{\tau}_1 \cdot \vec{l}_2$
- $V_{N\Lambda}^{\sigma\sigma N,\bar{N}}\left(\vec{r}\right) = C_{NN\Lambda}^{\sigma\sigma,\bar{N}}\left[\rho_{\Lambda}V_{C_{1}}^{\sigma\sigma}\left(\vec{r}\right) + \rho_{\Lambda}^{5/3}V_{C_{2}}^{\sigma\sigma}\left(\vec{r}\right)\right]$
- $V_{N\Lambda}^{\omega\omega N,\bar{N}}(\vec{r}) = C_{NN\Lambda}^{\omega\omega,\bar{N}}\rho_N \left[V_C^{\omega\omega}(\vec{r}) + V_S^{\omega\omega}(\vec{r})\vec{\sigma}_1 \cdot \vec{\sigma}_2 + V_T^{\omega\omega}(\vec{r})S_{12}(\hat{r}) \right]$

•
$$V_{N\Lambda}^{\sigma\omega N,\bar{N}}(\vec{r}) = C_{NN\Lambda}^{\sigma\omega,\bar{N}}\rho_{\Lambda}V_{C}^{\sigma\omega}(\vec{r})$$

Effective NΣ density-dependent 2BF from NNΣ

- $V_{N\Sigma}^{\pi\pi N,\Delta}(\vec{r}) = C_{NN\Sigma}^{\pi\pi,\Delta} \rho_N \left[V_S^{\pi\pi}(\vec{r}) \vec{\sigma}_1 \cdot \vec{\sigma}_2 + V_T^{\pi\pi}(\vec{r}) S_{12}(\hat{r}) \right] \vec{\tau}_1 \cdot \vec{I}_2$
- $V_{N\Sigma}^{KKN,\Lambda/\Sigma}(\vec{r}) = C_{NN\Sigma}^{KK,\Lambda/\Sigma}\rho_N \left[V_S^{KK}(\vec{r})\vec{\sigma}_1 \cdot \vec{\sigma}_2 + V_T^{KK}(\vec{r})S_{12}(\hat{r})\right]\vec{\tau}_1 \cdot \vec{\tau}_2$
- $V_{N\Sigma}^{KKN,\Sigma^*}(\vec{r}) = C_{NN\Sigma}^{KK,\Sigma^*}\rho_N \left[V_S^{KK}(\vec{r})\vec{\sigma}_1 \cdot \vec{\sigma}_2 + V_T^{KK}(\vec{r})S_{12}(\hat{r}) \right] \vec{\tau}_1 \cdot \vec{l}_2$
- $V_{N\Sigma}^{\sigma\sigma N,\bar{N}}\left(\vec{r}\right) = C_{NN\Sigma}^{\sigma\sigma,\bar{N}}\left[\rho_{\Sigma}V_{C_{1}}^{\sigma\sigma}\left(\vec{r}\right) + \rho_{\Sigma}^{5/3}V_{C_{2}}^{\sigma\sigma}\left(\vec{r}\right)\right]$
- $V_{N\Sigma}^{\omega\omega N,\bar{N}}(\vec{r}) = C_{NN\Sigma}^{\omega\omega,\bar{N}}\rho_N \left[V_C^{\omega\omega}(\vec{r}) + V_S^{\omega\omega}(\vec{r})\vec{\sigma}_1 \cdot \vec{\sigma}_2 + V_T^{\omega\omega}(\vec{r})S_{12}(\hat{r}) \right]$
- $V_{N\Sigma}^{\sigma\omega N,\bar{N}}\left(\vec{r}\right) = C_{NN\Sigma}^{\sigma\omega,\bar{N}}\rho_{\Sigma}V_{C}^{\sigma\omega}\left(\vec{r}\right)$

Effective density-dependent transition $N\Sigma - N\Lambda$ from $NN\Sigma - NN\Lambda$

• $V_{N\Sigma \leftrightarrow N\Lambda}^{\pi\pi N,\Delta}(\vec{r}) = C_{NN\Sigma \leftrightarrow NN\Lambda}^{\pi\pi,\Delta} \rho_N \left[V_S^{\pi\pi}(\vec{r}) \vec{\sigma}_1 \cdot \vec{\sigma}_2 + V_T^{\pi\pi}(\vec{r}) S_{12}(\hat{r}) \right] \vec{\tau}_1 \cdot \vec{I}_2$

•
$$V_{N\Sigma \leftrightarrow N\Lambda}^{KKN,\Lambda/\Sigma/\Sigma^*}(\vec{r}) = C_{NN\Sigma \leftrightarrow NN\Lambda}^{KK,\Lambda/\Sigma/\Sigma^*}\rho_N \left[V_S^{KK}(\vec{r})\vec{\sigma}_1 \cdot \vec{\sigma}_2 + V_T^{KK}(\vec{r})S_{12}(\hat{r})\right]\vec{\tau}_1 \cdot \vec{1}_2$$

Effect of TBF on Mean Field & E/A

Work is in progress, many more contributions have to be considered, but we can still try to estimate the effect of hyperonic TBF in NS

1-. Construct the hyperonic matter EoS within the BHF at 2 body level (Av18 NN + NSC89 YN)

2-. Add simple phenomenological density-dependent contact terms that mimic the effect of TBF.

Density-dependent contact terms: (Balberg & Gal 1997)

Potential of a baryon B_y in a sea of baryons B_x of density ρ_x

Folding $V_y(\rho_x)$ with ρ_x , $V_x(\rho_y)$ with ρ_y and combining with weight factors ρ_x / ρ and ρ_v / ρ

 $V_{y}(\rho_{x}) = a_{xy}\rho_{x} + b_{xy}\rho_{x}^{\gamma_{xy}}$

$$\varepsilon_{xy}(\rho_x,\rho_y) = a_{xy}\rho_x\rho_y + b_{xy}\rho_x\rho_y \left(\frac{\rho_x^{\gamma_{xy}} + \rho_y^{\gamma_{xy}}}{\rho_x + \rho_y}\right)$$

attraction

Then, we have ...

$$\varepsilon_{CT} = a_{NN}\rho_{N}^{2} + b_{NN}\rho_{N}^{\gamma_{NN}}$$

$$+ a_{\Lambda N}\rho_{\Lambda}\rho_{N} + b_{\Lambda N}\rho_{\Lambda}\rho_{N} \left(\frac{\rho_{\Lambda}^{\gamma_{\Lambda N}} + \rho_{N}^{\gamma_{\Lambda N}}}{\rho_{\Lambda} + \rho_{N}}\right)$$

$$+ a_{\Sigma N}\rho_{\Sigma}\rho_{N} + b_{\Sigma N}\rho_{\Sigma}\rho_{N} \left(\frac{\rho_{\Sigma}^{\gamma_{\Sigma N}} + \rho_{N}^{\gamma_{\Sigma N}}}{\rho_{\Sigma} + \rho_{N}}\right)$$

 $\rho_{\scriptscriptstyle N} = \rho_{\scriptscriptstyle n} + \rho_{\scriptscriptstyle p} \,, \quad \rho_{\scriptscriptstyle \Sigma} = \rho_{\scriptscriptstyle \Sigma^-} + \rho_{\scriptscriptstyle \Sigma^0} + \rho_{\scriptscriptstyle \Sigma^+}$

NYY \rightarrow YY and YYY \rightarrow YY not included for consistency

The parameters $a_{NN,}^{} b_{NN}^{}$ and $\gamma_{NN}^{}$
fitted to reproduce $\rho_0=0.16$ fm ⁻³ ,
E/A=-16 MeV and K =211-285 MeV

γ_{NN}	a_{NN}	b_{NN}	K_∞
	$[MeV fm^3]$	$[{ m MeV}~{ m fm}^{3\gamma_{NN}}]$	[MeV]
2	-33.44	213.02	211
2.5	-22.08	355.03	236
3	-16.40	665.68	260
3.5	-12.99	1331.36	285

For simplicity, we take $a_{\Lambda N}=a_{\Sigma N}$, $b_{\Lambda N}=b_{\Sigma N}$ and $\gamma_{\Lambda N}=\gamma_{\Sigma N}$ with

$$a_{\Lambda N} = x a_{NN}, \quad b_{\Lambda N} = x b_{NN}, \quad x = 0, \frac{1}{3}, \frac{2}{3}, 1$$

to explore different strength of the hyperonic TBF

 $\gamma_{\Lambda N}$ is obtained using the value of -28 MeV for the binding energy of a Λ in nuclear matter

$$\left(\frac{B}{A}\right)_{\Lambda} = 28MeV = -U_{\Lambda}(k=0) - a_{YN}\rho_0 - b_{YN}\rho_0^{\gamma_{YN}}$$

 $U_{\Lambda}(k=0) = -30.8 MeV$

Effect of hyperonic TBF on M_{max}

γ_{NN}	x	γ_{YN}	Maximum Mass
	0	-	1.27(2.22)
	1/3	1.49	1.33
2	2/3	1.69	1.38
	1	1.77	1.41
	0	-	1.29(2.46)
	1/3	1.84	1.38
2.5	2/3	2.08	1.44
	1	2.19	1.48
	0	-	1.34(2.72)
	1/3	2.23	1.45
3	2/3	2.49	1.50
	1	2.62	1.54
	0	-	1.38 (2.97)
	1/3	2.63	1.51
3.5	2/3	2.91	1.56
	1	3.05	1.60

Hyperonic TBFs seem not to be the full solution of the "Hyperon Puzzle", although they probably contribute to its solution

 $1.27 < M_{\rm max} < 1.6 M_{\odot}$

Summary & Conclusions

✤ Construction of two-meson exchange hyperonic TBF

Repulsion is obtained at high densities (Z-diagram)

D. Logoteta, Ph.D. Thesis (Univ. Coimbra 2013)

Simple model to establish numerical lower and upper limits to the effect of hyperonicTBF on the maximum mass of NS.

Assuming the strength of hyperonic TBF \leq nucleonic TBF:

 $1.27 \text{ M}_{\odot} < M_{\text{max}} < 1.60 \text{ M}_{\odot}$ compatible with 1.4-1.5 M_{\odot}

but incompatible with observation of very massive NS

 $\begin{array}{l} \text{PSR J1903+0327} \quad (1.67 \pm 0.01) \ \text{M}_{\odot} \\ \text{PSR J1614-2230} \quad (1.97 \pm 0.04) \ \text{M}_{\odot} \\ \text{PSR J0348+0432} \quad (2.01 \pm 0.04) \ \text{M}_{\odot} \end{array}$

Take away message

Hyperonic Three-Body Forces seem not to be the full solution to the "Hyperon Puzzle", although they probably can contribute to it

- You for your time & attention
- The organizers for their invitation
- The sponsors for their support

