15 March 2016

THE 2ND JLAB HYPERNUCLEAR WORKSHOP

Introduction and Highlights of hypernuclear study at JLab

> Satoshi N. Nakamura Tohoku University

1st JLab Hypernuclear WS

May 27-29, 2014, We discussed:

- 1. What is necessary to understand of the elementary process of electro-production of strangeness
- 2. Experimental study of light hypernuclei and YN interaction including Charge Symmetry Breaking (CSB) effect and Λ N- Σ N-coupling.
- 3. What can be learned from precise determination of Λ binding energies
- 4. Deformation of core-nucleus and energy levels of Λ hypernuclei
- Detailed spectroscopy of heavy hypernuclei and potential impacts of measurement to mean-field theory, shell-models and single particle nature of Λ in deep inside of nuclei.
 Uniqueness of JLab hypernuclear program in contrast to
 - other facilities such as J-PARC, Mainz, future FAIR

Summary of 1st JLab Hyp. WS summary by H.Tamura

What can JLab answer? My personal idea

> **<u>Elementary H(e,e'K+)</u>** BB interactions

Charge Symmetry Breaking ⁴_ΛH pi decay, ⁴_ΛH* production,..

Impurity effect in nuclear structure

Mot

Ur

New means to clearly probe the exotic nuclear structure (e.g. triaxial deformation) ²⁷∧Mg ←

> nadrons and nuclei from quarks

Properties and behavior of baryons in nuclei μ_Λ Study of high-density (strange) nuclear matter from s.p.e. of heavy Λ hypernuclei e.g. ²⁰⁸ ΛPb, A=50~100, ²⁷ ΛMg Needs more theoretical studies

ysics

51 days (1224h) option for high priority targets

Target	Purpose	High Priority (hours)
Engineering	Beam, target, spectrometers, detectors DAQ	1 calendar month
Calibrations Various targets	Optics, kinematics, absolute energy scale	<u>167</u>
Physics I : Few-body	Direct ΛN int. study (CSB,FSI)	
⁴ He (⁴ _Λ H)	CSB for A=4 system	<u>177</u>
$H_2(\Lambda, \Sigma^0)$	Elementary, calibration	35
D_2 and ${}^{3}He$ (${}^{2}_{\Lambda}n$, ${}^{3}_{\Lambda}H$)	ΛN int. study through FSI	140
$^{3}T(_{\Lambda}n)$	Exotic bound state search	
Subtotal		352
Physics II : Mid-Heavy	3B force study – EoS w/Y	
⁴⁰ Ca (⁴⁰ _A K)	High prec. exp. Reliable Calc.	<u>103</u>
$\frac{48}{Ca} \left(\frac{48}{\Lambda} K\right)$	Iso-spin dep.	
⁸⁹ Y (⁸⁹ Sr)	Heavy HY	124
$^{208}\text{Pb} (^{208}_{\Lambda}\text{Tl})$	Heaviest HY	478
Subtotal		705
Total	Fit in 51 PAC days (1224h)	1224

Proposal submitted to PAC43 A study of the AN interaction through the high precision spectroscopy of A-hypernuclei with electron beam

C12-15-008 : Conditionally approved (C2)

Issues: The PAC views the most compelling science presented as the measurements of binding energy of the <u>medium mass nuclei</u> ${}^{48}\Lambda K$ and ${}^{40}\Lambda K$. It is these measurements, along with the calibration measurements, that are conditionally approved. The PAC believes there should be a strong connection between understanding the <u>ANN force and the 2 solar mass neutron star</u> observations. However, the science case even for these measurements still needs refinement, and the connection has not been well articulated. Theoretical calculations are possible in the 40,48 nuclei, as well as in neutron matter. While AFDMC (Pederiva et al, arXiv:1506.04042) calculations have been performed with simplified interactions (AV4' + one term in UIX, and a AN and ANN interaction), a more complete picture may be feasibly obtained. Even using the simplified interaction in AFDMC, the calculations indicate that the tensor parameter could be well constrained by a measurement of BA in an asymmetric nucleus. This argument should be strengthened and explored, possibly by a workshop. The PAC believes the collaboration would benefit from a more integrated theoretical effort in this area.

Summary:

The collaboration should submit an <u>updated</u> proposal to study ${}^{48}\Lambda K$ and ${}^{40}\Lambda K$ along with a stronger theoretical <u>connection to neutron star physics</u>.

The PAC is not convinced that measurements of the A dependence of $B\Lambda$ will provide meaningful input to theoretical calculations of the equation of state for neutron stars. Therefore the ²⁰⁸Pb measurements and other parts of this proposed work, including CSB efforts, are deferred. Completely new proposals would need to be submitted to the PAC in order to address these additional physics topics.

Goal of this workshop

To fullfill PAC43 requrements:

 Stronger *theoretical* connection between iso-spin dependence (eg. ⁴⁰_AK, ⁴⁸_AK) and NS.

Other possibilities of targets? How to deduce NS information from HY experiments.

 PAC43 was not convinced that A dependence measurements give meaningful inputs to NS EoS.
 Do we agree about this? Any other meaning of heavy HY study?

• Do recent progresses about A=4 CSB from MAMI and J-PARC affect our strategy for a few body programs?

Discussion about strategy for future hypernuclear programs at JLab.

The 2nd JLab Hypernuclar Workshop

8:00am - 8:30am	Opening and Highlights of Hypernuclear Study at JLab	Nakamura (Tohoku)
8:30am - 9:00am	AMD Calculations of Medium/Heavy Hypernuclei with the ANN Three-Body Force in the Nijmegen Potential	Isaka (RIKEN)
9:00am - 9:30am	Perspectives of ab Initio Computations of Medium/Heavy Hypernuclei	Pederiva (Trento)
9:30am - 10:00am	AFDMC Calculations on Medium-Heavy Hypernuclei	Lonardoni (ANL)
10:00am - 10:20am	Coffee Break	
10:20am - 10:50am	Proposal of Spectroscopic Study of Medium Heavy Hypernuclei	Nakamura (Tohoku)
10:50am - 11:20am	Significance of Studies on Light Hypernuclei	Hiyama (RIKEN)
11:20am - 11:50am	Determining the Unknown Λ -n Interaction Through Study of Λ nn Resonance	Gibson (LANL)
11:50am - 12:20pm	Recent Achievements at J-PARC and Future Prospects of Hypernuclear Study	Tamura (Tohoku)
12:20pm - 2:00pm	Lunch Break - on your own	
2:00pm - 2:30pm	Significance of Detailed Structure Study of Hypernuclei	Motoba (Osaka E-C Univ.)
2:30pm - 3:00pm	Extracting Hypernuclear Properties from the (e,e'K) Cross Section	Benhar (INFN Rome)
3:00pm - 3:30pm	Spectroscopic Study of Light Hypernuclei	Markowitz (FIU)
3:30pm - 4:00pm	Consideration of Experiments on AN Interactions and Light Hypernuclei at JLab	Tang (Hampton/JLab)
4:00pm - 4:30pm	Spectroscopic Study of Heavy Hypernuclei	Garibaldi (INFN Rome) and Silviu Covrig Dusa (JLab)
4:30pm - 4:50pm	Coffee Break	
4:50pm – 6:00pm	Open Discussions	

Highlights of hypernuclear study at JLab

Quantum Many-body System Bound by the Strong Int.

Baryon

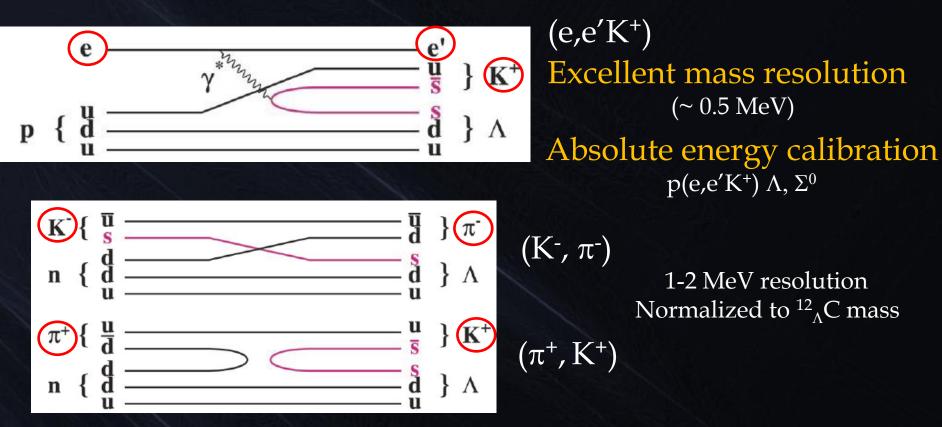
(Hyper) Nucleus

Neutron Star

10^{-15} m

 $10^4 \mathrm{m}$

Obs. 2 M

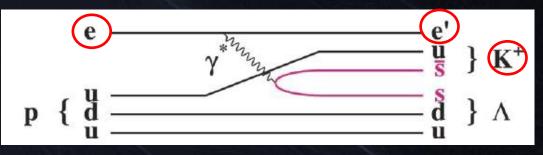

Hyperon Puzzle

Spectroscopy of Hypernuclei

NN scat.

Baryon Interaction

(e,e'K⁺) vs. others


γ-ray spectroscopy

decay π

Super high resolution (a few keV) But **ONLY level spacing** measurable

Excellent mass resolution (~0.1 MeV) But **ONLY mass of ground state of light HY**

(e,e'K⁺) vs. others

(e,e'K⁺) Excellent mass resolution (~ 0.5 MeV) Absolute energy calibration $p(e,e'K^+) \Lambda, \Sigma^0$

Currently only possible at JLab

 $E_e > 1.5$ GeV high quality e beam $\Delta p/p \sim 10^{-4}$, >1GeV/c spectrometers

Spectroscopic techniques of Hypernuclei

Method	Resolution	Absolute E	Yield	comments
(e,e'K+)	0.5 MeV	Ø	× 100nb/sr	$p \to \Lambda$
(π+,Κ+)	1.5 – 2 MeV	\circ (norm ${}^{12}_{\Lambda}$ C)	∘ 10µb/sr	$n ightarrow \Lambda$
(K ⁻ , π ⁻)	~2 MeV	\circ (norm ${}^{12}_{\Lambda}$ C)	◎ 10mb/sr	$n \to \Lambda$
γ-ray	0.003 MeV	×	-	-
Decay π	0.1 MeV	○ (only g.s.)	-	Fragments

All techniques are complementary.

Characteristics of (e,e'K⁺) HY study > Electromagnetic production Convert Proton to Lambda : Mirror to well studied HY by (π, K) , (K, π) **Absolute energy calibration** with Λ and Σ^0 masses

> High quality primary beam
 High energy resolution (< 1MeV)
 Thin enriched target

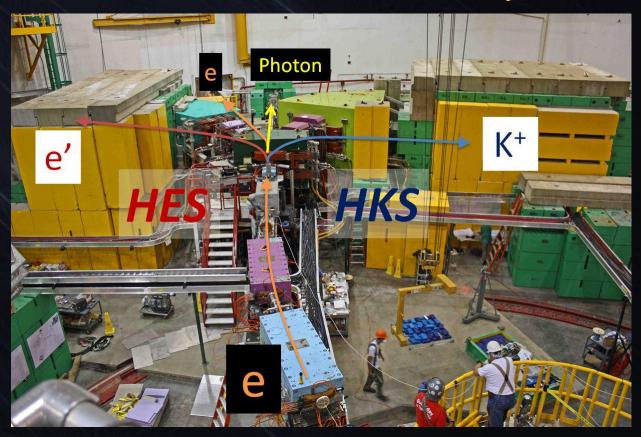
Hypernuclear experiments at JLab

E89-009 (2000) : Existing spectrometers, SOS + Enge Proof of Principle

E01-011 (2005) : Construction of HKS, Tilt Method Λ , Σ^0 , 7_{Λ} He, ${}^{12}_{\Lambda}$ B, ${}^{28}_{\Lambda}$ Al Light Hypernuclei

E94-107 (2004-5) Two HRSs + SC Septum $\Lambda, \Sigma^{0}, {}^{9}_{\Lambda}Li, {}^{12}_{\Lambda}B, {}^{16}_{\Lambda}N$ Light Hypernuclei

E05-115 (2009) : HKS+HES, new Chicane beamline, Splitter Λ , Σ^0 , $^7_\Lambda$ He , $^{12}_\Lambda$ B, $^{52}_\Lambda$ V Light to medium-heavy Hypernuclei

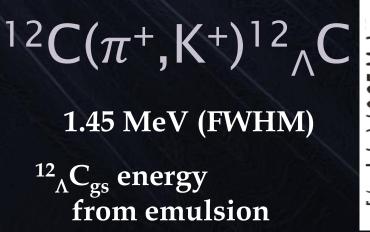

Publications from JLab HY study

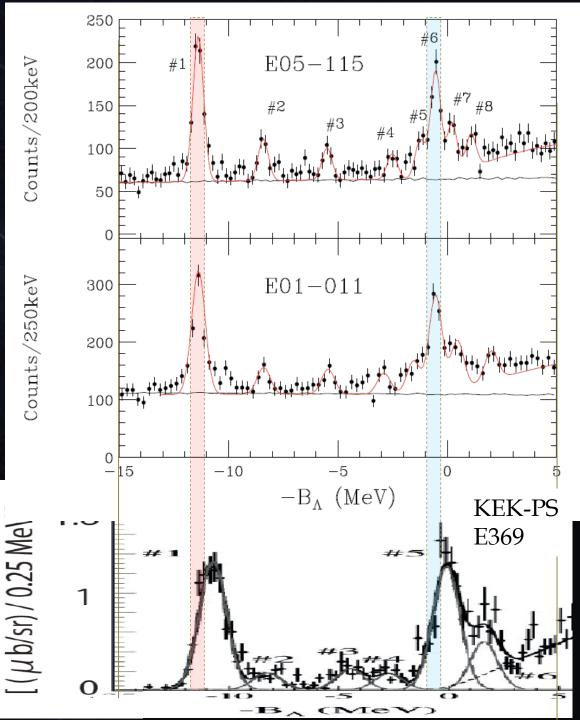
T. Miyoshi et al. PRL 90, 232502 (2003)
L.Yuan et al. PRC 73, 044607 (2006)
M.Iodice et al. PRL 99, 052501 (2007)
F.Cussano et al. PRL 103, 202501 (2009)
S.N.Nakamura et al. PRL 110, 012502 (2013)
L.Tang et al. PRC 90, 034320 (2014)
G.M.Urciuoli et al. PRC 91, 034308 (2014)
T.Gogami et al. PRC 93, 034314 (2016)

PhD : T.Miyoshi, L.Yuan, M.Sarsour, X.Zhu, Y.Okayasu, A.Matsumura, T.Seva, V.M.Rodriguez, P.Baturin, Y.Song, X.Qiu, D.Kawama, C.Chen, T.Gogami, F.Cussano

Hypernuclear study with the (e,e'K+) reaction

Initiated and established at JLab

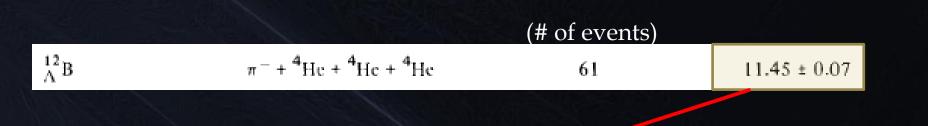



¹²C(e,e'K⁺)¹²_AB

0.5 MeV (FWHM)

Absolute MM calibration

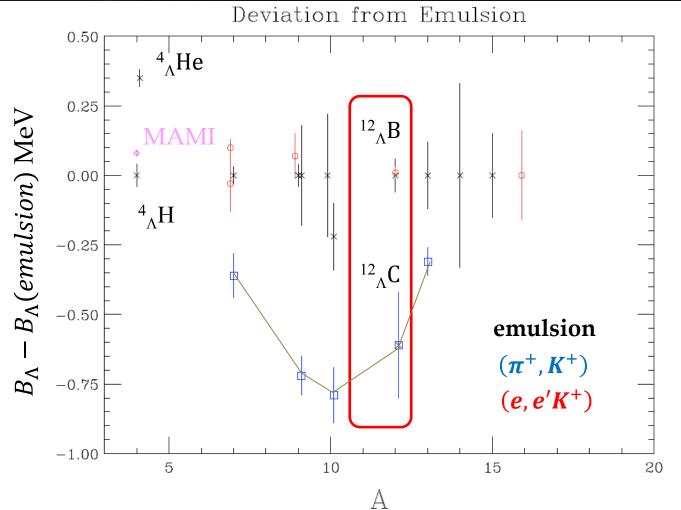
0.7 MeV (FWHM)

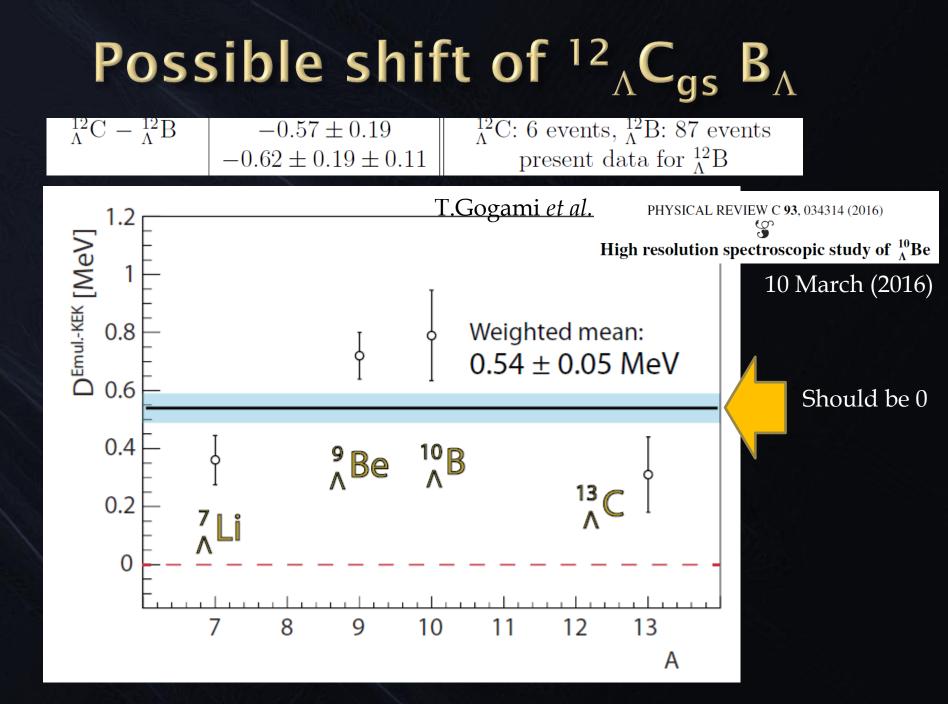


^{12}AB emulsion data

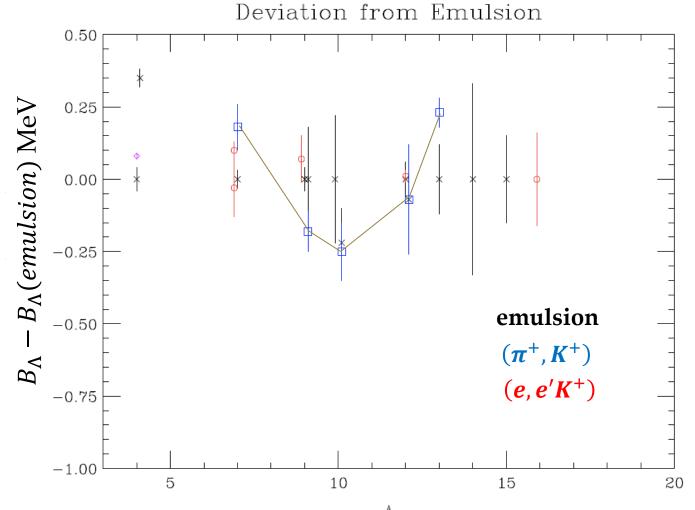
Nuclear Physics B52 (1973) 1-30.

A NEW DETERMINATION OF THE BINDING-ENERGY VALUES OF THE LIGHT HYPERNUCLEI ($A \le 15$)




B_{Λ} (¹²_{Λ}Bg.s.) = 11.45 +-0.07 MeV Emulsion Result (M.Juric et al.)

 B_{Λ} (¹² _{Λ}Bg.s.) = 11.38 +- 0.02 (stat) MeV (JLab E05-115)

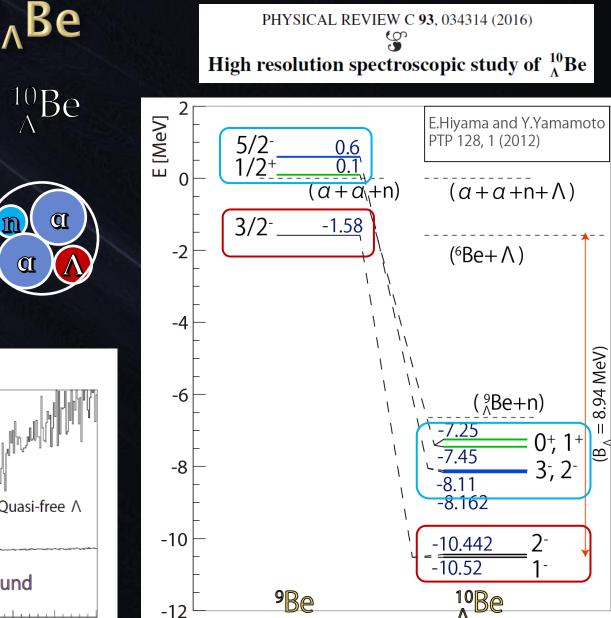

Totally independent measurement

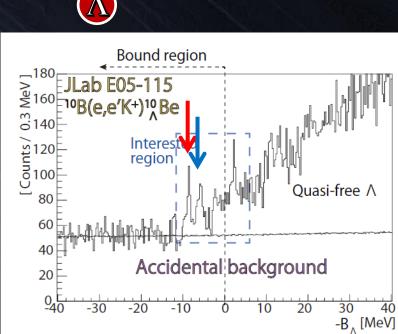
Remove apparent A dependence

Shift ${}^{12}{}_{\Lambda}C_{gs} B_{\Lambda} by 0.54 MeV$

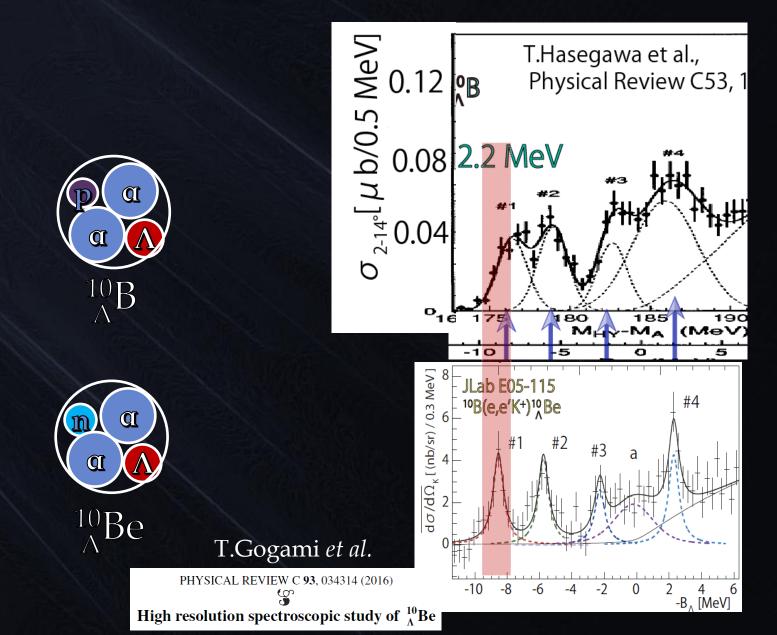
А

¹⁰B(e,e'K⁺)¹⁰[^]Be


⁹Be


0

Q


M

T.Gogami et al.

${}^{10}_{\Lambda}B$ and ${}^{10}_{\Lambda}Be$

Hall A E94-107, Excellent S/N spectra

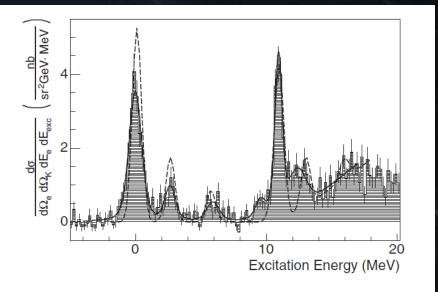


FIG. 3. The ${}^{12}_{\Lambda}B$ excitation-energy curve) and a theoretical prediction imposed on the data. See text for de

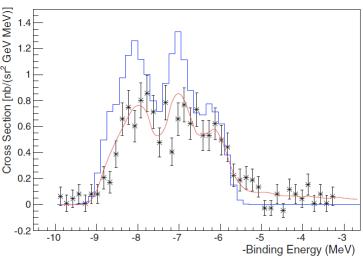


FIG. 3. (Color online) The ${}^{9}_{\Lambda}$ Li differential cross section as a function of the binding energy. Experimental points vs Monte Carlo results (red curve) and vs Monte Carlo results with radiative effects turned off (blue histogram).

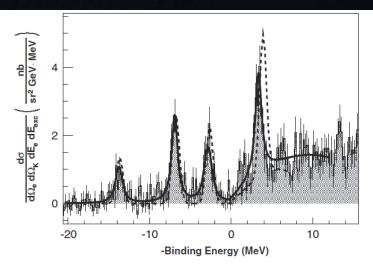
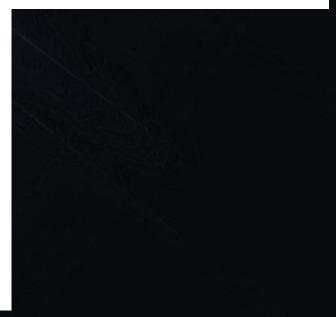



FIG. 3. The $^{16}_{\Lambda}$ N binding-energy spectrum. The best fit using Voigt functions (solid curve) and a theoretical prediction (dashed

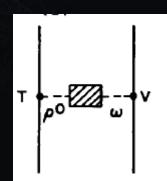
imposed on the data. See text for details.

Charge Symmetry Breaking of the AN interaction

Charge Symmetry Breaking for NN system

EM Corrections

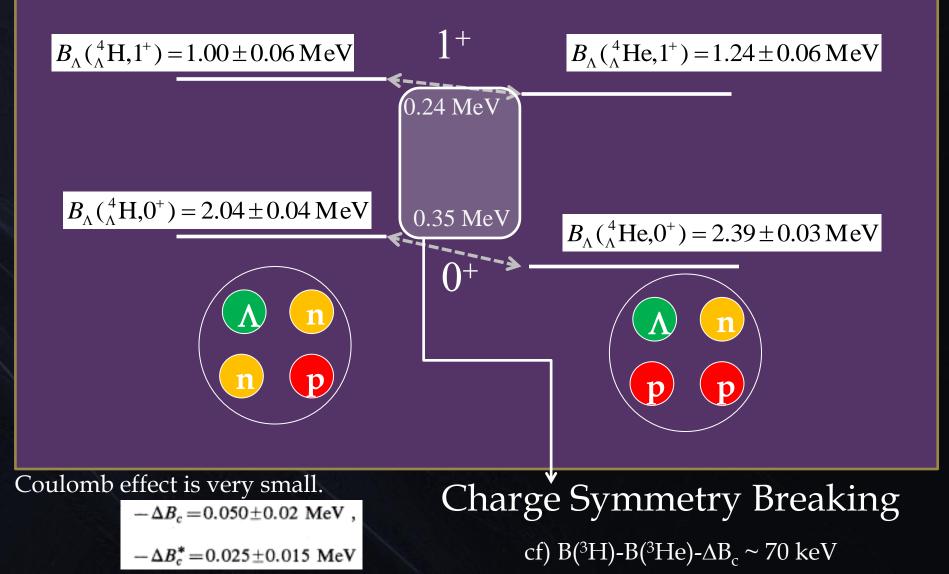
 $(a_{pp}) = -7.8 \text{ fm}$

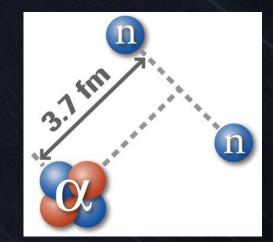

 $[a_{pp}]_{SI} = -17.3 \pm 0.4 \text{ fm}$

 $a_{nn} = -18.8 \pm 0.3 \text{ fm}$

 $B(^{3}H) - B(^{3}He) = 764 \text{ keV}$ $B(^{3}H) - B(^{3}He)]_{SI} = 71 \text{ keV}$

 $\Delta m = m(d) - m(u) \cong 3 MeV$


 $\rho^0 - \omega$ mixing

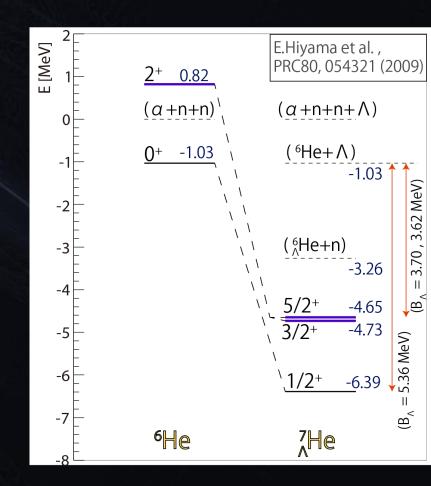

 $P_{CS}|u\rangle = |d\rangle$ $P_{CS}|d\rangle = -|u\rangle$

A=4 system CSB AN potential



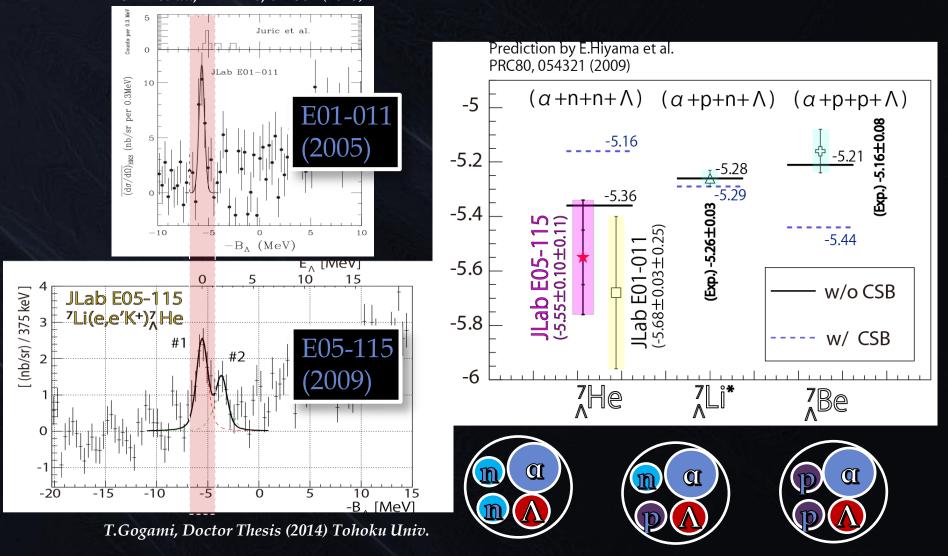
$^{7}_{\Lambda}$ He = 6 He + Λ

⁶He : 2n halo


E.Hiyama et al. PRC 80, 054321 (2009)

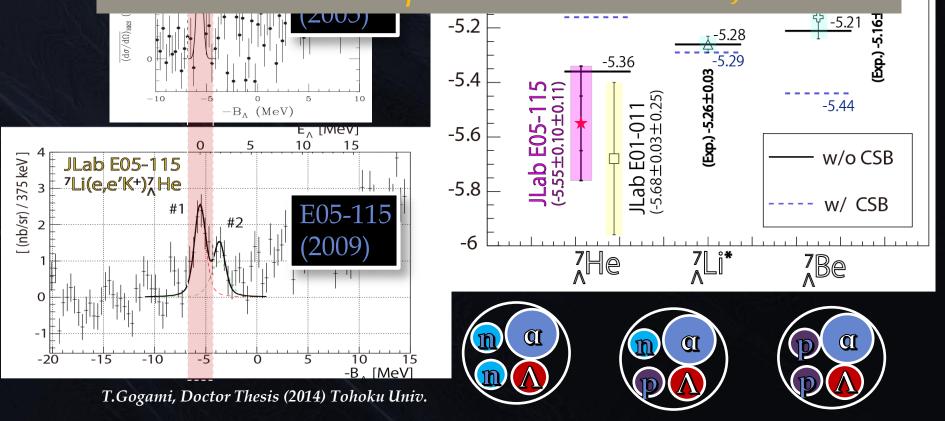
⁷_AHe spectrum

Juric et al., Nucl. Phys. A484 (1988) 520



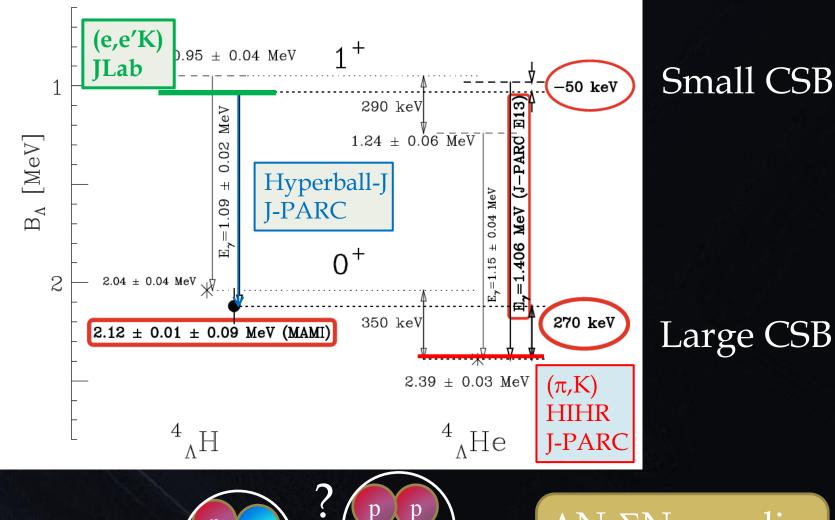
No B_{Λ} was obtained.

CSB interaction test in A=7 iso-triplet comparison



CSB interaction test in A=7

CSB potential is not necessary for A=7 Assumed CSB potential is too naïve or problem for A=4 data


 \rightarrow New exps. at MAMI and J-PARC

CSB for A=4 hypernuclei : *Future* Measurements

n

n

n

Summary

Spectroscopy of Lambda hypernuclei with electron beams

 $\begin{array}{c} \swarrow \\ & \begin{array}{c} \text{Established at JLab} \\ & \begin{array}{c} P_{\Lambda}\text{Li} & {}^{10}_{\Lambda}\text{Be} & {}^{12}_{\Lambda}\text{B} & {}^{16}_{\Lambda}\text{N} \end{array} \end{array} \begin{array}{c} \rightleftharpoons \\ & \begin{array}{c} P_{\Lambda}\text{Li} & {}^{10}_{\Lambda}\text{Be} & {}^{12}_{\Lambda}\text{B} & {}^{16}_{\Lambda}\text{N} \end{array} \end{array} \begin{array}{c} \rightleftharpoons \\ & \begin{array}{c} Abs. & B_{\Lambda} \text{ determination sugg.} \end{array} \end{array}$ 0.54MeV shift for all (π, K)

Observation of 7 He excited state : New possibility to bridge physics of hypernuclei and unstable nuclei. Determination of $B_{\Lambda}(^{7}_{\Lambda}He_{gs})$ triggered intensive study for A=4 iso-doublet hypernuclei (${}^{4}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ He) $\square \longrightarrow Mainz : Decay \pi spectroscopy$ $J-PARC E13 : \gamma-ray spectroscopy$

Hypernuclear studies recently made great progresses at other facilities. JLab should lead spectroscopy of Lambda HY in timely manner.