AMD Calculations of Medium-Heavy Hypernuclei with the ΛNN Three-Body Force in the Nijmegen Potential

Masahiro ISAKA (RIKEN)

Collaborators: Y. Yamamoto, Th.A. Rijken

Grand challenges of hypernuclear physics

Interaction: To understand baryon-baryon interaction

- 2 body interaction between baryons (nucleon, hyperon)
 - hyperon-nucleon (YN)
 - hyperon-hyperon (YY)
 - Three-body force

Structure: To understand many-body system of nucleons and hyperon

- Addition of hyperon(s) shows us new features of nuclear structure
 - Ex.) Structure change by hyperon(s)
 - No Pauli exclusion between N and Y
 - YN interaction is different from NN

Today's talk: three-body force effects based on structure calculations

Studies of Λ hypernuclei

Λ hypernuclei observed so far

\bullet Concentrated in light Λ hypernuclei with A \lesssim 10

Studies of Λ hypernuclei: What achieved?

Λ hypernuclei observed so far

- ullet Concentrated in light Λ hypernuclei with A
 - Accurate solution of few-body problems
 - G-matrix calculation for ΛN interactions
 - Increases of experimental information

E. Hiyama, NPA **805** (2008), 190c.
Y. Yamamoto, *et al.*, PTP Suppl. **117** (1994),361.
O. Hashimoto and H. Tamura, PPNP **57** (2006), 564.

(a) $K^{-}_{stop}^{+7}Li$ (b) $K^{-}_{stop}^{+7}Li$ ernuclei with $A_{AH}^{-1}10$ $U_{AH}^{-1}U_{$

\rightarrow Knowledge of Λ N two-body interaction

Developments of effective interactions

In this study,

G-matrix interaction derived from Nijmegen potential (YNG)

- Nijmegen potential: a meson exchange model
- G-matrix calculation takes into account medium effects

YNG interaction has density (Fermi momentum k_F) dependence coming from ΛN - ΣN coupling effects

"Hyperon puzzle" in neutron star physic

How do we resolve?

Baryon-baryon three-body force

If strong repulsions exist not only NNN channel but YNN, YYN, and YYY, EOS of neutron star matter becomes stiff

S. Nishizaki, et al., Prog. Theor. Phys. 105, 607 (2001); 108, 703 (2002).

Our aim: to reveal effects of Λ NN 3-body force in Λ hypernuclear data

Density dependent three-body force based on YNG ΛN interaction

Toward heavier Λ hypernuclei

• Future experiments: heavier hypernuclei will be produced!

Various structures in the ground states

Structure of core nuclei could affect Λ binding energy ${\rm B}_{\Lambda}$ "clustering/deformations", "density dependence of interactions"

M. Isaka, et al., PRC89, 024310(2014)

${}^{41}_{\Lambda}$ Ca: How does structure affect B_{Λ} values?

Why? --- Overlap between Λ and core nucleus is essential!

Relation between ${\rm B}_{\Lambda}$ and nuclear structure

- B_{Λ} values are related to nuclear structure in two ways.
- Overlap between Λ and nucleons

Increasing deformation reduces the overlap between Λ and nucleons

 \rightarrow B_A becomes smaller in deformed states

However, situation is different in dilute (cluster) states ...

M. Isaka, M. Kimura, PRC92, 044326(2015)

 ${}^{10}{}_{\Lambda}$ Be: How does structure affect B_{Λ} values?

Smaller $k_{\rm F}$ enlarges B_{Λ} in dilute cluster states

M. Isaka, M. Kimura, PRC**92**, 044326(2015)

 ${}^{10}{}_{\Lambda}$ Be: How does structure affect B_{Λ} values?

Relation between ${\rm B}_{\Lambda}$ and nuclear structure

• B_{Λ} values are related to nuclear structure in two ways.

\bullet Overlap between Λ and nucleons

Increasing deformation reduces the overlap between Λ and nucleons

- \longrightarrow B_A becomes smaller in deformed states $\frac{1}{2}$
- Density dependence of ΛN effective interaction.

Large change of the overlap affects ${\rm B}_{\Lambda}$ through the density dependence

 \longrightarrow B_A becomes larger in light hypernuclei[®]

These effects can appear in systematics of B_{Λ}

${\rm B}_{\Lambda}$ as a function of mass number A

Observed data of Λ binding energy B_{Λ} (9 \leq A \leq 51)

Do core nuclei affect the mass dependence of B_{Λ} ?

"clustering/deformations", "density dependence of interactions"

Bertini *et al.*, NPA**83**,306(1979), Davis, Juric , *et al.*, NPB**52**(1973), Davis, NPA**547**,369(1992);NPA**754**,3c(2005), Ajimura *et. al.*, NPA**639**(1998)93c, Pile *et al.*, PRL**66**,2585(1991), Hotchi *et al.*, PRC**64**, 044302(2001), Hashimoto and Tamura, PPNP**57**,564(2006), Tang, *et. al.*, PRC**90**,034320(2014).

Purpose of this study

Purpose

 \bullet To reveal the many-body force effects on ${\rm B}_{\Lambda}$ on the basis of the baryon-baryon interaction model ESC

Individual problems

1) $B^{}_{\Lambda}$ and Density dependence of the interaction

Is it possible to describe mass dependence of observed $B_\Lambda ?$ What is essential to reproduce it?

2) Three-body force effects

Do Λ NN three-body effects appear in B_{Λ}? How large?

We extended the AMD to hypernuclei

HyperAMD (Antisymmetrized Molecular Dynamics for hypernuclei)

Hamiltonian

$$\hat{H} = \hat{T}_{N} + \hat{V}_{NN} + \hat{T}_{\Lambda} + \hat{V}_{\Lambda N}$$

NN : Gogny D1S Λ N : YNG interactions (ESC08c, ESC08c + Λ NN)

Wave function

- Nucleon part: Slater determinant Spatial part of single particle w.f. is described as Gaussian packet
- Single particle w.f. of Λ hyperon: Superposition of Gaussian packets
- Total w.f.:

$$\psi(\vec{r}) = \sum_{m} c_{m} \varphi_{m}(r_{\Lambda}) \otimes \frac{1}{\sqrt{A!}} \det[\varphi_{i}(\vec{r}_{j})]$$

$$\varphi_{N}(\vec{r}) = \frac{1}{\sqrt{A!}} \det\left[\varphi_{i}(\vec{r}_{j})\right]$$

$$\varphi_{i}(r) \propto \exp\left[-\sum_{\sigma=x,y,z} v_{\sigma}(r-Z_{i})_{\sigma}^{2}\right] \chi_{i} \eta_{i} \quad \chi_{i} = \alpha_{i} \chi_{\uparrow} + \beta_{i} \chi_{\downarrow}$$

$$\varphi_{\Lambda}(r) = \sum_{\sigma=x,y,z} c_{m} \varphi_{m}(r)$$

$$\varphi_{m}(r) \propto \exp\left[-\sum_{\sigma=x,y,z} \mu v_{\sigma}(r-z_{m})_{\sigma}^{2}\right] \chi_{m} \quad \chi_{m} = a_{m} \chi_{\uparrow} + b_{m} \chi_{\downarrow}$$

Theoretical framework: HyperAMD

Procedure of the calculation

Variational Calculation $\frac{dX_i}{dt} = \frac{\kappa}{\hbar} \frac{\partial H^{\pm}}{\partial X_i^*}$ $\kappa < 0$ • Imaginary time development method $\frac{dX_i}{dt} = \frac{\kappa}{\hbar} \frac{\partial H^{\pm}}{\partial X_i^*}$ $\kappa < 0$ • Variational parameters: $X_i = Z_i, z_i, \alpha_i, \beta_i, a_i, b_i, v_i, c_i$

Actual calculation of HyperAMD

Energy variation with constraint on nuclear quadrupole deformation

Ex.) ⁸Be

Actual calculation of HyperAMD

Energy variation with constraint on nuclear quadrupole deformation

Ex.) ⁸Be

Actual calculation of HyperAMD

Energy variation with constraint on nuclear quadrupole deformation

For hypernuclei

Theoretical framework: HyperAMD

Procedure of the calculation

• Imaginary time development method $\frac{dX_i}{dt} = \frac{\kappa}{\hbar} \frac{\partial H^{\pm}}{\partial X_i^*}$

• Variational parameters: $X_i = Z_i, z_i, \alpha_i, \beta_i, a_i, b_i, v_i, c_i$

Angular Momentum Projection

$$\left|\Phi_{K}^{s};JM\right\rangle = \int d\Omega D_{MK}^{J^{*}}(\Omega) R(\Omega) \Phi^{s+}$$

Generator Coordinate Method(GCM)

•Superposition of the w.f. with different configuration •Diagonalization of $H^{J\pm}_{sK,s'K'}$ and $N^{J\pm}_{sK,s'K'}$

$$H_{sK,s'K'}^{J\pm} = \left\langle \Phi_{K}^{s}; J^{\pm}M \left| \hat{H} \right| \Phi_{K'}^{s'}; J^{\pm}M \right\rangle$$
$$\left| \Psi^{J\pm M} \right\rangle = \sum_{sK} g_{sK} \left| \Phi_{K}^{s}; J^{\pm}M \right\rangle$$
$$\left| \Psi^{J\pm M} \right\rangle = \sum_{sK} g_{sK} \left| \Phi_{K}^{s}; J^{\pm}M \right\rangle$$

 $\kappa < 0$

• G-matrix interaction

Additional (Λ NN) 3 body force

ESC08c + MPP + TBA

MPP: repulsion which works at high dens. TBA : phenomenological 3-body attraction

ESC08c
$$V_{\Lambda N}(r; k_F) = \sum_{i=1}^{3} (a_i + b_i k_F + c_i k_F^2) \exp(-r^2/\beta_i^2)$$

MPP + TBA $\Delta V_{\Lambda N}(k_F; r) = (a + bk_F + ck_F^2) \exp(-r^2/0.9^2)$

ESC08c: effective ΛN force including $\Lambda N-\Sigma N$ coupling effects **MPP**: giving $2M_{\odot}$ neutron star mass **TBA**: to reproduce observed spectra of ⁸⁹ $_{\Lambda}$ Y by spherical SHF calculation

Yamamoto, Furumoto, Yasutake and Rijken, PRC88,022801(2013); PRC90,045805(2014).

k_F determined by density

Averaged density approximation(ADA):

$$\langle \rho \rangle = \int dr^3 \rho_N(\mathbf{r}) \rho_\Lambda(\mathbf{r}) \qquad k_F = \left(\frac{3\pi^2 \langle \rho \rangle}{2}\right)^{1/3}$$

$\Lambda {\rm NN}$ three-body force used

PHYSICAL REVIEW C 90, 045805 (2014)

Hyperon mixing and universal many-body repulsion in neutron stars

Y. Yamamoto,¹ T. Furumoto,² N. Yasutake,³ and Th. A. Rijken^{1,4}

¹Nishina Center for Accelerator-Based Science, Institute for Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan

²National Institute of Technology, Ichinoseki College, Ichinoseki, Iwate 021-8511, Japan

³Department of Physics, Chiba Institute of Technology, 2-1-1 Shibazono Narashino, Chiba 275-0023, Japan

⁴IMAPP, University of Nijmegen, Nijmegen, The Netherlands

(Received 9 June 2014; revised manuscript received 1 September 2014; published 30 October 2014)

MPP + TBA

MPP: "universal" repulsion for 3 baryons
For NNN sector: MPP + TBA is determined by ¹⁶O + ¹⁶O elastic scattering data at E/A = 70 MeV

For hyperon sector: MPP is the same as NNN, TBA is determined by ${}^{89}_{\Lambda}$ Y data

TABLE III. Energy spectra (in MeV) of ${}^{89}_{\Lambda}$ Y calculated with MPa and ESC in comparison with experimental values. Averaged values of k_F (in fm⁻¹) are in parentheses.

	S	р	d	f
MPa	-23.8	-17.4	-10.6	-3.8
	(1.27)	(1.23)	(1.16)	(1.08)
ESC	-23.7	-16.8	-9.8	-3.0
	(1.28)	(1.23)	(1.17)	(1.09)
Expt.	-23.7	-17.6	-10.9	-3.7

MPP gives stiff EOS enough to give $2M_{\odot}$

Results and Discussions

1) ${\rm B}_{\Lambda}$ and Density dependence of the interaction

Is it possible to describe mass dependence of observed B_{Λ} ? What is essential to reproduce it?

Core structure, in particular core deformation

2) Three-body force effects

Do Λ NN three-body effects appear in B_{Λ}? How large?

Comparison of the results: "ESC08c only" and "ESC08c + Λ NN force"

B_{Λ} as a function of mass number A

HyperAMD calculation nicely reproduces B_{Λ} in wide mass regions

What is essential to reproduce B_{Λ} ?

"Description of the core structure"

What is essential to reproduce B_{Λ}

Ex. ${}^{9}_{\Lambda}Be$ "Full calc." vs. "Spherical calc."

What is essential to reproduce B_{Λ}

B_Λ in "Spherical calc." are shallower than those in "Full calc." with A < 16
 Criginated in density dependence of interaction

What is essential to reproduce B_{Λ}

"Description of the core structure"

Results and Discussions

1) ${\rm B}_{\Lambda}$ and Density dependence of the interaction

Is it possible to describe mass dependence of observed B_{Λ} ? What is essential to reproduce it?

Core structure, in particular core deformation

2) Three-body force effects

Do Λ NN three-body effects appear in B_{Λ}? How large?

Comparison of the results: "ESC08c only" and "ESC08c + Λ NN force"

Comparison with the results with ESC08c only

• Effects of many-body force

ESC: ESC08c only

MPa: ESC08c + MPP + TBA

$\Lambda {\rm NN}$ three-body effects

Over-binding with ESC08c only

				-3	1	-5		
[MeV]	ESC	MPa	Exp.	-	(a) °	(b)	$^{9}_{\Lambda}$ Be $\rightarrow 0$	-
$^{13}_{\Lambda}\mathrm{C}$	-11.5	-11.7	-11.69 ± 0.19	-10-	8.0		$^{\Lambda}B$ $^{\Lambda}Li$	-
$^{16}_{\Lambda}{ m O}$	-13.3	-13.0	-12.96 ± 0.05		A SS	<u>≥</u> -10	$^{11}_{\Lambda}B$	_
$^{28}_{\Lambda}{ m Si}$	-17.7	-16.6	-17.1 ± 0.2	[] [] [] [] [] [] [] [] [] [] [] [] [] [0	° ["]	^{13}C)
$^{40}_{\Lambda}{ m K}$	-21.5	-19.4	_	م -15-			¹⁵ / ₁ N *	
$^{48}_{\Lambda}{ m K}$	-22.6	-20.2	—		• Exp.	$^{28}_{\Lambda}$ Si $^{\circ}_{32}$ G $^{-15}_{0}$	10 A Mass number A	20
				-20	— MPa	$\frac{1}{\Lambda}S$ $\frac{40}{\Lambda}Ca$	$^{51}_{\Lambda}$ V	-
					1	20 Mass number A 40	60	

• Additional dens. dep. of Λ NN 3-body force makes B_{Λ} different • Systematic data of B_{Λ} will provide a new insight to many-body force

Current status of observed B_{Λ}

Observations are not enough with A > 16

Systematic and accurate data of observed B_{Λ} are desired

Bertini *et al.*, NPA**83**,306(1979), Davis, Juric , *et al.*, NPB**52**(1973), Davis, NPA**547**,369(1992);NPA**754**,3c(2005), Ajimura *et. al.*, NPA**639**(1998)93c, Pile *et al.*, PRL**66**,2585(1991), Hotchi *et al.*, PRC**64**, 044302(2001), Hashimoto and Tamura, PPNP**57**,564(2006), Tang, *et. al.*, PRC**90**,034320(2014).

Summary

Summary

• HyperAMD + GCM was applied with ESC08c + MPP + TBA interaction

Observed B_{Λ} are successfully reproduced in wide mass regions

- Structure of the core nuclei
 - Spherical shape: deviate from observed ${\rm B}_{\Lambda}$
 - Description of core deformation is essential

----> Sophisticated treatment of hypernuclei is indispensable

Many-body (MPP + TBA) force effects

– Λ NN(MPP + TBA) force brings additional density dependence

 \longrightarrow Systematic observations of B_{Λ} is necessary to confirm/give constraints

Future plan

- To reveal reasons for deviation of B_{Λ} with A < 9 (e.g. ${}^{9}_{\Lambda}$ Be)
- Further study on model dependence of three-body force effects