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Outline:

e Quantum Monte Carlo: what can be computed by it?
What is the state of the art”? What is its relevance”

o A few words on our approach to the hyperon-nucleon
potential, and some (exciting) perspectives for the
future.



The non relativistic
many-body problem

Many problems of interest in physics can be addressed by
solving a non-relativistic quantum problem for N interacting
particles:

H|¥) = E|¥)
where |W) is the N particle state, and
N ﬁZ
Y = L +V(1,2,8,..,N
= zmz ( 7 = ) ) )

The potential can be as simple as the Coulomb potential, or as
complicated as, for instance, the Argonne AV18 + UIX or some

EFT nucleon-nucleon force (local or non local).
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A general solution

There is an interesting, general way of solving the many-body
Schroedinger problem, at least for the ground state. Let us
consider the following operator, that we call “propagator”(h=1):

6—(H—Eo)7'

where Eq Is the ground state eigenvalue. If we apply it to an
arbitrary state |¥) we obtain:

e—(I:I—Eo)'rl\I,> _ Z cne_(En_Eo)T‘\Ifn>

n=0
where:
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A general solution

In the limit of large 7T it is easily seen that:

lim e~ (H=Eo)7 ) = ¢, | W)

T=700

provided that the initial state is not orthogonal to the ground state.

NB: This is an example within the more general class of “power methods”.

All this is very general: no mention is made either of the
details of H or of the representation of the states.

Projection Monte Carlo algorithms are based on a stochastic
implementation of this “imaginary time propagation”. Different
flavours correspond to the choice of a specific representation of the

propagator and/or of the specific Hilbert space used.
S



Projection Monte Carlo

The stochastic implementation of the imaginary time propagator is
made by sampling a sequence of states in some Hilbert space.
Fach state is sampled starting from the previous one with a
probability given by the propagator.

For instance, if the potential depends on the coordinates of the
particles only, the formulation is relatively simple. First, we
approximate our state with an expansion on a finite set of points in

space: M.,
W) ~ Z(RJW)\RZ) Particle coordinates
i=1 / \

|R;) =0(R — R;) R={ry..."n}
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AFDMC

Stefano Fantoni & Kevin Schmidt, 1999

The computational cost can be reduced in a Monte Carlo framework
by introducing a way of sampling over the space of states, rather than
summing explicitly over the full set.

For simplicity let us consider only one of the terms in the interaction.
We start by observing that: Linear combination

of spin operators for
different part|c|es

» 2
2 :v(rij)ai 2 : Oisadisa,j;805:8 = § :>‘ On
1<J za,y,ﬂ I

Then, we can linearize the operatorial dependence in the propagator
by means of an integral transform:

aUX|I|ary fields— Auxiliary Field Diffusion Monte Carlo
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K. E. Schmidt and S. Fantoni, Phys. Lett. B 446, 99 (1999).
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Phys. Rev. Lett. 99, 022507 (2007) ,




AFDMC

AFDMC scaling @ Mira (ANL)

The crucial advantage of AFDMC is that . o coaons. 25 s 2 s i i o, =016 7
the scaling of the required | [ P o]
computer resources is no longer 02~
exponential: the cost scales as A3(the

scaling required by the computation of the

determinants in the antisymmetric wave

v—|</-\ 0.15 I

Great for

functions) == LARGER SYSTEMS | pavallel

ACCESSIBLE! compuiing: -
00 1024 2048 3072 4096 5120 6144 7168 8192

Progress

 The HS transformation can be used ONLY FOR THE PROPAGATOR
Accurate wave functions require an operatorial dependence!
“Cluster expansion” introduced and working!(Gandolfi, Lovato,
Schmidt)

 Some problems in treating nuclear spin-orbit have been addressed.

 [hree-body forces are now implemented in a quasi-perturbative way,
but results are very promising.



AFDMC

This is a crucial question if we want to address the guestions relevant for a
possible hyper nuclear program at J-Lab.

e Currently we can efficiently do calculations up to A=90/91. Not all most recent
improvements are implemented yet (e.g. CVMC-like variational functions). In
principle the use of more realistic potentials (up to AV8’) in the nucleon sector
IS possible, at least for checking purposes.

¢ \\e could in principle push the calculations further. For instance 298Pb is
computable, but with an expected use of computer time (to reach a sufficient
statistics) of order 107 core hours. This means a substantial investment in
computational resources.

e “Cheaper” models (maybe even more useful for astrophysical applications)
might be based on a neutron rich matter, and compared e.g. with Pb results.

A Hyperon

nucleus (e.qg. 90/r)

neutron sea (e.g. implemented
by means of periodic boundary
conditions)




-OCK space
calculations

The stochastic power method can also be used in Fock space. In this
case the propagator acts on the occupation number of a basis set

used to span the Hilbert space of the solution of a given Hamiltonian.
In particular, given two basis states |m) and |n) the quantity:

(m|Pa-|n) = (m|l — (H — Ey)A7|n)

is interpreted as the probability of the system of switching the
occupation of the state |n) into the occupation of the state |m).

This propagation has in principle the same properties of the
coordinates space version.
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-OCK space
calculations

Unfortunately matrix elements for a many-Fermion systems are not positive definite. It
is possible, however, to introduce an importance sampling using a variational ansatz of
the wave function to circumvent this problem.

First one redefines the Hamiltonian as:

—y(m|H[n) s(m,n) >0
<m\7—[7\n> :{ V<m\H|1r1> ) otherwise

parameter: if > 0, no sign problem, but
biased result. Extrapolation to -1 gives the

/ exact result (or at least a rigorous upper bound)
(n|H,|n) = (n|Hn) +(1+7) )  s(m,n).
m=*n

. . s(m,n)>0
for the diagonal terms, with: Variational

5(m, n) — (I)G(m) <m|H‘n>/(I)G(n) / function (explicit)

for the off-diagonal terms and
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-OCK space
calculations

We now define a new propagator:

(m|Pyn) =1 - A7®g(m)(m|[H, — Ern)/®c(n) .

The propagator P, by construction, is free from the sign problem for y>0, and
filters out the wave function @ (n)W. (n), where ¥ (n) is the ground state wave
function of H

As previously mentioned, the choice of the representation
of the Hilbert space is arbitrary!

B FINITE SYSTEMS > H.O. basis, Gaussians, HH..
B INFINITE SYSTEMS > Plane waves, BCS,...



Configuration
INnteraction Monte Carlo

One of the main advantages of using an algorithm in

“ Fock space is the possibility of using non-local

201 Hamiltonians, such as the chiral EFT based
< 16} Hamiltonians.
ém_ Here on the left, the computation of the equation of
z state of pure neutron matter with the 2-body

N2LO(opt) interaction of Machleidt et al. and using
as importance functions the result of a CC
calculation at the SD level.
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—  PT2 NNLO
— HF NNLO
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Alessandro Roggero, Abhishek Mukherjee, Francesco Pederiva
PRL, in press (2014)
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On the right the energy of a neutron polaron, always
computed with the same Hamiltonian and CIMC.

Alessandro Roggero, Abhishek Mukherjee, Francesco Pederiva
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Open questions...

The fine tuning of the hyperon-nucleon interaction is essential to
understand the behaviour of matter in extreme conditions.

Example: Neutron stars

negwy
Hadrons AL,

Lo

Temperature T [MeV]

c,

Nuclei

Far away from any possible
perturbative treatment..

B HNM

Equation of state

stiff

KA = Hn

12 km

Neutron star structure

npep

R~ 12 km
M ~1.4 M,

AYLEn. K.q 7

Internal composition still
largely unknown




Hyperon Puzzle

A few NS with a large mass were observed by using Shapiro delay
measurements. The first (2010) was PSRJ1614-2230 pulsar with

M=1.97(4)Mo.

(P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts and J.W.T. Hessels. A two-solar-mass
neutron star measured using Shapiro delay measurements, Nature 467, 1081 (2010).

Ortital phane ums)

INn a non relativistic framework

(= pure baryonic stars)
hyperons are problematic

Before 2010:
Maximum mass observed: 1.6Mo

Maximum mass predicted without hyperons:
2.30 (still ok in principle)

Maximum mass predicted with hyperons:
1.4-1.6Mo (good!)

After 2010:

Observed mass: 2.0Mo
Maximum mass predicted without hyperons:
2.3Mo (good!)

Maximum mass predicted with hyperons:
1.4-1.6Mo (very bad...)



Many possible description of the YN interaction

NON RELATIVISTIC:
write an Hamiltonian including some potential and try to
solve a many-body Schroedinger equation.

e [he potential energy is not an observable: several different equivalent descriptions
are possible.

e The interaction can be based on some more or less phenomenological scheme (fit
the existing experimental data, rely on some systematic meson exchange model), or
can be inferred from EFT systematic expansions.

e Only accurate many-body calculations can help distinguishing among different
realizations of the potential.

RELATIVISTIC:

write a Lagrangian including relevant tields, and try to solve
the field theoretical problem (usually RMF calculations are
oerformed).




Some hints from LQCD......
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Fig. 10. Left: The central potential in the 'Sy channel of the AN system in 2 4 1 flavor QCD as a
function of 7. Right: The central potential in the 'Sy channel of the XN (I = 3/2) system as a

function of r.
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Fig. 11. Left: The central potential (circle) and the tensor potential (triangle) in the *S; —* Dy
channel of the AN system as a function of . Right: The central potential (circle) and the tensor
potential (triangle) in the *S; —2 D; channel of the X N(I = 3/2) system as a function of 7.

S. Aoki et al.
(HAL-QCD
collaboration)

Hard cores seem

to be unavoidable in

a realistic
description!



Model Hyperon-nucleon interaction

In order to gain some understanding, we need to set up some scheme.

e g et || OUR CHOICE

e NON RELATIVISTIC APPROACH (should be fine if
the central density is not too large)

e YN INTERACTION CHOSEN TO FIT EXISTING
SCATTERING DATA (with a hard-core)

e PHENOMENOLOGICAL YNN THREE-BODY

L FORCES with few parameters to be adjusted to

reproduce light hypernuclei binding energies

R Ap>Ap e ALL THE OTHER RESULTS ARE PREDICTIONS
1968« SechiZom etal, WITH NO OTHER ADJUSTABLE PARAMETERS
o6 - Aadereta | obtained from an accurate solution of the

200 ]| . Haidenbauer etal, - Schroedinger equation.

Nucl. Phys. A 915
(2013) 24-58

6 (mb)

THIS IS ONE OF MANY POSSIBLE WAY TO
| . ATTACK THE PROBLEM.

| \%‘ | | - EMPHASIS IS ON EXPERIMENTALLY

726530 40050000 700 500 00 AVAILABLE INFORMATION.

P, (MeVic)
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Model Hyperon-nucleon interaction

Model interaction (Bodmer, Usmani, Carlson):

from Kaon exchange terms

A. Bodmer, Q. N. Usmani, and J. Carlson, Phys. Rev. C 29, 684 (1984). (not considered explicitly in our
calculations)
R v /
......... T 1
2
g . Vai(r) =vo(r) +vo(r)e(Py — 1) + ZU(,T7T (Mmgr)os - o
- Two-body potential: accurately fitted on p-A scattering data

Q. N. Usmani and A. R. Bodmer, Phys. Rev. C 60, 055215 (1999).

Y 1 o N A N A N
T

Ju I
. : E ................ E /WVWO 27-(- D
P I - n 9 Vass = an | VAij

N A N N A N A N
(v = sV PW 27, PW Parameters to be

VAi T 0271' Aij 0277 OAi . ,
J J ’ determined from

calculations
VR = (WP T2(maras) T2(maray) [1+—aA-<az-+aj>
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to give repulsion \CTi 1 = more repulsmn
2w, P

Non trivial isospin dependence in the
three-body sector?

In hypernuclei it is possible that the ANN interaction is not well constrained, especially
In the isospin triplet channel.

Pauli repulsion

/

NN isospin singlet NN isospin triplet

On can try o do the exercise of re-projecting the interaction in the isospin singlet and triplet
channels and try to explore the dependence of the hypernuclei binding energy on the

relative strength.
Cr=1 gives the original potential, but

must be negative on average we can choose an arbitrary value.

= -2 { X, X0} T 7 — :.PT 0 CTELJ/\PT !

27,5 - o
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Input from experiment

We need to fit the three body interaction against some experimental data.
There are available several measurements of the binding energy of A-

hypernuclel, i.e. nuclel containing a A hyperon. The idea is to compute
such binding energies. We can then compute the

BA — Bhyp — Bnuc

where By, IS the total binding energy of a hypernucleus with A
nucleons and one A , and Buucis the total binding energy of the
corresponding nucleus with A nucleons. This number can be used to
gauge the coefficients in the nucleon-A interaction.



Hypernuclei data

binding energies: scattering data:

nuc : ~ 3340 NN : ~ 4300
A hyp : ~ 41 AN : ~ 52
AA hyp:~5
¥ hyp: ~ (1)

e [he available data are very limited.

e [here are several planned and ongoing
systematic measurements.

e At present no proposals for gathering

more A-nucleon scattering data

e Essentially no information on AA
Interaction

e (Almost) nothing on X or = hypernulcei
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Gravitational waves

The EoS of dense matter is one of the ingredients needed in the solution of
Einstein’s equation when studying the dynamics of neutron star mergers.

How sensitive is the spectrum of GW on the details of the E0S?

There is a region within a few ms away from the actually merging where the
spectrum seems to become rather sensitive on the stiffness, at the post that the GW
spectrum might be used in this case to determine the NS radius with an accuracy of
about 1TKm.

Hanford, Washington Livingston, Louisiana

It such events will be
experimentally observed, a
completely new kind of
constraints will be

orovided. Will we be ready  "|ez=s=se
for that”? '

Warning: temperature, neutrinos...
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These were two BHs. Too bad...



Gravitational waves

PRL 115, 091101 (2015) PHYSICAL REVIEW LETTERS 28 AUGUST 2015

week endin

Modeling the Complete Gravitational Wave Spectrum of Neutron Star Mergers

Sebastiano Bemuzzi,'* Tim Dietrich,” and Alessandro Nagar®
'"TAPIR, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
’DiFeST, University of Parma and INFN Parma, 1-43124 Parma, Italy
Theoretical Physics Institute, University of Jena, 07743 Jena, Germany
*Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette, France
(Received 9 Apnl 2015; revised manuscript received 11 June 2015; published 27 August 2015)

Introduction.—Direct gravitational wave (GW) observa-
tions of binary neutron stars (BNS), late-inspiral merger
and postmerger by ground-based GW interferometric
experiments, can lead to the strongest constraints on the
equation of state (EOS) of matter at supranuclear densities
[1-7]. There are two ways to set such constraints (GW
observations of BNS mergers can also constrain the source
redshift [8,9]): (I) measure the binary phase during the last
minutes of coalescence using matched filtered searches
[1,3-5] and (II) measure the postmerger GW spectrum
frequencies using burst searches [6,7].
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Conclusions

« AFDMC calculations are evolving. Better accuracy, better
performance. This reflects on the work on hypernuclei (see Diego
Lonardoni’s talk).

 Accessible systems: definitely A=90. For heavier systems one can
possibly use alternative approaches.

 Our philosophy in attacking the problem of the hyperon-nucleon
interaction: we do not want to add more information than the
one that the experiments can give us. Having too many
parameters will result in a substantially arbitrary prediction of
the EoS, and consequently adjustable predictions on the
Neutron Star structures.
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SUPPLEMENTAL
MATERIAL



Projection Monte Carlo

We should also write the propagator in coordinates space, so that:
(RI®(r)) = (Rle”H=E)7|R')(R'|(0))

In the limit of “short” 7 (let us call it “At”), the propagator can be

broken up as follows (Trotter-Suzuki formula): W(R. . A7)

/
(R—R')" (V(R)+V(R’)
sl H s ok = —F )AT
(R\e (H EO)AT|R1> Adp  2kBT g 5 0
Kinetic term Potential term (“weight”)
Sample a new point from the R
(Bauggian kernel |R2> .

If the weight ie emall, the

/ @ pointg are canceled.
NANAAE, L ; /
. S RSN .— reate a number of copieg
R
Y proportional to the weight %I Ry)
4)

M = (int)[W(R, R/, A7) -{-2éand (] I 4



Projection Monte Carlo

Once the convergence to the ground state is reached it is possible to
use the sampled configurations to evaluate expectations of
observables of interest in a Monte Carlo way. For example, if we want
to compute the we can use some test function and evaluate
the following ratio:

> HY 7 (Ry)
Zk ‘I’T(Rk)

This is the Monte Carlo estimate of:

[dRYo(R)HUT(R) _ (Yo|H|¥r) _ (¥r|H|¥o) _ B,
J dRYo(R)¥7(R) (Wo|¥r) (U |¥o)
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KNOownN ISsues

 The naive algorithm does not work for any realistic
potential. In general the random walk needs to be
guided by an “importance function”. In a correct
formulation there is no bias on the results.

 The algorithm works (strictly speaking) only for the
“mathematical” ground state of the Hamiltonian, which
is always a symmetric (bosonic) wavefunction. Fermions
live on an “mathematical excited state” of H! = SIGN
PROBLEM. Workarounds exist, but the results are
biased. However, in some cases it is possible to estimate
the bias.

30



VMany-nucleon systems

Nuclear physics experiments teach us that the nucleon-nucleon interaction depends on
the relative spin and isospin state of nucleons. This fact can be formally related to the
fundamental symmetry properties of QCD, and it is necessary in any realistic
interactions that can be used in a many-body calculation

EXAMPLE: One of the most celebrated model nucleon-nucleon (NN) interaction is the so-
called Argonne AVX potential, defined by:

R B Wiringa, V G J Stoks, and R Schiavilla
PRC 51, 38 (1995
V; 'rz] (1995)

Mx

Spin representation (R S’ TlVX —

in term of Pauli matrices

g=1
Spin-orbit
EX: AV‘8\ 1 / __—» Isospin

{1,@: Egj,,flz-j 50 +05) @ LT - 75}

/" Here Sijis the tensor operator N v
T
Sij = 3(Fij - 0i)(Tij - Oij) — 0i - 0
N N
that characterises the “one-pion exchange” part of the interaction.

o J

31




Projection MC many-nucleon
systems

We can apply our (very general) propagator to a state that is now

given by the particle positions (the “R”), and the spin/isospin state of
each nucleon (the “S”).

Problem
In the stochastic evolution, spins are subject to factors like:
(R, S|€_ Yui ’Uao(?‘ij)&’i-a"jATlR’ S/)
- T —3/4|S) if 4,5 in § = O state
9% - T = { 1/4|S)  if z':j in S = 1 state

32



Projection MC many-nucleon

systems

Multicomponent wave functions are needed!
How large is the system space? For a system of A nucleons, Z

protons, the number of states is 2f‘( s )

Pairs

Spin X Isospin

o
.
©o N o D>

15
21
28
36
45

8x2
32 x5
128 x 14
128 x 14
512x 42
512 x 90

g 11
12 12

55
66

2048 x 132
2048 x 132

150 16
40, 40

120
780

32768 x 1430
3.6x10%1 x 6.6x10°

14 14

28
91

128 x 1
8192 x1

Number of states in
many nucleon wave
functions for a few
selected nuclei

Z

Very accurate results, possibility
of using accurate wave
functions for the evaluation of
general estimators (e.g. response
functions

Due to the high computational
cost, application limited so far
to A<712: COMPUTATIONAL
CHALLENGE!
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AFDMC

The operator dependence in the exponent has become linear.

In the Monte Carlo spirit, the integral can be performed by sampling
:B2 .

values of x from the Gaussiane™ 2 . For a given x the action of the

propagator will become:

3A
e—-x\/)\ATOnl Sy = H e—m/AAqugokl S)

k=1

In a space of spinors, each factor corresponds to a rotation induced
by the action of the Pauli matrices

IR, S)

J MR, S)

R,S)
The sum over the states
has been replaced by sampling rotations!
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Configuration
Interaction Monte Carlo

Basis size
055 F ' W {1 -048F ' .
-0.56 } I‘S=0.5 1 ool r = 1.0 a —~
2057 L 1 ool o s
-0.58 } ] 20
’_.-‘. -0.51' - N N l S
: : S
0.39 2.0 o o 3.0 S 5
e =2 031} fg=> . =
040 | 1 oml o
I . 0.3 §
[ .
~ I i 033} Y EEEEREEREE [}
0.41 i | ~ .
-1 -1 -1 -1 -1 -1
2378 342 162 2378 342 162

Alessandro Roggero, Abhishek Mukherjee, and Francesco PederivaPhys. Rev. B 88, 115138 (2013)

A first test of this algorithm was the evaluation of the equation of state of the three-
dimensional homogeneous electron gas, for which very accurate results are already
available. In this case the Hamiltonian is very simple, and includes the contribution
of a uniform cancelling background of positive charge.

As importance function we used the overlaps computed by COUPLED CLUSTERS
at the doubles level (CCD) method.



Response Functions

From QMC

Alessandro Roggero, Francesco Pederiva, and Giuseppina Orlandini, Phys. Rev. B 88, 094302 (2013)

calculations
T e | o) = S0l a(E, )
08__ = ()_8_— x 10 - "I:a[';lacekernel— — ~ ~
= Z 06 1 - = (Wo| Ot (q)8(H — w)O(q)| W)
%06— ° T 1 _
—~ L 304 7‘-. 1
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Sign Problem

One of the major issues in Quantum Monte Carlo calculations
comes from the fact that Fermions live in an excited state (in
mathematical sense) of the Hamiltonian. This means that if we want
to preserve the normalisation of the Fermionic ground state (using
for instanceE(?instead of By the propagation:

o0
_(H_Rp4A B A
e (HETI0) = ) " cne™ P BT ,)
n=0 Antisymmetric
o Symmetric (bosonic) (Termionic) ground state
leads to ground state
. /
' —(H-E§ —(Eo—E A
lim e~ (5007 = coe™ (B0 BT o) + ¢ff [ 7)
T—>00

Always > O (it's a theorem!)

therefore quantities that are symmetric (like the variance of any
operator...) will grow exponentially in imaginary time compared to
the expectation of any antisymmetric function. This is the essence

of the so called the “sign |oro|o|em”:r38



Sign Problem

In order to cope with the sign problem it is useful to introduce some
approximations. In particular, the general idea is to solve a modified
Schroedinger equation with additional boundary conditions.

e For real-valued wave functions, the nodes (zeros) of the solutions
must correspond to the nodes of some trial wavefunctions
 (FIXED NODE APPROXIMATION)
* For complex valued wave functions, we have two options:
A. Constrain the phase of the solution to be equal to the phase of
some trial wave function (FIXED PHASE APPROXIMATION)
B. Constrain the sign of the real part of the wave function (or
some suitable combination) to preserve the sign
(CONSTRAINED PATH APPROXIMATION)
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* Alberto Ambrosetti (MPI-Potsdam)

» Paolo Armani (Trento)

e Stefano Fantoni

* Omar Benhar (Roma I)

° Ma|vin |—| KalOS (LLNL) * Francesco Catalano (Trento)
e Lorenzo Contessi (Trento)
 Kevin E. Schmidt (ASU) + Stefano Gandolfi (LANL)

* Alexey Yu. lllarionov (ETH)
* Diego Lonardoni (ANL)
* Alessandro Lovato (ANL)

| * Abhishek Mukherjee (ECT™)
 Computer time:

NERSC, LLNL,
C|NECA ECT* « Alessandro Roggero (Trento)
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v(r) [MeV]

Effective Interactions

In many cases it is possible to derive effective interactions obtained from the matrix
elements of realistic Hamiltonians, computed using advanced many-body approaches.
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Neutrino mean free
path In neutron matter

The mean free path of non degenerate neutrinos at zero temperature is
obtained from:

% N % / (;lw(;s (1+cos0)S(q,w) + CL(3 — cos0)S(q,w)]

where S'and § are the density (Fermi) and spin (Gamow Teller) response,
respectively

2. I I I I
6 CTD full expression
CTD simplified expression -----
2.4 ~ CTD without collective mode —-—-- i .
NS T Both long and short range correlations
22+ ] .
2 are important.
<
< 2
A Lovato, O. Benhar, S. Gandolfi & C. Losa, PRC 89, 025804 (2014)
1.8 —
1.6 '

5 10 15 20 25 30 35 40
E, [MeV] 42



Perspectives

Inclusion of explicit m and 4 degrees of freedom in many-nucleon
AFDMC calculations

Use of AFDMC calculations in the interpretation of current large m;
LQCD Ca|CU|atIOﬂS V|a T[‘leSS EFT (“Effective Field Theory for Lattice Nuclei”, N.Barnea, L.Contessi, D. Gazit, F.

Pederiva, U. van Kolck, arXiv:1311.4966)

Development of general formulations of DMC in Fock-space (e.g. in
momentum space), to be used with strongly non-local Hamiltonians (e.g.
y-EFT-based potentials), and wave functions derived from Coupled
Cluster theory (useful in quantum chemistry and materials science). uantum

Monte Carlo with coupled-cluster wave functions”Alessandro Roggero, Abhishek Mukherjee, and Francesco Pederiva Phys. Rev. B 88, 115138 (2013))

Search for improved algorithms based on the propagation of multiplets
of points in configuration space in order to eliminate the systematic bias
due to the fixed-node/fixed-phase approximations.
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http://lanl.arxiv.org/find/nucl-th/1/au:+Barnea_N/0/1/0/all/0/1
http://lanl.arxiv.org/find/nucl-th/1/au:+Gazit_D/0/1/0/all/0/1
http://lanl.arxiv.org/find/nucl-th/1/au:+Pederiva_F/0/1/0/all/0/1
http://lanl.arxiv.org/abs/1311.4966
http://link.aps.org/doi/10.1103/PhysRevB.88.115138
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Sign Problem

One of the major issues in Quantum Monte Carlo calculations
comes from the fact that Fermions live in an excited state (in
mathematical sense) of the Hamiltonian. This means that if we want
to preserve the normalisation of the Fermionic ground state (using
for instanceE(?instead of By the propagation:

o0
_(H_Rp4A B A
e (HETI0) = ) " cne™ P BT ,)
n=0 Antisymmetric
o Symmetric (bosonic) (Termionic) ground state
leads to ground state
. /
' —(H-E§ —(Eo—E A
lim e~ (5007 = coe™ (B0 BT o) + ¢ff [ 7)
T—>00

Always > O (it's a theorem!)

therefore quantities that are symmetric (like the variance of any
operator...) will grow exponentially in imaginary time compared to
the expectation of any antisymmetric function. This is the essence

of the so called the “sign |oro|o|em”.45



Sign Problem

In order to cope with the sign problem it is useful to introduce some
approximations. In particular, the general idea is to solve a modified
Schroedinger equation with additional boundary conditions.

e For real-valued wave functions, the nodes (zeros) of the solutions
must correspond to the nodes of some trial wavefunctions
 (FIXED NODE APPROXIMATION)
* For complex valued wave functions, we have two options:
A. Constrain the phase of the solution to be equal to the phase of
some trial wave function (FIXED PHASE APPROXIMATION)
B. Constrain the sign of the real part of the wave function (or
some suitable combination) to preserve the sign
(CONSTRAINED PATH APPROXIMATION)
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An alternative: AFDMC

 The crucial advantage of AFDMC is that the scaling of the
required computer resources is no longer exponential, but scales
as AJ(the scaling required by the computation of the determinants

in the antisymmetric wave functions) == LARGER SYSTEMS
ACCESSIBLE!

 Non trivial technical issues make the method still non optimal
with respect to the standard approach for small systems.

- ACCURATE COMPUTATIONS FOR NUCLEAR/NEUTRON
MATTER FEASIBLE!
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An alternative: AFDMC

The crucial advantage of AFDMC is that the scaling of the required
computer resources is no longer exponential, but goes as A3(the
scaling required by the computation of the determinants in the

antisymmetric wave functions) == LARGER SYSTEMS
ACCESSIBLE!

Problems

i”w-’] The HS transformation can be used ONLY FOR THE

PROPAGATOR == NO possibility of using accurate wave
functions that require an operatorial dependence! i

\ Constraints used to cope with the sign problem less accurate.
Propensld Extra variables = larger fluctuations and autocorrelations.
Pregensld SOME problems in treating nuclear spin-orbit.

* Three-body forces (extremely important in nuclear physics) can be
reduced by a HS transformatiélcgn only for pure neutron systems.




Neutron stars

neutron star / electrons
outer crust: € / & TR —————
/ (0.3 + 0.5km) s0 ¢ y

40 -

R S inner crust: ¢ Z n

\ B (1 + 2km)

outercore: M P € U

(~ 9km)

E [MeV]

inner core: n,p,e,u and maybe hyperons...
R ~/ 10 km P Haensel, A.Y. Potekhin, D.G.Yakovlev, Neutron Stars

M ~~ 14 M® (O - 3km) |, Springer 2007

The structure of a neutron star can be determined by solving a set of equations describing the
equilibrium between the competing effects of the gravitational force (tending to make the star

collapse) and the neutron-neutron (or more generally baryon-baryon) interaction that at high
density provides mutual repulsion among the particles.
(Tolman-Oppenheimer-Volkov equations).

Necessary ingredient for NS theory:

energy and pressure vs. density for dense matter!
49



Hyperon puzzle

The appearance of hyperons (particles including a strange quark) has an immediate
consequence on the equation of state: it makes it softer, i.e. the pressure coming from
the baryon-baryon interaction is reduced. This is due to the larger mass and to the fact
that nucleons transforming into hyperons become distinguishable in the Fermi sea

Many hyperon-nucleon

model interactions, giving SO fter E0OS ™ lower star mass

differen EoS and different

predictions. \

1.8

16 |

14
o Y ——_—

12 [ XEFT600 ~---- ]

Tr Ko = 200MeV ]

M [Mp)]

0.8 [

Sp=32MeV ]

0.6

0.4 r

0.2 r

0

JOg v

Ky = 300 MeV

So = 32MeV

H. Dapo, B.-). Schaefer, and J. Wambach. Appearance of

hyperons in neutron stars. Phys. Rev. C, 81(3): 035803 (2010)

based on NN (“soft” and “stiff”’) EoS from M.Heiselberg,
M.Hjort-Jensen, Phys. Rep. 328,237 (2000)
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Until 2010 observed

masses of NS were
distributed around the
Chandrashekar mass

Ms=1.4 MO

Use of the equation of state of a p,n,e,u
leads to a maximum mass > 2 Mo

.
Soft EoS allowed: hyperons ok!



Hyperon Puzzle

Recently a few NS with a large mass were observed. The first (2010) was
PSR~J1614-2230 pulsar with M=1.97(4)Mo.

(P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts and J.W.T. Hessels. A two-solar-mass
neutron star measured using Shapiro delay measurements)

W) error associated with B - Before 2010:
¥ | Maximum mass observed: 1.6Mo®
o - —a---%1 Maximum mass predicted without hyperons: 2.30
) | (still ok in principle)
Maximum mass predicted with hyperons:
1.4-1.6Mo0 (good!)

After 2010:

Esymz 3|O'5 .MCV| (Nl\.l) [ N
g 9 10 11 RZI? | 13 14 15 ?6 Observed mass: 2.0Mo
m
S. Gandolfi, J. Carlson, and Sanjay Reddy Maximum mass predicted without hyperons:
Phys. Rev. A 83, 041601 (2011) 2.3M® (gOOd!)
Are there no Maximum mass predicted with hyperons:
hyperons in a NS?’)') 1.4-1.6MO0 (very bad)

Key problem: understand the hyperon-nucleon
interaction!



NS structuregme-
ITH THE NEW

/ PARAMETRIZATION

: : 1 . , . , . , . Results might become

1 compatible with the more

| recent astronomical

1 observations: predicted

| maximum mass exceeds

1 2Mo

2.8

1 D. Lonardoni, A. Lovato,
{ S. Gandolfi, F. Pederiva

M [MSUH]

0.0 |

1IO | 1I1 | 1I2 | 1I3 | 1I4 | 1I5 | 16
R [km]
Hyperon puzzle possibly solvable!
Key to success: the possibility of performing accurate,

realistic calculations for large nuclear systems.



