15 March 2016

THE 2ND JLAB HYPERNUCLEAR WORKSHOP

Spectroscopic Study of Medium Heavy Hypernuclei

Satoshi N. Nakamura Tohoku University

Messages from PAC43

Spectroscopy of ${}^{40}_{\Lambda}$ K, ${}^{48}_{\Lambda}$ K are most compelling physics.

Stronger theoretical connection between Λ nn and two M_{sun} NS.

PAC does not convince that A dependence of B_{Λ} constrains NS EoS

Cannot it truly? Or our explanation was not good enough?

Hyperon Puzzle

PSR J1614-2230 (2010) $1.97 \pm 0.04 M_{sun}$ PSR J0348-0432 (2013) $2.01 \pm 0.04 M_{sun}$

Hyperons naturally <u>appear</u> at $\rho = 2^3 \rho_0$ EOS w/hyperons is too soft for 2M_{sun}

Contradicts observation!

One of most serious problems of nuclear physics

Neutron star and Strange hadronic matter

Sym. Nucl. Matter : Limit for size (due to Coulomb force) Asym. Nucl. Matter : Neutron Stars, Strange Hadronic Matter

AFDMC by Lonardoni et al. PRL114, (2015) 092301, updated (2016)

ESC08c + 3B/4B RF : G-Matrix Calc. by Yamamoto et al., PRC 90 (2014) 045805.

NS EOS with hyperon and 3BRF

Mass dependence of B_{Λ}

Nuclear Matter ($A = \infty$)

NS EOS with hyperon and 3BRF

Key issues : A Dependence Iso-spin Dependence of 3BRF

Mid-heavy data from (π ,K) exp.

P.H.Pile et al. PRL 20 (1991) 2585.

H.Hotchi et al. PRC 64 (2001) 044302.

Mass dependence of $B_{\Lambda}(s_{\Lambda}, p_{\Lambda}, d_{\Lambda})$

N dependence of $B_{\Lambda}(gs)$

$\Lambda nn/\Lambda np$ dependence of B_{Λ}

Presented at PAC43

Figure 2-10: Λ separation energies normalized with respect to the $C_T = 1$ case as a function of C_T . Grey bands represent the 2% and 5% variations of the ratio B_{Λ}/B_{Λ} ($C_T = 1$). Brown vertical arrows indicate the results for ⁴⁹Ca in the case of $C_T = 2$ and $C_T = 3$, outside the scale of the plot.

Λ nn/ Λ np dependence of B $_{\Lambda}$

$\Lambda nn/\Lambda np$ dependence of B_{Λ}

Could be determined with an accuracy of <100keV at JLab

Targets avaiablity

JLab has a 800mg/cm² thick ⁴⁸Ca target for CREX exp., but it was oxidized and surface condition is not good. Furthermore, it is too thick for our experiment. (Eloss effects are 500keV for both e' and K⁺)

Making a new 100mg/cm² ⁴⁸Ca costs roughly \$50K. ⁴⁰Ca is one order less expensive. ^{112,114,116,118,120,122,124}Sn 100mg/cm² cost \$3K for each. ^{112,114}Sn purities are ~70atom%, others >90atom%.

Li	Ca	Sn	Pb
181	842	232	323
85	201	67	35
	Li 181 85	Li Ca 181 842 85 201	LiCaSn1818422328520167

Proposed Setup

 $K(HKS) \times HRS (e')$

Only **JLab** : **Beam** + **Spectrometers** for (e,e'K⁺)

Beamtime estimation

	Beam Current (mA)	Target Thick (mg/cm²)	Assumed CS (nb/sr)	Expected Yield(/h)	Beam Time (h) For 200ev.	BG (/MeV/ h) for 250MH z	S/N
${}^{40}_{\Lambda}K$	50	50	10	1.7	230	0.43	4.0
$^{48}_{\Lambda}K$	50	50	10	1.4	278	0.42	3.5
Calib.					167		
Sub Total					675		
$^{112}_{\Lambda}In$	40	100	40	2.0	101	0.89	2.2
$^{118}_{\Lambda}$ In	40	100	40	1.9	106	0.89	2.1
$^{124}_{\Lambda}$ In	40	100	40	1.8	112	0.88	2.0
Sub Total					319		

675 h = 28.1 PAC days Isospin dep of 3BRF 319 h = 13.3 PAC days Additional constraint for isospin dep of 3BRF and *A* dependence, too.

Summary

PAC43 recognized that measurements of ${}^{40}_{\Lambda}$ K, ${}^{48}_{\Lambda}$ K proposal should be re-submitted with more theoretical works to bridge Ann interaction and hyperon puzzle.

Theoretical efforts with AFDMC and AMD are in progress to predict B_A reliable medium heavy hypernuclei. Based on these efforts, Ann interaction model can be applied to NS to solve the hyperon puzzle.

Measurement of B_{Λ} for ${}^{40}_{\Lambda}$ K, ${}^{48}_{\Lambda}$ K with a precision of <100 keV can be achievable with a reasonable beamtime (<30 PAC days with calibrations).

It will provide the first data for isospin dependence of ANN force.

In order to have better constraints on **iso-spin dependence** of Ann interaction can be further constraint by the experiment on **Sn isotope** targets. Though further theoretical efforts are necessary, it will also provide data for *A* **dependence**.