2016. 3. 15 JLab WS

Recent Achievements at J-PARC and Future Prospects of Hypernuclear Studies

H. Tamura Tohoku University

1. Present status of hypernuclear physics at J-PARC

2. $\Lambda N-\Sigma N$ interaction and Λ in neutron matter

- **2.1** hypernuclear γ -ray data for p-shell
- 2.2 Charge Symmetry Breaking in AN -- New A=4 data --
- 2.3 Neutron-rich hypernuclei
- 3. Toward double strangeness systems
- 4. Hadron Hall Extension Plan
- 5. Summary

1. Present status of Hypernuclear physics at J-PARC

Approved experiments (stage2 / stage1)

Prese $E19: \Theta^+$ searchE10: n-rich Λ hypernucleiE27: K⁻pp bound statesE13: γ spectroscopy of Λ hyp.E07: $\Lambda\Lambda$ hypernucleiE05: Ξ Hypernuclei

<u>E03: Ξ -atomic X rays</u> <u>E18: Weak decays of Λ hyp.</u> <u>E40: Σ p scattering</u> E08: Pion double charge exch. E22: Weak decays of A=4 Λ hyp. E26: ω nucleus E42: H dibaryon search E45: 3-body hadronic reactions

E16: Hadron mass in nuclei E50: Charmed baryons

High Mom

ne ...

K1.1

E15: K⁻pp bound states E31: Λ(1405) structure E62: K⁻He atomic X-rays E57: K⁻d atomic X rays

Production target (T1)

K1.8B

30~50 GeV primary beam **E29:** ϕ nucleus K1.1E **E63:** γ spectroscopy of Λ hyp.

KL

Finished / running, data partly taken / waiting, under preparation

K1.8

Finished / running, data partly taken / waiting, under preparation

2. $\Lambda N-\Sigma N$ interaction and Λ in neutron matter

2.1 p-shell hypernuclear data

2.2 Charge Symmetry Breaking in ΛN -- New A=4 data –

2.3 Neutron-rich hypernuclei

ΛN Interaction in neutron(-rich) matter

At short range (large ρ), Λnn strongly repulsive?

How to experimentally study?

Precise B_{Λ} and level energy data for asymmetric (neutron-rich) Λ hypernuclei

 $= B_{\Lambda} \text{ for s- and p-shell hypernuclei: } {}^{(e,e'K^+)@JLab}_{\Lambda} {}^{(\pi^-, K^+)@J-PARC}_{\Lambda} H; {}^{(\pi^-, K^+)@J-PARC}_{\Lambda} He; {}^{(h,e'K^+)@JLab}_{\Lambda} He, {}^{(h,e'K^+)@J-PARC}_{\Lambda} He; {}^{(h,e'K^+)@JLab}_{\Lambda} He, {}^{(h,e'K^+)@J-PARC}_{\Lambda} He; {}^{(h,e'K^+)@JLab}_{\Lambda} He, {}^{(h,e'K^+)@J-PARC}_{\Lambda} He,$

⁹, Li, ¹⁰, Li; ...

γ-rays for s- and p-shell (K-, π-) @J-PARC

- $\begin{array}{l} \textbf{(e,e'K^+)@JLab} \quad \textbf{(K^-,\pi^-)@J-PARC ?} \\ \textbf{Charge Symmetry Breaking: } {}^{4}_{\Lambda}\text{H} / {}^{4}_{\Lambda}\text{He}, \; {}^{7}_{\Lambda}\text{He} / {}^{7}_{\Lambda}\text{Li}^{*}, \\ \textbf{-> } \Sigma \text{N}-\Lambda \text{N interaction} \\ \end{array}$
- B_Λ for medium/heavy asymmetric A hypernuclei: ⁴⁰_ΛK / ⁴⁸_ΛK, ...²⁰⁸_ΛTI; (⁴⁰_ΛCa ⁴⁸_ΛCa, ...²⁰⁸_ΛPb)

 -> T, ρ dependence of ΛN int. (e,e'K⁺)@JLab (π⁺, K⁺)@J-PARC ? (ΛNN force)
- Σ N-> Λ N scattering experiments *@J-PARC*

2. $\Lambda N-\Sigma N$ interaction and Λ in neutron matter

2.1 p-shell hypernuclear data

2.2 Charge Symmetry Breaking in ∧N -- New A=4 data –

2.3 Neutron-rich hypernuclei

Hyperball 1998~

¹¹B ($\pi^+, K^+\gamma$) KEK E518

0.718 1+

¹⁰B

3/2+

1/2+

E2

 $^{11}_{\Lambda}\text{B}$

NPA 754 (2005) 58c

1.986

1.482

<u>7/</u>2⁺0.263

5/2+0

Hypernuclear γ-ray data (2014)

Hyperball 1998~

NPA 754 (2005) 58c

Hypernuclear γ-ray data (2014)

⁹Be (Κ⁻,π⁻γ) BNL E930('98)

PRC 77 (2008) 054315

786 562

PRL 93 (2004) 232501

EPJ A33 (2007) 247

 ΛN spin-dependent interaction strengths determined

$V_{\Lambda N}^{eff} = V_0(r) +$	$V_{\sigma}(r) \overline{s}_{A} \overline{s}_{N} +$	$V_{\Lambda}(r) \tilde{l}_{\Lambda N} \tilde{s}_{\Lambda} +$	$V_{N}(r) \overline{l}_{AN} \overline{s}_{N}$	+ V _T (r) <mark>S₁₂</mark>
	⊿	S _A	S _N	Т

 $\Delta = 0.33$ (0.43 for A=7), $S_A = -0.01$, $S_N = -0.4$, T = 0.03 [MeV] Smaller than NN forces by 1/10~1/50

- Almost all these p-shell levels are reproduced quite well by this parameter set. (D.J. Millener)
- Feedback to BB interaction models (Nijmegen, Juerich) 11_P toward unified understanding of BB interactions

PRL 86 (2001) 4255

PRC 65 (2002) 034607

120

EPJ A33 (2007) 243

PTEP 2015 (2015) 8, 081D01

D.J. Millener, NPA 881 (2012) 298

Millener's parameter set						
A=7,9	$\Delta = 0.430,$	$S_{\Lambda} = -0.015,$	$S_N = -0.390,$	T = 0.030. MeV		
A=10~	16 $\Delta = 0.330,$	$S_A = -0.015,$	$S_N = -0.350,$	<i>T</i> = 0.0239. MeV		

Calculated from G-matrix using $\Lambda N - \Sigma N$ force in "D2"										
doub	let spacii	ng		contribution of each term (keV)				(keV)		
	J_u^{π}	J_l^{π}		ΛΣ	Δ	S_{Λ}	S_N	Т	ΔE^{th}	ΔE^{exp}
$^{7}_{\Lambda}$ Li	3/2+	$1/2^{+}$		72 +10%	628	-1	-4	-9	693	692
$^{7}_{\Lambda}$ Li	7/2+	5/2+		74	557	-32	-8	-71	494	471
$^{9}_{\Lambda}$ Be	$3/2^{+}$	5/2+		-8	-14	37	0	28	44	43
$^{11}_{\Lambda}\mathrm{B}$	7/2+	5/2+		56	339	-37	-10	-80	267	264
$^{11}_{\Lambda}\mathrm{B}$	3/2+	$1/2^{+}$		61	424	-3	-44	-10	475	505
$^{12}_{\Lambda}\mathrm{C}$	2-	1-		<u>61</u> +40%	175	-12	-13	-42	153	161
$^{15}_{\Lambda}$ N	$3/2^+_2$	$1/2^+_2$		65	451	-2	-16	-10	507	481
$^{16}_{\Lambda}$ O	1-	0^{-}		-33 -143%	-123	-20	1	188	23	26
$^{16}_{\Lambda}$ O	2-	1^{-}_{2}		92 +37%	207	-21	1	-41	248	224

 Agreement looks almost perfect when the ΔΣ coupling effect included. ΣΛ coupling force by Millener (Akaishi's D2, central force only)
 → Why agreement is so good? Constraint to the ΛΣ coupling force?

2. $\Lambda N-\Sigma N$ interaction and Λ in neutron matter

2.1 p-shell hypernuclear data

2.2 Charge Symmetry Breaking in ∧N -- New A=4 data –

2.3 Neutron-rich hypernuclei

Charge Symmetry Breaking puzzle in hypernuclei

using Nijmegen BB interaction models failed => Long standing puzzle Experimental confirmation of CSB is necessary

E13 setup at K1.8

- ${}^{\mathrm{A}}\mathrm{Z}(K^{-},\pi^{-}){}^{\mathrm{A}}_{\Lambda}\mathrm{Z}^{*} \longrightarrow {}^{\mathrm{A}}_{\Lambda}\mathrm{Z}+\gamma$
- Tag production of hypernuclei
- Detect γ-rays from hypernuclei

⁴_ΛHe : liq.He target (2.5 g/cm²) $p_{\rm K}$ = 1.5 GeV/c ¹⁹_ΛF : HF -> CF₄ target (20 g/cm²) $p_{\rm K}$ = 1.8 GeV/c

Hyperball-J

A newly developed Ge array for hypernuclei

LI

97

L2

C3

Ge cooled down to ~70K by a pulse-tube refrigerator (c.f. 92K w/LN₂) to suppress radiation damage

Fast background suppressor made of PWO

∆E= 3.1(1) keV at 1.33 MeV Eff. = 5.4% @1 MeV with 28 Ge(re=60%)

E13: Spectroscopy of $^{4}\Lambda$ **He**

24kW / 5days' data taking just after the beam resumption

 ${}^{4}_{\Lambda}$ He(0⁺) dominant + ${}^{4}_{\Lambda}$ He(1⁺) Peak width = resolution ~5.4 MeV (FWHM)

Byproduct: Spectrum for ${}^{4}{}_{\Sigma}$ He (p_{K} =1.5 GeV/c) was also successfully taken.

Mass-gated γ-ray spectrum

S

Observation of Spin-Dependent Charge Symmetry Breaking in ΛN Interaction: Gamma-Ray Spectroscopy of ${}^{4}_{\Lambda}$ He

T. O. Yamamoto,¹ M. Agnello,^{2,3} Y. Akazawa,¹ N. Amano,⁴ K. Aoki,⁵ E. Botta,^{3,6} N. Chiga,¹ H. Ekawa,⁷ P. Evtoukhovitch,⁸ A. Feliciello,³ M. Fujita,¹ T. Gogami,⁷ S. Hasegawa,⁹ S. H. Hayakawa,¹⁰ T. Hayakawa,¹⁰ R. Honda,¹⁰ K. Hosomi,⁹ S. H. Hwang,⁹ N. Ichige,¹ Y. Ichikawa,⁹ M. Ikeda,¹ K. Imai,⁹ S. Ishimoto,⁵ S. Kanatsuki,⁷ M. H. Kim,¹¹ S. H. Kim,¹¹ S. Kinbara,¹² T. Koike,¹ J. Y. Lee,¹³ S. Marcello,^{3,6} K. Miwa,¹ T. Moon,¹³ T. Nagae,⁷ S. Nagao,¹ Y. Nakada,¹⁰ M. Nakagawa,¹⁰ Y. Ogura,¹ A. Sakaguchi,¹⁰ H. Sako,⁹ Y. Sasaki,¹ S. Sato,⁹ T. Shiozaki,¹ K. Shirotori,¹⁴ H. Sugimura,⁹ S. Suto,¹ S. Suzuki,⁵ T. Takahashi,⁵ H. Tamura,¹ K. Tanabe,¹ K. Tanida,⁹ Z. Tsamalaidze,⁸ M. Ukai,¹ Y. Yamamoto,¹ and S. B. Yang¹³

(J-PARC E13 Collaboration)

¹Department of Physics, Tohoku University, Sendai 980-8578, Japan

²Dipartimento di Scienza Applicate e Tecnologica, Politecnico di Torino, Corso Duca degli Abruzzi, 10129 Torino, Italy

³INFN, Sezione di Torino, via P. Giuria 1, 10125 Torino, Italy

⁴Department of Physics, Kyoto University, Kyoto 606-8502, Japan

⁵Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan

⁶Dipartimento di Fisica, Universit di Torino, Via P. Giuria 1, 10125 Torino, Italy

⁷Department of Physics, Kyoto University, Kyoto 606-8502, Japan

⁸Joint Institute for Nuclear Research, Dubna, Moscow Region 141980, Russia

⁹Advanced Science Research Center (ASRC), Japan Atomic Agency (JAEA), Tokai, Ibaraki 319-1195, Japan

¹⁰Department of Physics, Osaka University, Toyonaka 560-0043, Japan

¹¹Department of Physics, Korea University, Seoul 136-713, Korea

¹²Faculty of Education, Gifu University, Gifu 501-1193, Japan

¹³Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea

¹⁴Research Center of Nuclear Physics, Osaka University, Ibaraki 567-0047, Japan

(Received 12 August 2015; published 24 November 2015)

The energy spacing between the spin-doublet bound state of ${}^{4}_{\Lambda}$ He(1⁺, 0⁺) was determined to be 1406 ± 2 ± 2 keV, by measuring γ rays for the 1⁺ \rightarrow 0⁺ transition with a high efficiency germanium detector array in coincidence with the 4 He(K^{-}, π^{-}) ${}^{4}_{\Lambda}$ He reaction at J-PARC. In comparison to the corresponding energy spacing in the mirror hypernucleus ${}^{4}_{\Lambda}$ H, the present result clearly indicates the existence of charge symmetry breaking (CSB) in ΛN interaction. By combining the energy spacings with the known ground-state binding energies, it is also found that the CSB effect is large in the 0⁺ ground state but is vanishingly small in the 1⁺ excited state, demonstrating that the ΛN CSB interaction has spin dependence.

DOI: 10.1103/PhysRevLett.115.222501

PHYSICAL REVIEW LETTERS

moving physics forward

EDITORS' SUGGESTION

Observation of Spin-Dependent Charge Symmetry Breaking in ΛN Interaction: Gamma-Ray Spectroscopy of $^4_\Lambda He$

The energy spacing of the spin-doublet states in the $^4_{\Lambda}$ He hypernucleus indicate a large spin dependent charge symmetry breaking in the ΛN interaction.

T. O. Yamamoto *et al.* (J-PARC E13 Collaboration) Phys. Rev. Lett. **115**, 222501 (2015)

Press-released from Tohoku U., KEK, JAEA, J-PARC

CSB is sensitive to Λ N-ΣN force

Dalitz-Hippel Bodmer, Gibson, Akaishi,..

Exp. $\frac{\Delta B_{\Lambda}(1^{+}): 0.03 \pm 0.05 \text{ MeV}}{\Delta B_{\Lambda}(0^{+}): 0.35 \pm 0.05 \text{ MeV}}$

Table 2 A. Gal, PLB 744 (2015) 352

Calculated CSB contributions to $\Delta B_{\Lambda}^4(0_{g,S.}^+)$ and total values of $\Delta B_{\Lambda}^4(0_{g,S.}^+)$ and $\Delta B_{\Lambda}^4(1_{exc}^+)$, in keV, from several model calculations of the A = 4 hypernuclei. Recall that

$\Delta B_{\Lambda}^{c,c,p}(0_{g,S,}^+) = 350 \pm 60 \text{ keV } [3].$		Σ^{+}/Σ^{-} mass difference		Λ/Σ^0 mixing		
$^{4}_{\Lambda}$ He $-^{4}_{\Lambda}$ H	P_{Σ} (%)	ΔT_{YN}	ΔV_C	ΔV_{YN}	ΔB_{Λ}^4	ΔB_{Λ}^4
model	0 _{g.s.}	0 ⁺ _{g.s.}	0 _{g.s.}	0 ⁺ _{g.s.}	0 ⁺ g.s.	$1_{\rm exc}^+$
ΔNNN [9] w/o Σ mixing	-	-	-42	91	49	-61
NSC97 _e [10]	1.6	47	-16	44	75	-10
NSC97 _f [11]	1.8				100	-10
NLO chiral [12] w/o CSB	2.1	55	-9	-	46	
$(\Lambda \Sigma)_{e}$ [present]	0.72	39	-45	232	226	30
$(\Lambda \Sigma)_{f}$ [present]	0.92	49	-46	263	266	39

Gmatrix $\Sigma N - AN$: NSC but central only (Akaishi-Millener's D2)

NSC int. : $\Sigma N - AN$ tensor dominated => cancel between ρ and π exch. => small CSB

LO chiral EFT int. : $\Sigma N - \Lambda N$ central dominated

=> constructive between ρ and π exch.
 => large CSB

${}^{A}_{\Lambda}Z_{>}\text{-}^{A}_{\Lambda}Z_{<}$ pairs	Ι, J ^π	$\Delta B_{\Lambda}^{\text{calc}}$ (keV)	$\Delta B_{\Lambda}^{\exp}$ [3] (keV)
$^{4}_{\Lambda}$ He $-^{4}_{\Lambda}$ H	$\frac{1}{2}, 0^+$	226	$+350 \pm 60$
$^{7}_{\Lambda}$ Be $-^{7}_{\Lambda}$ Li*	$1, \frac{1}{2}^+$	-17	-100 ± 90
$^{8}_{\Lambda}$ Be $-^{8}_{\Lambda}$ Li	$\frac{1}{2}, 1^{-}$	+49	$+40 \pm 60$
${}^9_{\Lambda}B - {}^9_{\Lambda}Li$	$1, \frac{3}{2}^+$	-54	-210 ± 220
$^{10}_{\Lambda}\text{B}-^{10}_{\Lambda}\text{Be}$	$\frac{1}{2}, 1^{-}$	-136	-220 ± 250

A. Gal, PLB 744 (2015) 352

CSB data for p-shell is also important -> (e,eK+)@JLab

2. $\Lambda N-\Sigma N$ interaction and Λ in neutron matter

2.1 p-shell hypernuclear data

2.2 Charge Symmetry Breaking in ΛN -- New A=4 data –

2.3 Neutron-rich hypernuclei

How to produce n-rich hypernuclei?

<u>A neutron-rich hypernucleus, ⁶ H</u>

More data for ${}^{6}_{\Lambda}$ H and other n-rich hypernuclei necessary J-PARC E10 next run: ${}^{9}Be(\pi^{-},K^{+}){}^{9}_{\Lambda}$ He In future, systematic studies at HIHR@Extended Hadron Hall

3. Toward double strangeness systems (E07 and E05)

 $B_{\Xi^-} = 4.38 \pm 0.25 \text{ MeV} - 1.11 \pm 0.25 \text{ MeV}$ ¹⁰Be production: in the ground state in the highest excited state >>:3D atomic state of the $\Xi^- - {}^{14}\text{N}$ system (0.17 MeV)

First evidence of a deeply bound E state But cannot extract EN force strength

4. Hadron Hall Extension Plan

- 16 deg extraction ~2.1 GeV/c K⁰
 - - 30 GeV proton
 - <31 GeV/c unseparated 2ndary beams (mostly pions), ~10⁷/spill

Extended Hadron Hall (Plan)

Solve the hyperon puzzle in neutron stars

High resolution (π ,K⁺) hypernuclear spectroscopy

Precise B_Λ data for a wide range of Λ hypernuclei

- -> Density dependence of $\Lambda {\rm N}$ interaction (~ $\Lambda {\rm NN}$ 3-body force) necessary to solve the "hyperon puzzle"
- A few 100keV resolution is necessary
 - -> Momentum dispersion matching beam line and spectrometer

Very high intensity π beams can be utilized (~180Mpion/spill)

High-Intensity High-Resolution line (HIHR)

K1.1 beam line

Intense K beams for abundant production of S=-1 hyperons and kaons

Precise 2-body data essential to extract many-body effects in hypernuclei

5. Summary

- Beam came back to Hadron Hall in April, 2015.
- $\Lambda N-\Sigma N$ interaction and Λ in neutron-rich matter
 - <u>Observation of ${}^{4}_{\Lambda}$ He(1+->0+) γ -ray and confirmed existence of a large CSB effect in Λ N interaction, giving good constraints to Λ N- Σ N force.</u>
 - Both of the p-shell γ-ray data and the A=4 CSB data suggest a centraldominated ΛN-ΣN force.
 - More ${}^{6}_{\Lambda}$ H data as well as other n-rich hypernuclear data are needed.
- Stronger beam power. S=-2 program has just started.
 - The emulsion exp. (E07) for ΛΛ hypernuclei and Ξ-atomic X-rays are will start production run soon.
 - Ξ-hypernuclear spectroscopy (E05) carried out a pilot run.
- Hadron Hall Extension is planned.
 - **HIHR** line for precise B_{Λ} for various Λ hypernuclei incl. n-rich ones.
 - **K1.1** for ΛN , ΣN scattering experiments.