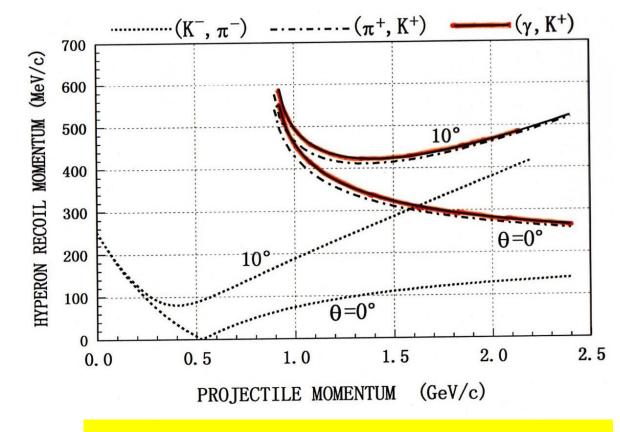
Significance of Detailed Structure Study of Hypernuclei

based on its electro/photoproduction

Toshio MOTOBA (Osaka E-C)

Hypernuclear Workshop 2016

March 14-15, 2016 Thomas Jefferson Laboratory, Newport News, VA


CONTENTS

- (0) Properties of hypernuclear photoproduction
- (1) Characteristics to be utilized in ⁴He(γ,K⁺)
- (2) p-shell high-resolution (e,e'K+) experiments and a new theoretical challenge
- (3) sd- and fp-shell hypernuclei as missing link of high resolution s.p.e.
- (4) Hyperon s.p.e ($^{208}Pb(\gamma, K^{+})_{\Lambda}^{208}AI$)
- (5) Λ -rotation(deformation) coupling
- (6) Summary

(0) **BASICS**: Hyperon recoil momentum and the transition operator itself determine the reaction characteristics

(1) $\pi+n \rightarrow \Lambda K+$ $\gamma p \rightarrow \Lambda K+$

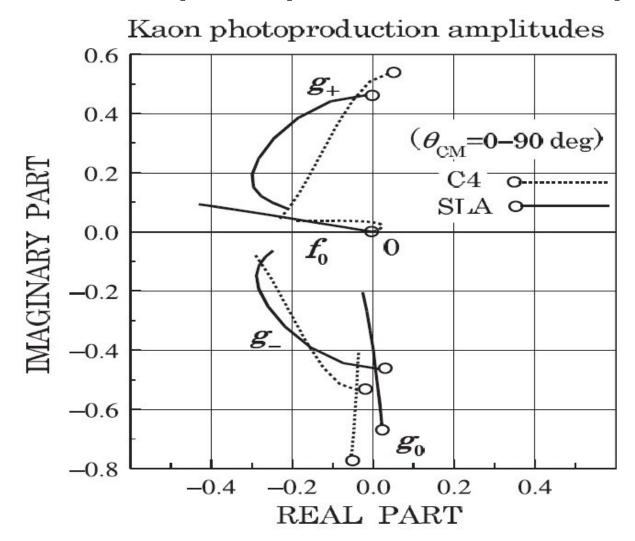
Momentum transfers are both large and comparable.

 q_{Λ} =350-420 MeV/c at E γ =1.3 GeV

Microscopic treatment based on the elementary transition amplitudes (π,K) case

$$\frac{d\sigma(\theta_{\rm L})}{d\Omega_{\rm L}} = \gamma \cdot \frac{(2\pi)^4 p_K^2 E_{\pi} E_K E_H}{p_{\pi} \{ p_K (E_H + E_K) - p_{\pi} E_K \cos\theta_{\rm L} \}} \frac{|T_{if}^{\rm L}|^2}{|T_{if}^{\rm L}|^2},$$

$$|T_{if}^{\rm L}|^2 = \sum_{M_f} R(if; M_f),$$


$$\begin{split} R(if; M_f) &= \frac{1}{[J_i]} \sum_{M_i} \left| \langle J_f M_f | \int d^3 r \ \chi^{(-)}(p_K; r)^* \cdot \chi^{(+)}(p_\pi; r) \right. \\ &\times \sum_{k=1}^A U_-(k) \ \delta(r - r_k) \cdot \lambda \left[[f + ig(\sigma_k \cdot \hat{n})] \right] J_i M_i \rangle \ \left|^2, \right. \end{split}$$

(2) Elementary amplitude $N \rightarrow Y$

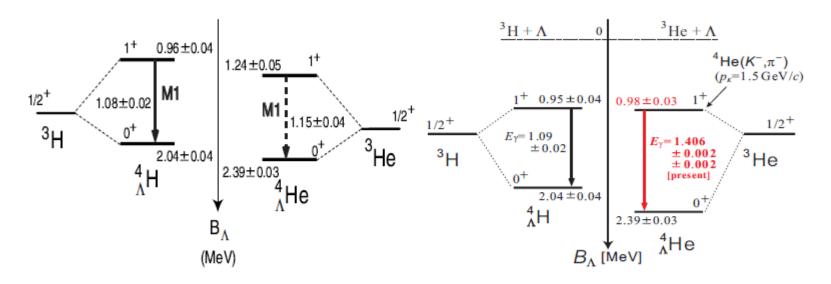
 $f = \text{spin-nonflip}, g = \text{spin-flip}, \sigma = \text{baryon spin}$

Lab dσ/dΩ photoproduction case (2Lab)

Elementary amplitudes (complex and p-dependent, θ-dependent)

Three spin-flip terms are all large in Kaon photoproduction

(1) Application to the lightest closed-shell target ⁴He (A proposal from theory side)

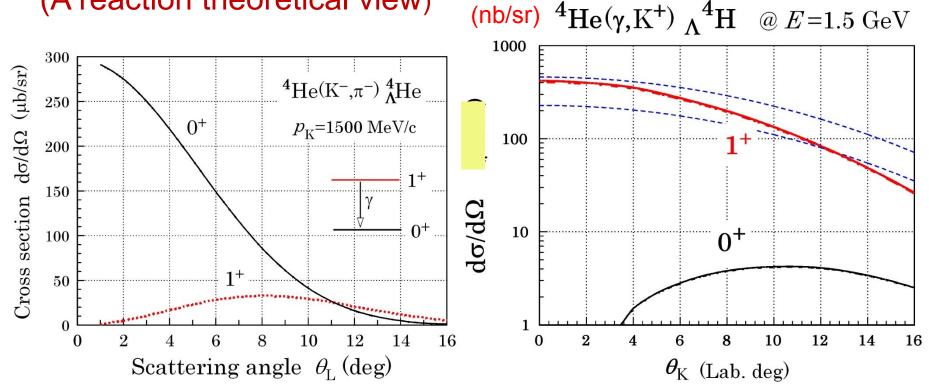

Unique role of (e,e'K⁺) or (γ,K⁺) reaction:

to excite ${}^4_{\Lambda}$ H(1+) state preferentially by making use of the spin-flip dominant nature.

(An important issue is to determine 1+ energy position (update) for the study of CSB effect in Λ -N interaction.)

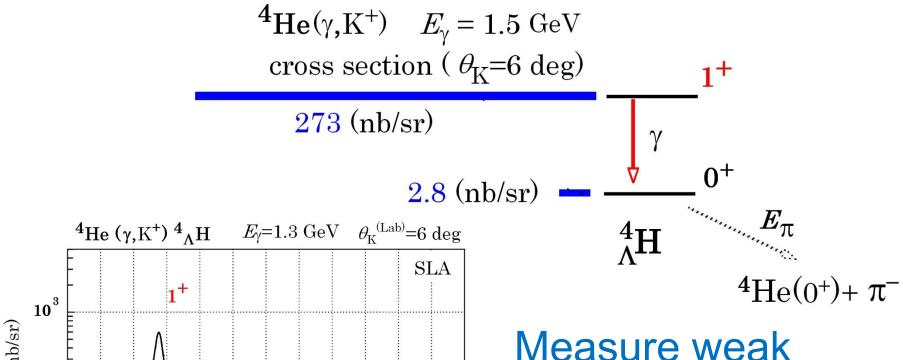
(Taken from A. Gal (J-PARC Hadron Phys. Workshop (2016.3)

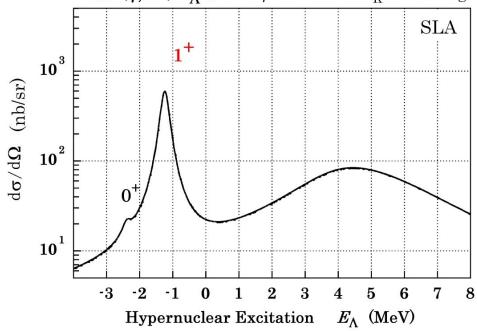
 ${}^4_{\Lambda}\mathrm{H} - {}^4_{\Lambda}\mathrm{He}$ levels before and after J-PARC E13 exp. T. O. Yamamoto et al., J-PARC-E13, PRL 115 (2015) 222501


MAMI's new value $B_{\Lambda}({}_{\Lambda}^{4}\mathrm{H}) = 2.12 \pm 0.01 \pm 0.09 \mathrm{MeV}$, consistent with emulsion value, obtained by measuring decay π^{-} in ${}_{\Lambda}^{4}\mathrm{H} \rightarrow {}^{4}\mathrm{He} + \pi^{-}$ [PRL 114 (2015) 232501].

CSB is strongly spin dependent, dominantly in 0^{+} .

CSB is strongly spin dependent, dominantly in $0_{\rm g.s.}^+$ 350±60 keV in ${}^4_{\Lambda}{\rm H-}{}^4_{\Lambda}{\rm He}$ vs. \approx -70 keV in ${}^3_{\Lambda}{\rm H-}{}^3_{\Lambda}{\rm He}$.


$^{4}\text{He}(K^{-},\pi^{-})$ vs. $^{4}\text{He}(\gamma,K^{+})$



1⁺ gets minor XS, but it is excited anyway, then $(K,\pi\gamma)$ coincidence method successful. \rightarrow Tamura's talk

XS(1+) is far predominantly larger than XS(0+)

E(1+) peak energy will be determined precisely @Jlab by ⁴He(*e*,*e* '*K*+)

decay π energy: (T=53.24) p=133.03 MeV/c In fact Mainz did it, but energy resolution is not enough.

(2) JLab (e,e'K+) experiments opened a new stage of high precision hypernuclear reaction spectroscopy

- Success of JLab experiments (Hall A & C)
 on p-shell targets ---- E resolution ~0.54MeV
- Suggesting new theoretical aspects

The most typical one: ¹²C(e,e'K+) Tang et al. PRC 90(2014) Hall C experiment

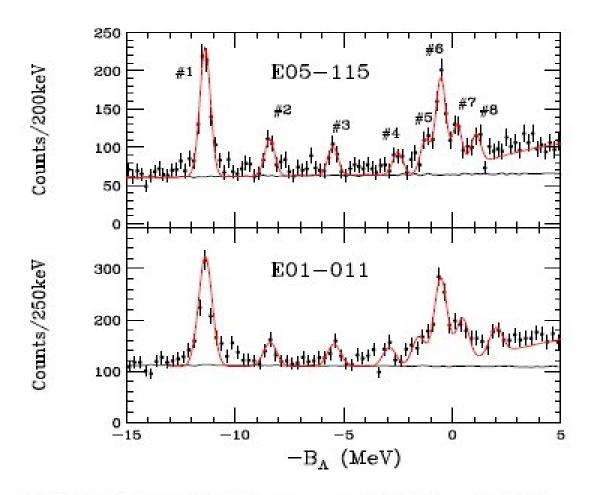
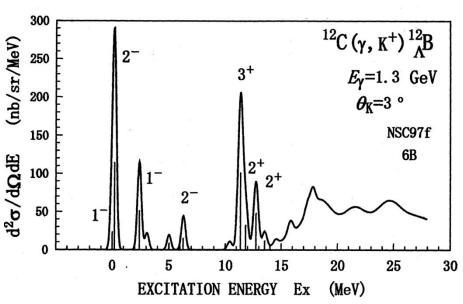
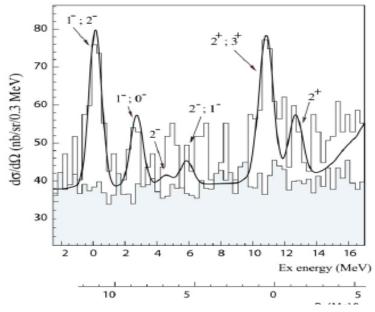
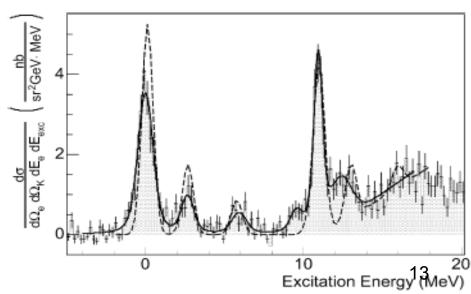




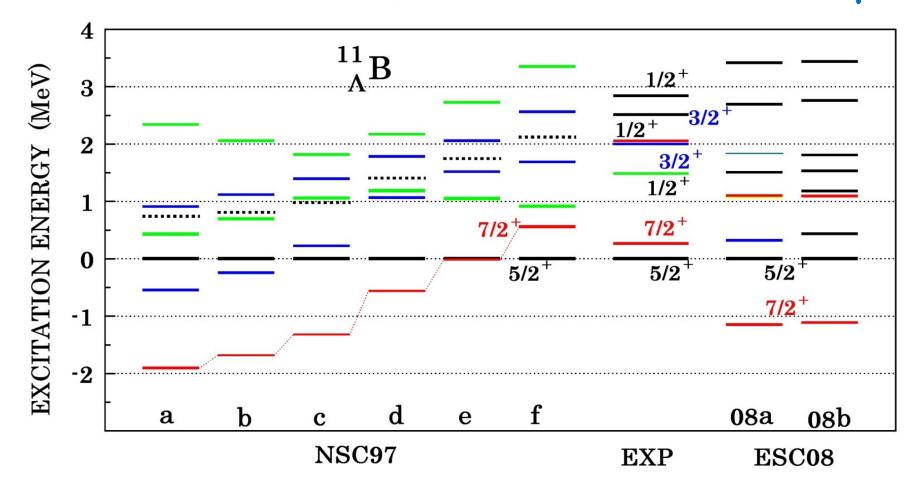
FIG. 10. (Color online) Spectroscopy of ¹²_ΛB from the E05-115 and E01-011 experiments. The area below the black line is the accidental background.


Theor. prediction confirmed by (e,e'K+) exp.

Motoba. Sotona, Itonaga, Prog. Theor. Phys. Sup. 117 (1994) T.M. Mesons & Light Nuclei (2000) updated w/NSC97f.

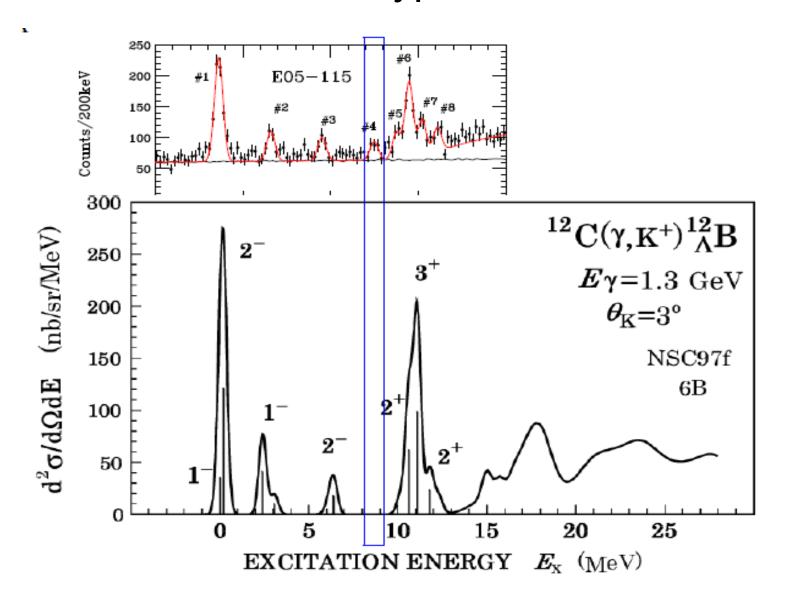
Hall C (up) T. Miyoshi et al. *P.R.L.***90** (2003) 232502. Γ**=0.75keV** Hall A (bottom), J.J. LeRose et al. *N.P.* A**804** (2008) 116. Γ**=0.67keV**

Exp XS and DWIA estimates: are in good agreement. The present theor. treatment -- proved to be powerful.


12C(γ,K+) Cross sec. calculated in DWIA at E_γ = 1.5GeV, θ_K(Lab)=7deg

(Relative strengths with respect to the ground-state peak are also shown for reference)

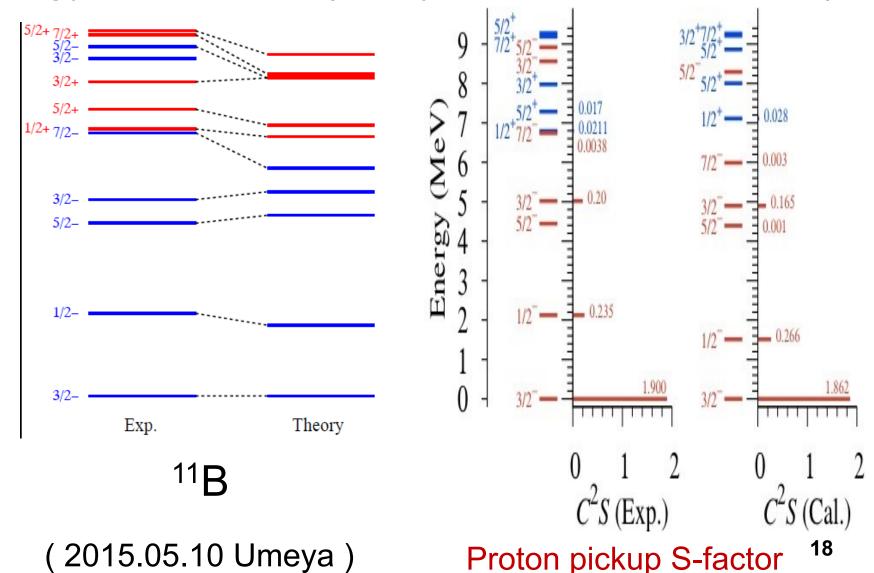
Table I. Comparison of excitaion energies of $^{12}_{\Lambda} B$ and its photoproduction cross sections $d\sigma/d\Omega$ (nb/sr)


Experiment					Theory with NSC97f					
Peak	$-B_{\Lambda}(\mathrm{MeV})$	E_x (MeV)	$\mathrm{d}\sigma/\mathrm{d}\Omega$	J_i	E_x (MeV)	$\mathrm{d}\sigma/\mathrm{d}\Omega$	Sum			
# 1-1	-11.524	GS(0.0)		1-	GS(0.0)	21.04				
# 1-2	-11.345	(0.179)	101.0	$2\frac{1}{1}$	(0.186)	89.33	100.37			
# 2	-8.415	(3.109)	33.5	$1\frac{1}{2}$	(2.398)	48.44	56.10			
				$0^{\frac{2}{1}}$	(3.062)	7.66				
				$2^{\frac{1}{2}}$	(5.022)	6.96				
# 3	-5.475	(6.049)	26.0	$2\frac{2}{3}$	(6.267)	11.84	23.82			
				$1\frac{5}{3}$	(6.389)	5.02				
# 5	-1.289	(10.235)	31.5	2+	(11.000)	1.33	9.49			
				11	(11.120)	8.16				
# 6	-0.532	(10.992)	87.7	3 ⁺ ₁	(11.081)	77.56	130.73			
				11	(11.610)	53.17				
				1+	(12.129)	6.08				
# 8	0.973	(12.497)	28.5	2_{3}^{2}	(12.784)	19.96	29.95			
				13	(13.176)	3.74				

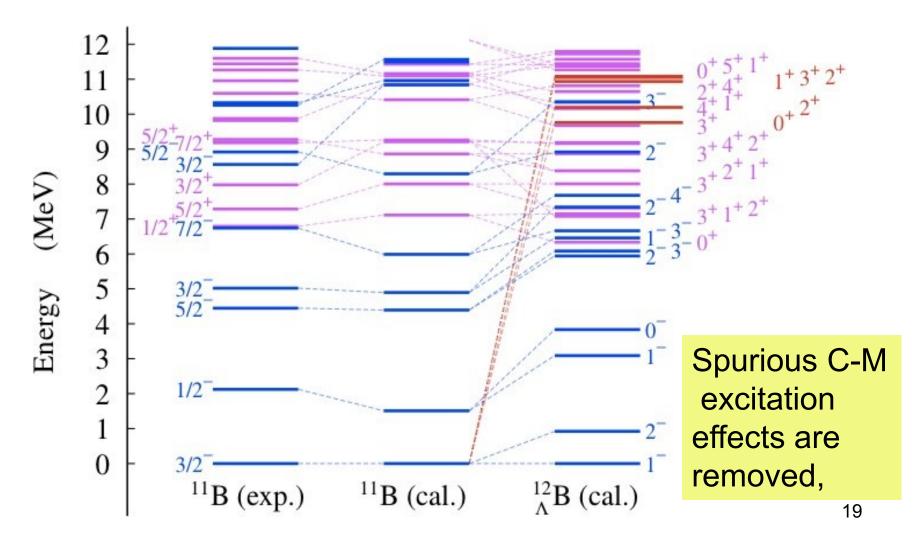
Nijmegen B-B interaction model improved by taking account of hypernuclear reaction data+y

Thus high precision reaction data, together with γ , help us discriminate several versions of Y-N interaction models.

Emphasize: detailed comparison discloses a new feature of hypernuclear structure


Our new theoretical challenge is to take both parity states into account. "parity-mixing" mediated by Λ

that is a new concept seen only in hypernucleus

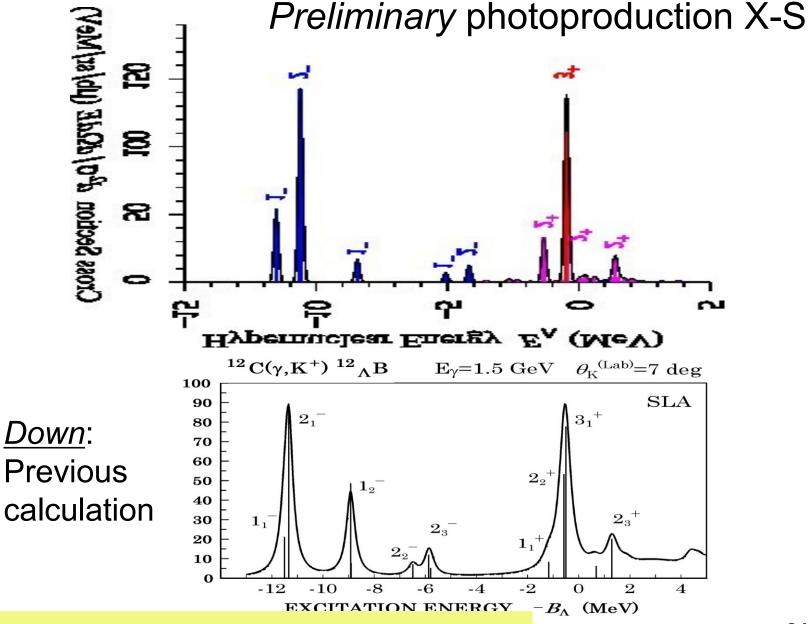

$${}^{12}{}_{\Lambda}B(J_{H}^{-}) = \{ {}^{11}B(J_{C}^{-})_{0} \times \Lambda_{S} \}^{(0)} + \{ {}^{11}B(J_{C}^{+})_{1} \times \Lambda_{p} \}^{(2)}$$

$${}^{12}{}_{\Lambda}B(J_{H}^{+}) = \{ {}^{11}B(J_{C}^{-})_{0} \times \Lambda_{p} \}^{(1)} + \{ {}^{11}B(J_{C}^{+})_{1} \times \Lambda_{S} \}^{(1)}$$

There are opposite parity excited states at low energy E<10MeV. (Many theoretical attempts)

"Parity-mixing" extended calculation (preliminary)

Components connected via (γ, K^+)


proton is converted --→ Λ in s or p orbits

(So far only green arrows are taken into account.)

$$^{12}{}_{\Lambda}{\rm B}(J_{\rm H}^{-}) = \{([\underline{s}^{4}]p^{7}; \underline{J_{\rm c}^{-}})_{0} \times \Lambda_{\underline{s}}\}^{(0)} + \{([\underline{s}^{4}]p^{6}(\underline{s}\underline{d})^{1}; \underline{J_{\rm c}^{+}})_{1} \times \Lambda_{\underline{p}}\}^{(2)} + \{([\underline{s}^{3}]p^{8}; \underline{J_{\rm c}^{+}})_{1} \times \Lambda_{\underline{p}}\}^{(2)} + \{([\underline{s}^{3}]p^{8}; \underline{J_{\rm c}^{+}})_{1} \times \Lambda_{\underline{p}}\}^{(2)} + \{([\underline{s}^{4}]p^{6}(\underline{s}\underline{d})^{1}; \underline{J_{\rm c}^{+}})_{1} \times \Lambda_{\underline{p}}\}^{(2)} + \{([\underline{s}^{3}]p^{8}; \underline{J_{\rm c}^{+}})_{1} \times \Lambda_{\underline{p}}\}^{(2)} + \{([\underline{s}^{4}]p^{6}(\underline{s}\underline{d})^{1}; \underline{J_{\rm c}^{+}})_{1} \times \Lambda_{\underline{p}}\}^{(2)} + \{([\underline{s}^{3}]p^{8}; \underline{J_{\rm c}^{+}})_{1} \times \Lambda_{\underline{p}}\}^{(2)} + \{([\underline{s}^{4}]p^{6}(\underline{s}\underline{d})^{1}; \underline{J_{\rm c}^{+}})_{1} \times \Lambda_{\underline{p}}\}^{(2)} + \{([\underline{s}^{3}]p^{8}; \underline{J_{\rm c}^{+}})_{1} \times \Lambda_{\underline{p}}\}^{(2)} + \{([\underline{s}^{4}]p^{6}(\underline{s}\underline{d})^{1}; \underline{J_{\rm c}^{+}})_{1} \times \Lambda_{\underline{p}}\}^{(2)} + \{([\underline{s}^{3}]p^{8}; \underline{J_{\rm c}^{+}})_{1} \times \Lambda_{\underline{p}}\}^{(2)} + \{([\underline{s}^{4}]p^{6}(\underline{s}\underline{d})^{1}; \underline{J_{\rm c}^{+}})_{1} \times \Lambda_{\underline{p}}\}^{(2)} + \{([\underline{s}^{3}]p^{8}; \underline{J_{\rm c}^{+}})_{1} \times \Lambda_{\underline{p}}\}^{(2)} + \{([\underline{s}^{4}]p^{6}(\underline{s}\underline{d})^{1}; \underline{J_{\rm c}^{+}})_{1} \times \Lambda_{\underline{p}}\}^{(2)} + \{([\underline{s}^{3}]p^{8}; \underline{J_{\rm c}^{+}})_{1} \times \Lambda_{\underline{p}}\}^{(2)} + \{([\underline{s}^{3}]p^{8}; \underline{J_{\rm c}^{+}})_{1} \times \Lambda_{\underline{p}}\}^{(2)} + \{([\underline{s}^{4}]p^{6}(\underline{s}\underline{d})^{1}; \underline{J_{\rm c}^{+}})_{1} \times \Lambda_{\underline{p}}\}^{(2)} + \{([\underline{s}^{3}]p^{8}; \underline{J_{\rm c}^{+}})_{1} \times \Lambda_{\underline{p}}\}^{(2)} + \{([\underline{s}^{4}]p^{6}(\underline{s}\underline{d})^{1}; \underline{J_{\rm c}^{+}})_$$

Problems:

What kind of effective interactions should be used in describing those WF in the extended model space.

Careful claculation is in progress

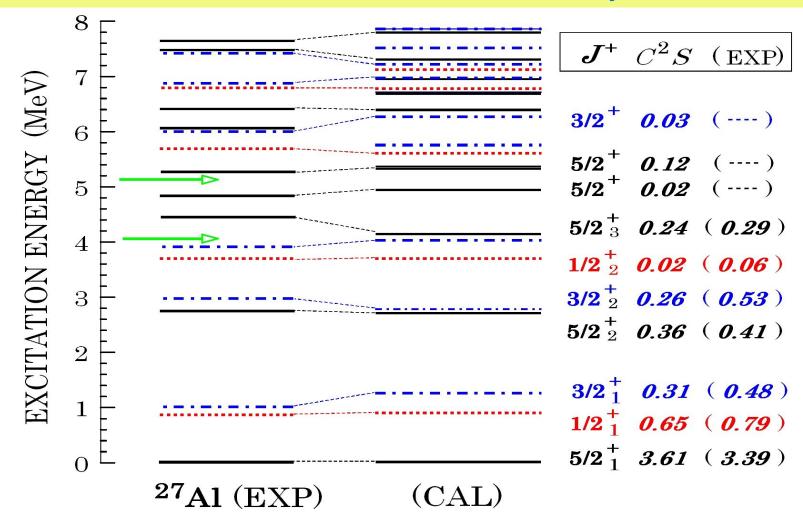
(3) Medium-heavy nuclear targets

A typical example of medium-heavy target : $^{28}Si: (d_{5/2})^6$ and $(sd)^{6P}(sd)^{6N}$

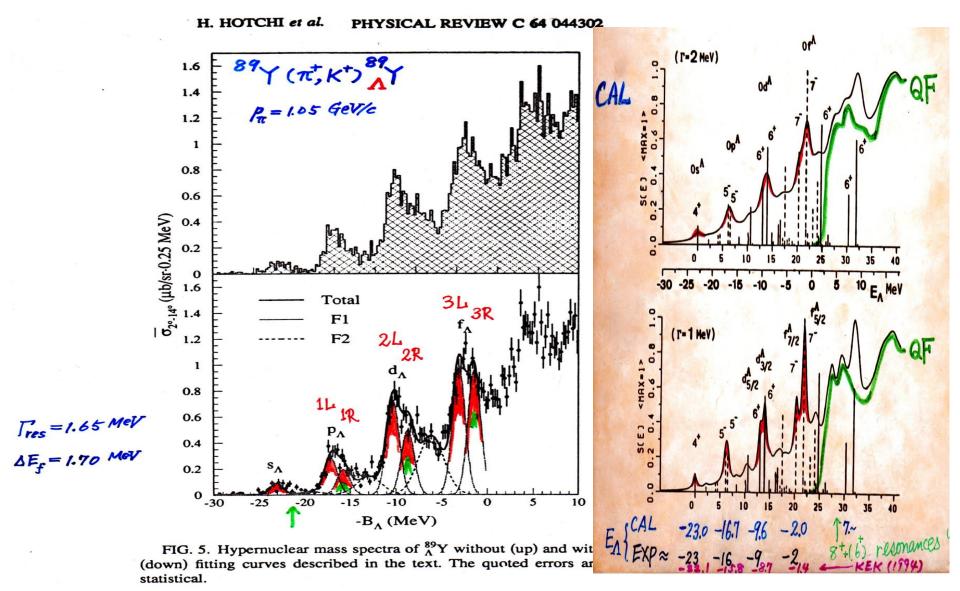
to show characteristics of the (γ,K⁺) reaction with DDHF w.f. Spin-orbit splitting: consistent with $_{\Lambda}{}^{7}$ Li, 9 Be, 13 C, 89 Y

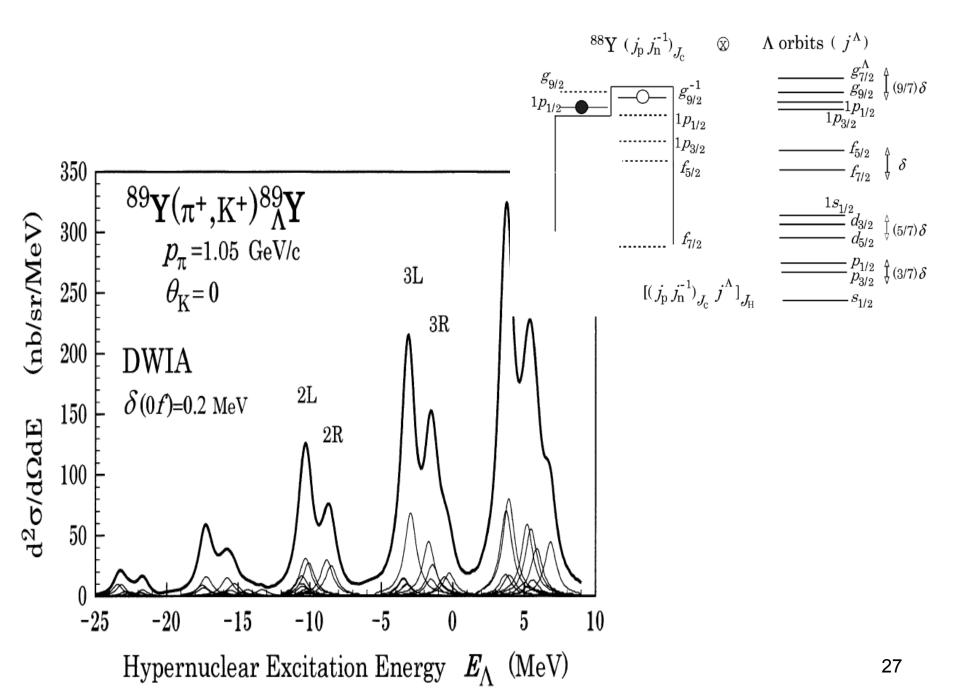
22

These characteristic merits of the $\gamma p \rightarrow \Lambda K^+$ process (ability of exciting selectively high-spin unnatural-parity states) should be realized better in heavier **systems** involving large j_p and large j_{Λ}

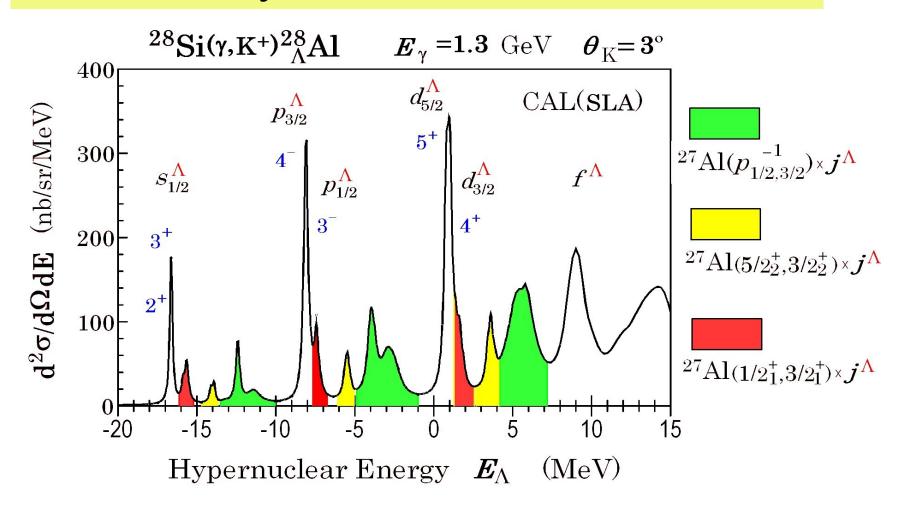

 $(e,e'K^+) \quad d^3\sigma/dE_e \, d\Omega_e \, d\Omega_K = \varGamma_\times \, d\sigma/d\Omega_K$ $\varGamma : \text{virtual photon flux (kinematics)}$ Hereafter we discuss $d\sigma/d\Omega_K$ for $^AZ \, (\gamma,K+)_\Lambda ^AZ'$

Theor. x-section for $(d_{5/2})^6 (\gamma, K^+)[j_h-j_{\Lambda}]J$

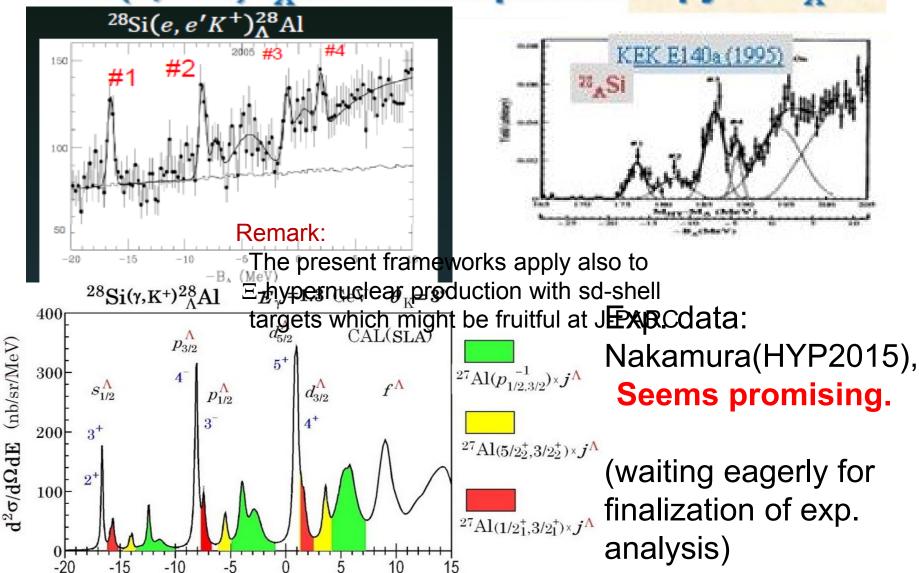

DWIA					- 6	As Maria		100		[nb/si		
Lambda	a= (-	s1/2L 16.92)	, (-8	3/2L 3.40)		1/2L 8.40)		s1/2L 0.32)		15/2L 1.69)		13/2L (.69)
Proton hole d5/2 (-16.17)	2+ 3+ (g	29.2 63.8	1- 2- 3- 4-	5.4 7.1 4.2 141.8	2- 3-	19.4 76.2	2+ 3+	2.2	0+ 1+ 2+ 3+ 4+ 5+	0.0 26.0 0.3 26.7 0.5 164.1	1+ 2+ 3+ 4+	8.9 34.9 30.4 112.0
p1/2 (-25.49)	0- 1-	9.4 30.5	1+ 2+	2.0 66.9	0+ 1+	0.0 28.3		3.7 12.2	2-3-	10.7	1- 2-	1.4 43.5
p3/2 (-29.84)	1-2-	14.3 59.1	0+ 1+ 2+ 3+	0.0 8.9 0.4 109.1	1+ 2+	1.8 62.5	1- 2-	5.9 24.8	1- 2- 3- 4-	3.2 4.5 4.5 148.6	0- 1+ 2+ 3+	2.0 5.7 17.5 96.3
s1/2 (-44.55)	0+ 1+	0.1 19.2	1- 2-	12.1 50.0	0- 1-	7.3 23.7		0.3 51.4	2+ 3+	27.0 58.1	1+ 2+	16.5 40.1


Proton pickup from ${}^{28}Si(0^+):(sd)^6 = (d_{5/2})^{4.1}(1s_{1/2})^{0.9}(d_{3/2})^{1.0}$

Another important factor in the structure analysis (reaction): **WF** Nuclear core excitations should be carefully taken into account.



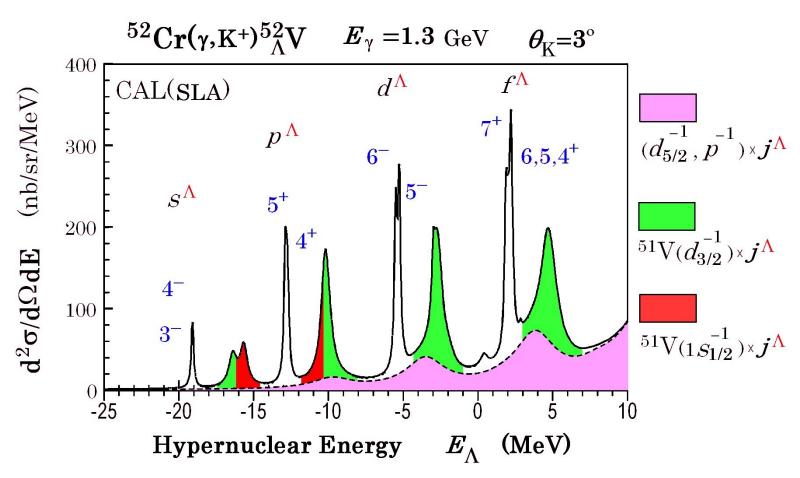
Early example: How to understand $_{\Lambda}^{89}$ Y data (Hotchi et al, PRC 64 (2001) vs. CAL(Motoba et al, 1988)



Major peaks and sub-peaks can be classified by the structure characters

Major peak series : $[27\text{Al}(5/2_1^+)\times j^{\Lambda}]_{J}$ with $j^{\Lambda}=s, p, d, ...$

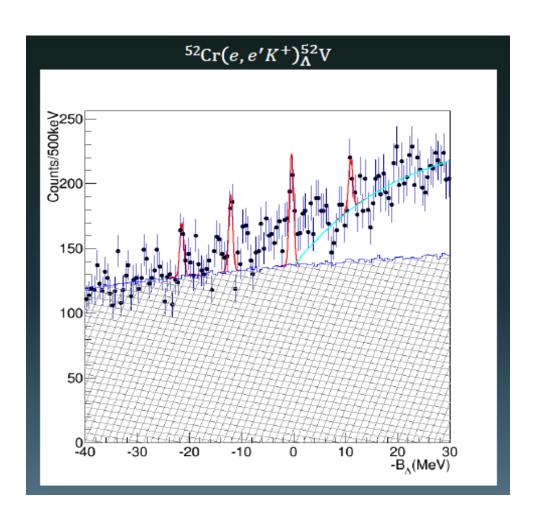
28Si(e,e'K+)28, AI - First Spectroscopy of 28, AI



Hypernuclear Energy

 E_{\wedge}

⁵²Cr (*j* dominant target case)


typical unnatural-parity high-spin states

Major peak series : $[51V(7/2^-; gs) \times j^{\Lambda}]_J$ with $j^{\Lambda} = s, p, d, f, ...$

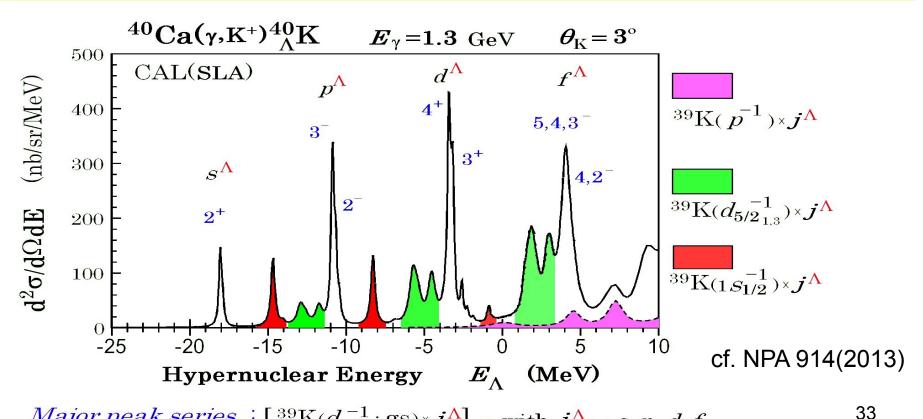
52 Cr(e,e'K⁺) $^{52}_{\Lambda}$ V in analysis

Nakamura's report. (HYP2015)

peak	B _Λ (MeV)				
#1	-21.4				
#2	-12.1				
#3	-0.4				
#4	+10.9				

E01-115

Well-separated series of peaks due to large q and spin-flip dominance: $j_>=l+1/2$, $j_<=l-1/2$


```
[(nlj)_{0}^{-1}(nlj)^{\Lambda}]_{I} a series of pronounced peaks
jj-closed target : (28Si, 52Cr)
  [j_{>}^{-1} j_{>}^{\Lambda}]_{J} J = j_{>} + j_{>}^{\Lambda} = l_{0} + l_{\Lambda} + 1 = L_{max} + 1 (unnatural parity)
  [j_{>}^{-1} j_{<}^{\Lambda}]_{\mathcal{I}} J = j_{>} + j_{<}^{\Lambda} = l_{p} + l_{\Lambda} = L_{\text{max}} \text{ (natural parity)}
LS-closed target : (40Ca)
   [j_{\sim}^{-1} j_{\sim}^{\Lambda}]_{.I} J = j_{\sim} + j_{\sim}^{\Lambda} = I_0 + I_{\Lambda} = I_{\max} (natural parity)
```

⁴⁰Ca (LS-closed shell case):

high-spin states with natural-parity (2+,3-,4+) because

the d3/2 proton-hole is responsible for the major peak series.

Focus attention to how the 148K case changes or similar to this case concerning all pronounced peaks (in progress).

(4) One of the major objects is to get high presision systematics of Λ s.p.e.

Taken from: Millener-Dover-Gal, PRC18 (1988)

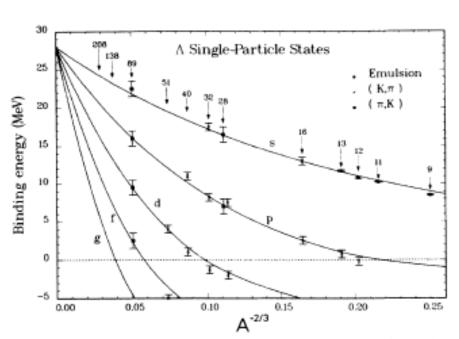
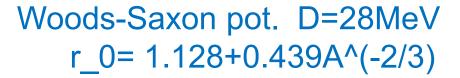



FIG. 1. The data on binding energies (B_{Λ}) of Λ sing

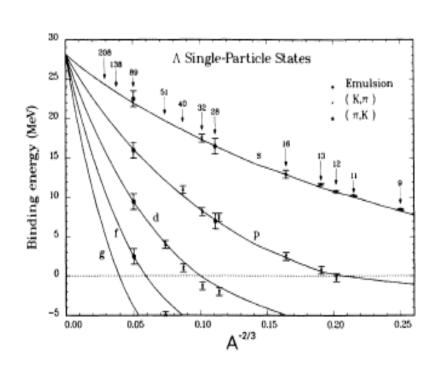
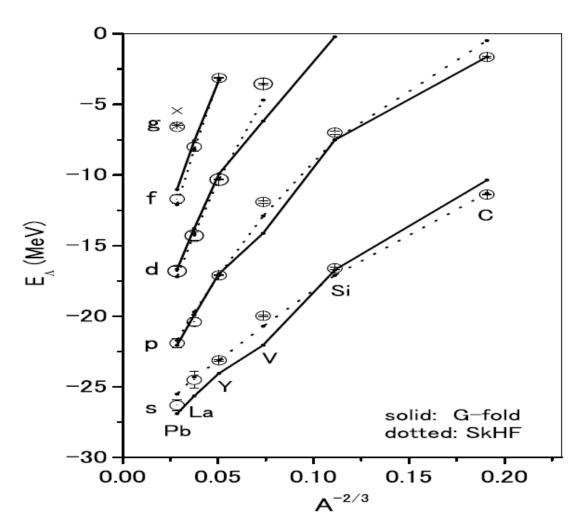


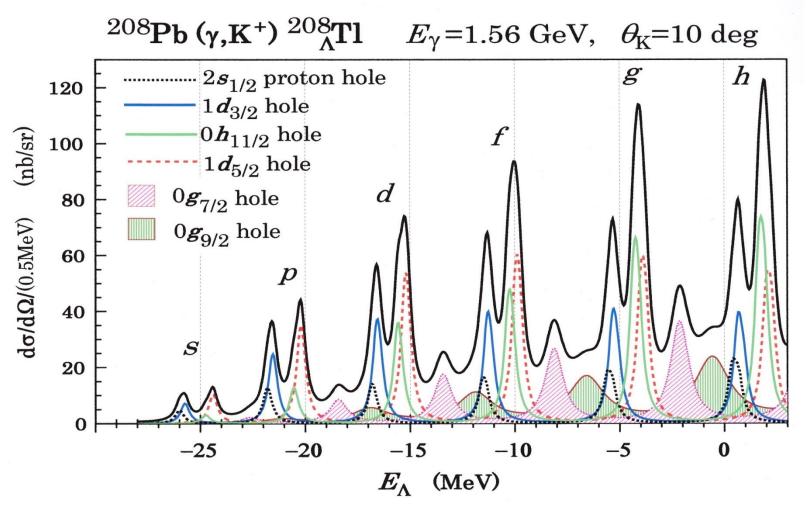
FIG. 5. Same as Fig. 4 but for the potential in Table III with $\rho^{4/3}$ density dependence.


Skyrme HF with $\rho^{4/3}$ Density dependent

Single-particle energies of Λ

G-matrix (ESC08c) results vs. experiments

(Y. Yamamoto et al.: PTP. S.185 (2010) 72 and priv. commun.)


Y. Yamamoto, T. Motoba and Th. A. Rijken

High resolution exp. data @ Jlab play a unique role.

Combination of several sd-, fp- and sdg-shell data are important to extract systematic Λ behavior in nuclear matter.

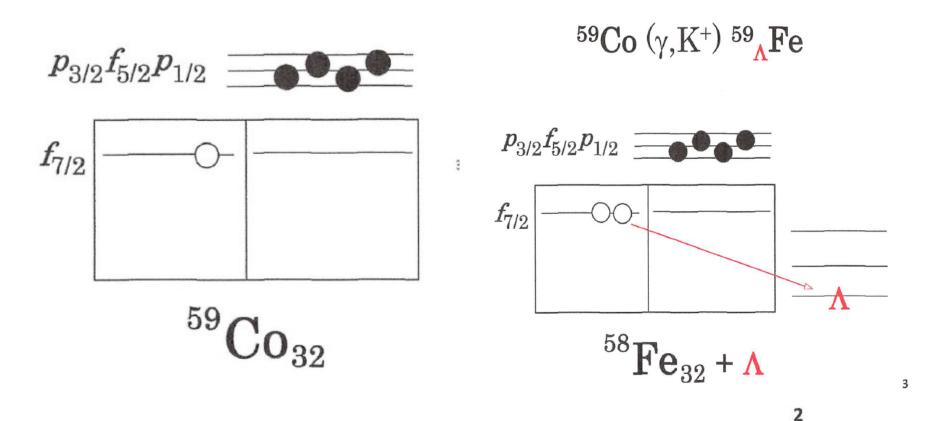
²⁰⁸Pb(γ ,K+) ²⁰⁸ $_{\Lambda}$ TI

Calculated with Λ (s, p, sd, fp, sdg, fph shells) together with core excitations.(approx. degeneracy of proton holes.

We have an opportunity to observe a series of Lambda orbits?

(5) Another interesting topics related to medium-heavy hypernuclear structure includes

A-rotation(deformation) coupling


- We will get not only 'single' pariticle Λ states, but also sub-peaks corresponding to dynamic coupling between Λ and nuclear core.
- Among others the coupling with rotational motion is quite interesting
- Refer to Talks by Isaka and Hagino.

Coupling of A with Nuclear Rotational States

A possible way to observe it in a fp-shell region by $^{59}\text{Co}(\gamma, \text{K}^+)$ $^{59}{}_{\Lambda}\text{Fe}$

Proposing another measurement of $\mu(\Lambda)$ by making use of strong internal magnetic field of Fe

A typical odd-Z target with $\pi(f_{7/2})^7$

2

(Stable target with 100% abundance) "Many" protons in the large *j* @ the surface

(Private communication from Mei Hua and Hagino and preliminary results (2016) shown here)

Low-lying states of $^{59}_{\Lambda}$ Fe with microscopic particle-rotor model

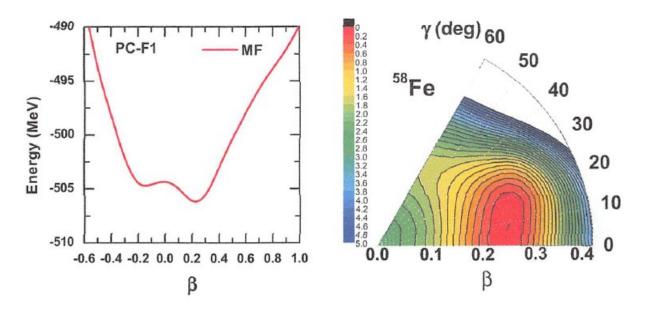
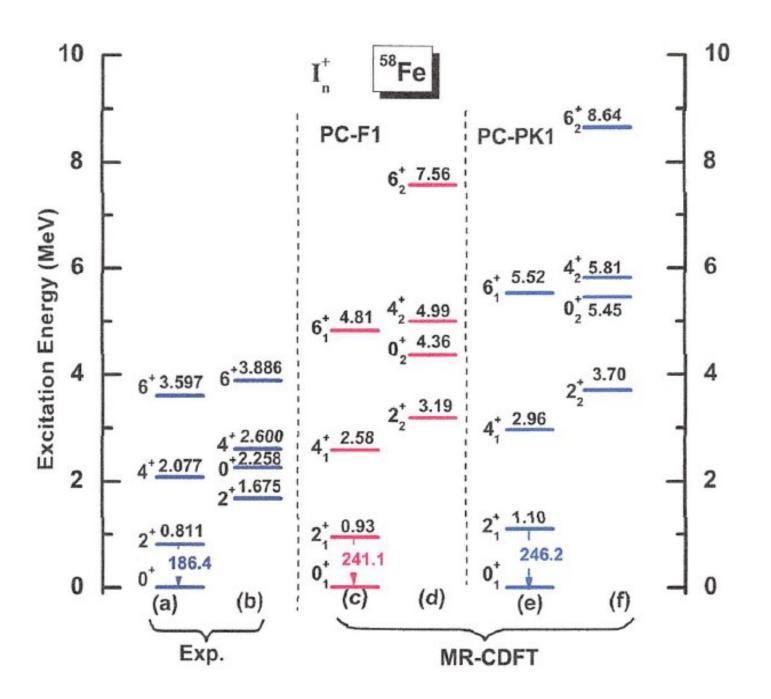



FIG. 1: The left panel:total energy of 58 Fe as a function of the axial deformation parameter β from constrained mean-field calculations with PC-F1 forces. The right panel:total energy of 58 Fe in the $\beta - \gamma$ plane. Energies are normalized to the absolute minimum.

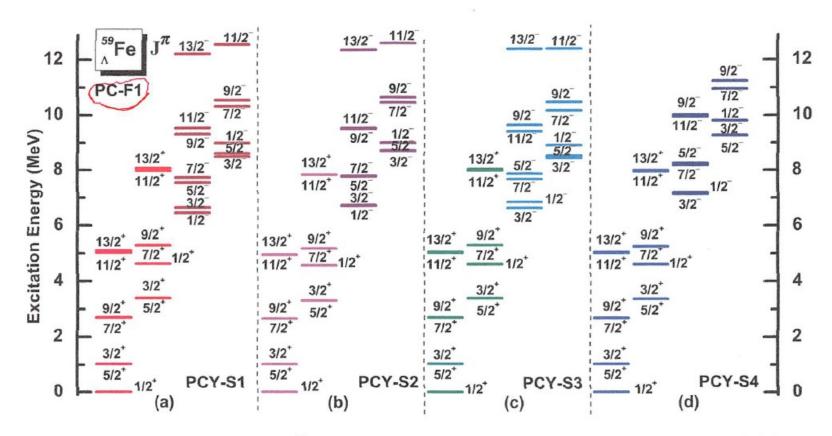
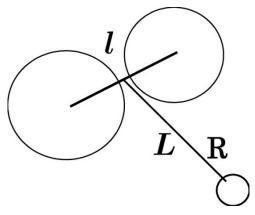


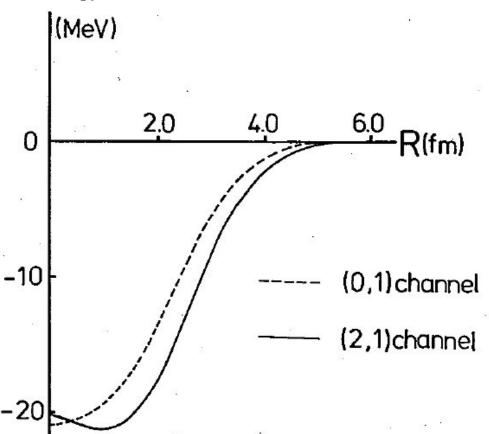
FIG. 3: The low-energy excitation spectra of $^{59}_{\Lambda}$ Fe with the PC-F1 force for NN interaction and with PCY-S1(a), PCY-S2(b), PCY-S3(c) and PCY-S4(d) for Λ N interaction.


Why the strong coupling is realized between p-state Λ and α + α core ?

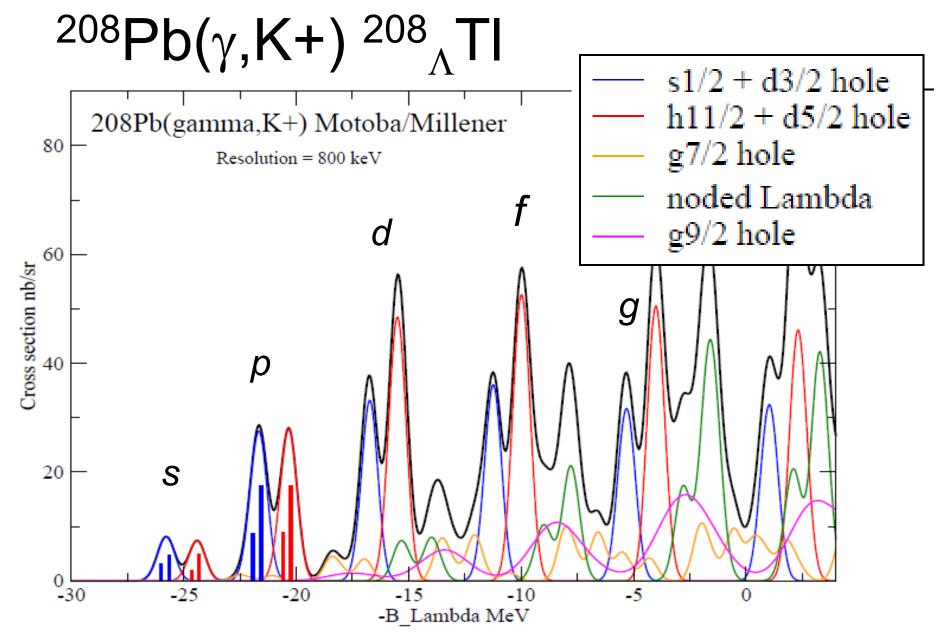
Schematic consideration assuming the SU(3) maximum configuration for the nuclear g.s. rotational states:

$$(\lambda \mu)$$
=(40) ℓ =0,2,4⁺ for ⁸Be $(\lambda \mu)$ =(04) ℓ =0,2,4⁺ for ¹²C $(\lambda \mu)$ =(80) ℓ =0,2,4,6,8⁺ for ²⁰Ne

/-dependent folding potential


 $V_{lL,l'L'}^{J}(R) = \langle [\phi_l(\lambda\mu) Y_L(\widehat{R})]_J | \sum_N v_{AN} | [\phi_{l'}(\lambda\mu) Y_{L'}(\widehat{R})]_J \rangle$

Diagonal potential


 $V_{l}L(R)$ for Λp -state

l=2 is more attractive than l=0.

Summary and outlook

- Based on the (γ,K+) reaction characteristics, typical physics contents are discussed by showing theoretical production cross section spectra.
- 2) Among others the DWIA predictions for p-shell, ²⁸_ΛAl and ⁵²Cr are well compared with the recent expts. ⁴⁰Ca and ²⁰⁸Pb are also demonstrated.
- 3) In addition to the Λ s.p.e., the dynamical coupling of Λ with collective nuclear rotation is emphasized.
- 4) New feature of "parity-mixing" mediated by hyperon has been pointed out, and the detailed calculation is in progress. This can be also applied to heavier Hys

We have an opportunity to observe a series of Lambda orbits?