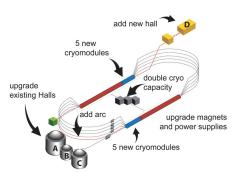
Overview of Hall D Complex

E.Chudakov¹

¹JLab

Presented at Workshop Physics with Neutral Kaon Beam at JLab, KL2016 JLab. 1-3 Feb 2016



E.Chudakov

Outline

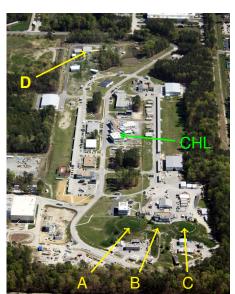
- JLab at 12 GeV
- Physics motivation for Hall D: meson spectroscopy
- Experiment GlueX in Hall D
 - Apparatus
 - Performance during commissioning
- Experimental program and future plans

CEBAF Upgrade to 12 GeV

Upgrade Goals

Accelerator: 6 GeV ⇒ 12 GeV

• Halls A,B,C: e^- <11 GeV, < 100 μ A


• Hall D: e^- 12 GeV $\Rightarrow \gamma$ -beam

Upgrade Status

Reached 12 GeV in Dec 2015

Halls A,D: finished

Halls B,C: about a year to go

Hall D at Jefferson Lab

- Hall D a new hall at Jefferson Lab
 - Construction finished in 2015 (∼\$50M project, without the civil part)
 - Commissioning is in progress
- Physics with high intensity polarized photon beams
 - Experiment GlueX: search for exotic hybrid mesons
 - Radiative widths of pseudoscalars, pion polarizability
 - Other topics in preparation: rare decays; nuclear effects
- A new beamline and a new large acceptance detector
 - Coherent Bremsstrahlung ⇒ linearly polarized photons
 - Large solenoidal spectrometer ⇒ a uniform acceptance
 - Fully pipelined electronics ⇒ very high trigger/DAQ rate

Naive quark model:

• Mesons are $\overline{q}q$, constituent quarks are S=1/2 fermions

Overview of Hall D

- No gluonic degrees of freedom
- Restrictions on the quantum numbers: J^{PC} : $P = (-1)^{L+1}, C = (-1)^{L+S}$

- Predicted by models, Lattice QCD
- Exotic QN: an excellent signature

F Chudakov

Naive quark model:

- Mesons are $\overline{q}q$, constituent quarks are S=1/2 fermions
- No gluonic degrees of freedom
- Restrictions on the quantum numbers: J^{PC} : $P = (-1)^{L+1}$, $C = (-1)^{L+S}$

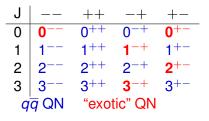
Glue and spectroscopy

Gluonic excitations ⇒ hybrid mesons

- Predicted by models, Lattice QCD
- "Constituent gluon":
 LQCD: 1⁺⁻, mass of 1-1.5 GeV
- Exotic QN: an excellent signature of a new degree of freedom no mixing with the regular qq state

Naive quark model:

- Mesons are $\overline{q}q$, constituent quarks are S=1/2 fermions
- No gluonic degrees of freedom
- Restrictions on the quantum numbers: J^{PC} : $P = (-1)^{L+1}$, $C = (-1)^{L+S}$

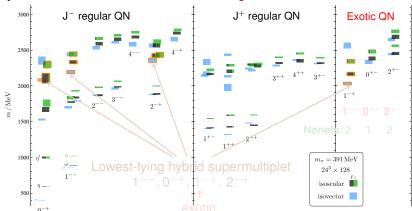

Glue and spectroscopy

Gluonic excitations ⇒ hybrid mesons

- Predicted by models, Lattice QCD
- "Constituent gluon":
 LQCD: 1+-, mass of 1-1.5 GeV
- Exotic QN: an excellent signature of a new degree of freedom no mixing with the regular qq state

Naive quark model:

- Mesons are $\overline{q}q$, constituent quarks are S=1/2 fermions
- No gluonic degrees of freedom
- Restrictions on the quantum numbers: J^{PC} : $P = (-1)^{L+1}$, $C = (-1)^{L+S}$

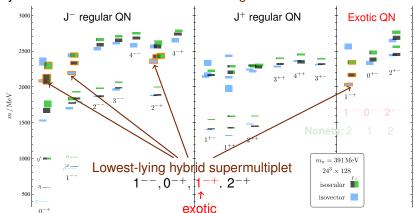

Glue and spectroscopy

Gluonic excitations ⇒ hybrid mesons

- Predicted by models, Lattice QCD
- "Constituent gluon":
 LQCD: 1⁺⁻, mass of 1-1.5 GeV
- Exotic QN: an excellent signature of a new degree of freedom no mixing with the regular qq states

Lattice QCD - the Meson Spectra

J.Dudek et al PRD 83 (2011); PRD 84 (2011), PRD 88 (2013) Hybrids identified: States with non-trivial gluonic fields

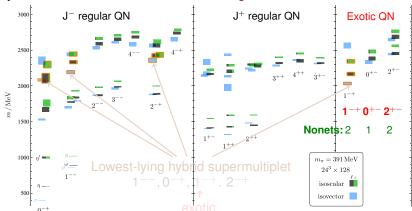


Calculations for $m_{\pi} \sim 400 MeV$

Jefferson Lab

Lattice QCD - the Meson Spectra

J.Dudek et al PRD 83 (2011); PRD 84 (2011), PRD 88 (2013) Hybrids identified: States with non-trivial gluonic fields



Calculations for $m_{\pi} \sim 400 MeV$ Orange frames - lightest hybrids

Jefferson Lab

Lattice QCD - the Meson Spectra

J.Dudek et al PRD 83 (2011); PRD 84 (2011), PRD 88 (2013) Hybrids identified: States with non-trivial gluonic fields

Calculations for $m_{\pi} \sim 400 MeV$ Orange frames - lightest hybrids

Jefferson Lab

Hybrids: expected features and ways to detect

Masses

• LQCD: $1^{-+} \sim 2.0 - 2.4 \text{ GeV/c}^2$ $0^{+-} \sim 2.3 - 2.5 \text{ GeV/c}^2$ $2^{+-} \sim 2.4 - 2.6 \text{ GeV/c}^2$

Full Widths

■ Models: 0.1 – 0.5 GeV/c²

Decays

ullet Final states: multiple π^\pm and γ

7/32

No calculations for the decay widths or cross sections so far.

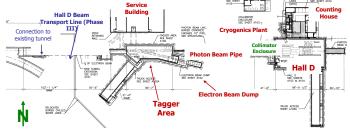
How to detect the hybrids?

- Detect the final states
- Identify the QN using the Partial Wave Analysis (PWA)

GlueX Experiment: Design Goals and Features

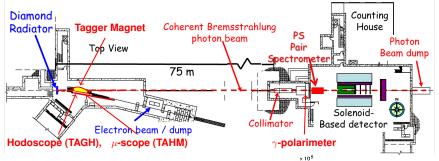
- General requirements:
 - Hermeticity and uniform acceptance for charged particles and photons
 - Good enough resolution to identify exclusive reactions
 - High statistics
- Specific feature: tagged photon beam
 - Linear polarization helps the QN identification
 - Beam γ and π^- have different couplings to the hybrid states \Rightarrow complementary to the π^- -beam experiments
 - Few photoproduction data exist so far
- Considerable theoretical support for the PWA

The GlueX Collaboration

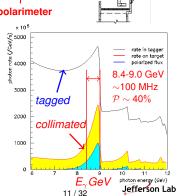

Arizona State, Athens, Carnegie Mellon, Catholic University, Univ. of Connecticut, Florida International, Florida State, George Washington, Glasgow, GSI, Indiana University, ITEP, Jefferson Lab, U. Mass. Amherst, MIT, MEPhi, Norfolk State, North Carolina A&T, Univ. North Carolina Wilmington, Northwestern, Santa Maria, University of Regina, and Yerevan Physics Institute.

Over 100 collaborators from 23 institutions. Others are planning to join and more are welcome.

Hall D Complex

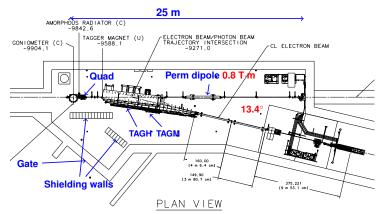


Civil Photo July 2011 Ready Dec 2011



Beam/detector Ready Oct 2014

Beamline


- 12 GeV e⁻ beam 0.01 5.0 μA
- Beam dump < 60 kW
- 20 μ m diamond 0.01% RL: coherent <25 μ rad
- Collimation r < 1.8 mm at ~ 80 m
- Coherent peak 8.4 9.0 GeV $\mathcal{P} \sim 40\%$ $2.2 \mu A \Rightarrow 100 \text{ MHz } \gamma$
- Energy/polarization measured:
 - σ_E/E : Tagger 0.1%; PS 0.5%
 - Pair spectrometer: spectrum $\Rightarrow \sigma_{\mathcal{P}}/\mathcal{P} \sim 5\%$

KL2016, Feb 2016 E.Chudakov

Overview of Hall D

Tagger Hall

Radiators

- Diamond (goniometer) 10⁻⁴ RL
- Amorphous (slide)
 0.2 · 10⁻⁴, 10⁻⁴, 3 · 10⁻⁴ RL

Magnets

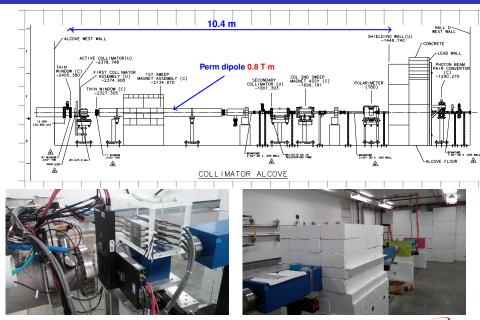
- Tagger Dipole 13.4°
 1.5 T at 12 GeV
- Quad after radiators (vert. focus)

12 / 32

Perm dipole 0.8 T·m, e[−] down

Jefferson Lab

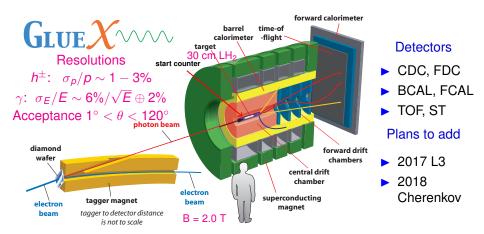
Tagger Hall Pictures



Goniometer Can

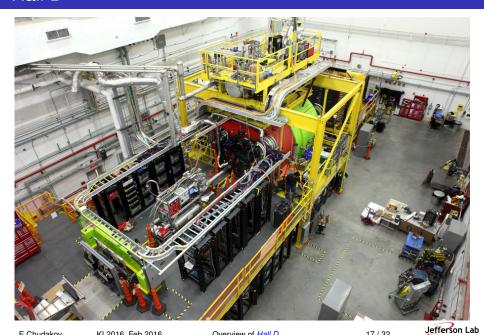
Amorph. Rad. Slide

Collimator Alcove

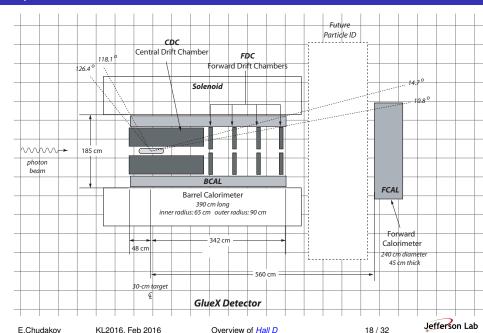

Pair Spectrometer

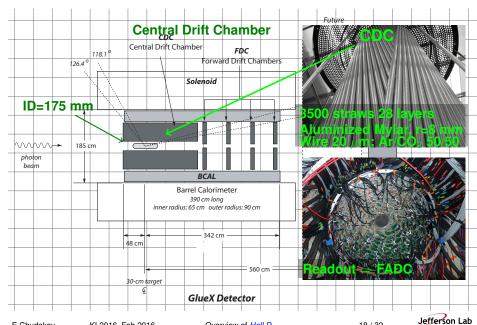
- Converters 0.03 0.5% RL
- High resolution scintillator tile detector
- · Coarse scintillator detector

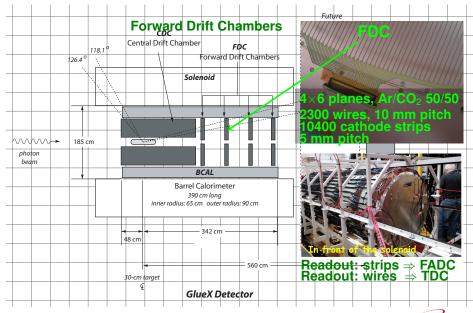
Hall D/GlueX Spectrometer and DAQ

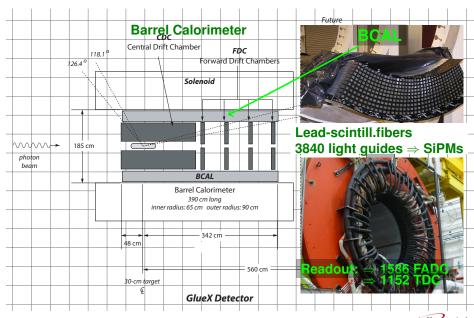

Photoproduction γp 15 kHz for a 100 MHz beam

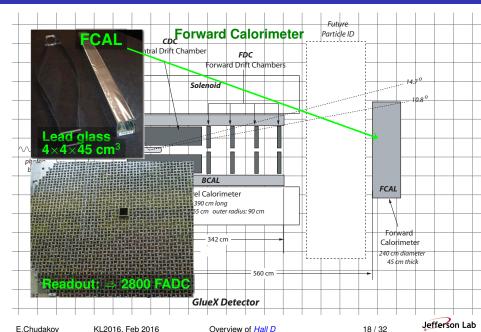
Beam 10 MHz/GeV: inclusive trigger 20 kHz \Rightarrow DAQ \Rightarrow tape


Beam 100 MHz/GeV: inclusive trigger 200 kHz \Rightarrow DAQ \Rightarrow L3 farm \Rightarrow tape



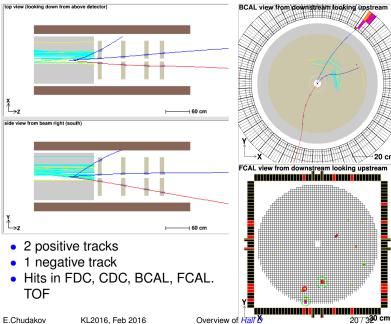

Hall D


E.Chudakov KL2016, Feb 2016 Overview of Hall D 17 / 32



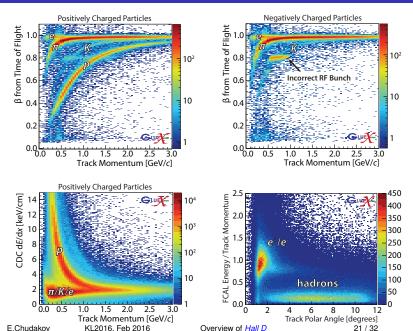
Jefferson Lab

Jefferson Lab

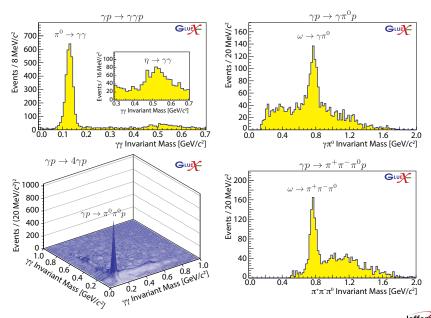

Commissioning Status

Runs with beam:

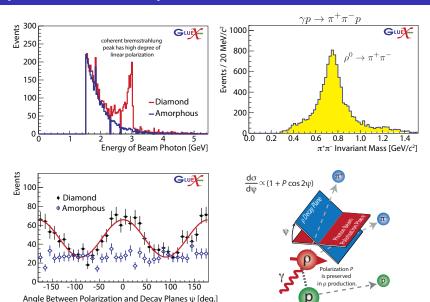
- Fall 2014 10.0 GeV beam: beam commissioning and detector checkout
- Spring 2015 5.5 GeV beam: 1 week of beam commissioning
- ullet Fall 2015 12 GeV beam (accelerator priority) \sim 2 days of beam
- Spring 2016 (plans): 12 GeV beam completing the commissioning
 - Data for early physics results


All the equipment for GlueX-I has been commissioned at some level! All the detector systems are within 30% of the design specs, some have reached the specs.

Event Display


Jefferson Lab

PID



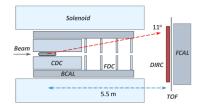
Jefferson Lab

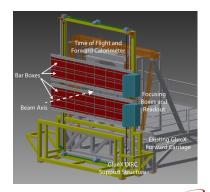
Event Reconstruction and Signals Observed

Physics With Linearly Polarized Beam

Plans for "Early Physics"

Expected in 2016:


- Polarization transfer and beam asymmetry measurements $\gamma p \to (\rho, \omega, \phi) p, \gamma p \to (\pi^{\circ}, \eta, \eta') p,$
- Cross section measurements
- Identify known mesons in PWA

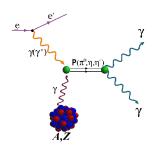

Future: Forward Kaon Identification

Present PID: TOF, dE/dx, Kinematics

Upgrade

- 4 of the BaBar DIRC bar boxes
- New readout system
- Allows to study:
 - Strangeonium and hybrids
 - Hyperons
- Installation planned for 2018

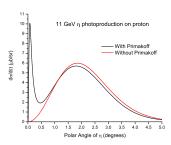
Physics Program

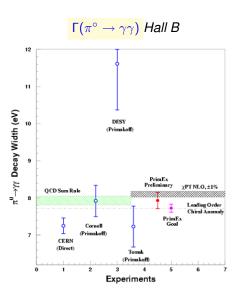

Proposal/	Sta-	Title	Beam	PAC
experiment	tus		days	#
E12-06-102	Α	Mapping the Spectrum of Light Quark	120	30
		Mesons and Gluonic Excitations with Lin-		
		early Polarized Photons		
E12-10-011	A-	A Precision Measurement of the η Radia-	79	35
		tive Decay Width via the Primakoff Effect		
E12-13-003	Α	An initial study of hadron decays to	200	40
		strange final states with GlueX in Hall D		
E12-13-008	A-	Measuring the Charged Pion Polarizabil-	25	40
		ity in the $\gamma\gamma ightarrow \pi^+\pi^-$ Reaction		
E12-12-002	Α	A study of meson and baryon decays to	220	42
		strange final states with GlueX in Hall D		
C12-14-004	C2	Eta Decays with Emphasis on Rare Neu-	(130)	42
		tral Modes: The JLab Eta Factory Exper-		
		iment (JEF)		
		partly concurrent with GlueX $(\eta o 3\pi)$		
LOI12-15-001		Physics with secondary K_L° beam		43
LOI12-15-006		ω -production on nuclei		43

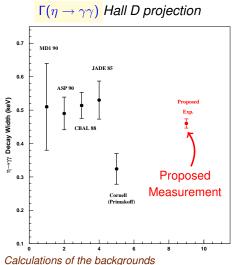
Summary

- Hall D complex: construction and installation are finished, operations started
- Experiment GlueX is well into commissioning. All the detector systems are performing close to the specifications. More commissioning time is needed for full calibration
- GlueX is planning to finish commissioning in Spring 2016 and to use the data for studying relatively simple reactions
- By the Fall 2016 GlueX is planning to be ready to start the main program
 the search for exotic mesons
- Planned upgrade: Cherenkov detector for kaon identification to be installed in 2018
- A scientific program beyond the search for exotic hybrid is in place and growing

APPENDIX

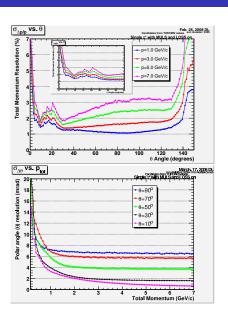

$\pi^{\circ}, \eta, \eta^{\circ} \rightarrow \gamma \gamma$ coupling in Primakoff reaction

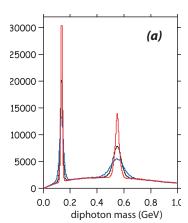

$$\frac{d\sigma}{d\Omega} = \Gamma_{\gamma\gamma} \frac{8\alpha Z^2 \beta^3 E^4}{m^3 Q^4} \left| F_{e.m.}(Q) \right|^2 \cdot \sin^2 \theta$$


- Primakoff $\theta < 0.5^{\circ}$
- Primakoff-Nuclear interference
 ⇒ θ < 5°
- Fit to $\frac{d\sigma}{d\Omega}(\theta)$

- $\Gamma(\pi^{\circ} \to \gamma \gamma)$ test of Chiral symmetry/anomalies 6 GeV E-02-103 in Hall B
- $\Gamma(\eta \to \gamma \gamma)$ light quark mass ratio, $\eta \eta^{\gamma}$ mixing angle 12 GeV PR12-10-011 in Hall D

PRIMEX Projected Results

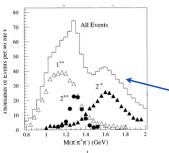



Jefferson Lab

Design Parameters

Capability	Quantity	Range	
Charged particles	Coverage	$1^{\circ} < \theta < 160^{\circ}$	
	Momentum Resolution (5°-140°)	$\sigma_{\rm p}/{\rm p}=1-3\%$	
	Position resolution	$\sigma \sim 150\text{-}200~\mu\text{m}$	
	dE/dx measurements	$20 < \theta < 160^{\circ}$	
	Time-of-flight measurements	$\sigma_{ToF} \sim 60 \text{ ps}; \ \sigma_{BCal} \sim 200 \text{ps}$	
	Barrel time resolution	$\sigma_{\rm t}^{\gamma}$ < (74 / $\sqrt{\rm E} \oplus 33$) ps	
Photon detection	Energy measurements	$2^{\circ} < \theta < 120^{\circ}$	
	LGD energy resolution (E > 60 MeV)	$\sigma_{\rm E}/{\rm E} = (5.7/\sqrt{\rm E} \oplus 2.0)\%$	
	Barrel energy resolution (E > 60 MeV)	$\sigma_{\rm E}/{\rm E} = (5.54/\sqrt{\rm E} \oplus 1.6)\%$	
	LGD position resolution	$\sigma_{\rm x,y,} \sim 0.64 \ {\rm cm}/{\rm \sqrt{E}}$	
	Barrel position resolution	$\sigma_{\rm z} \sim 0.5 {\rm cm} / \sqrt{\rm E}$	
DAQ/trigger	Level 1	< 200 kHz	
	Level 3 event rate to tape	~ 15 kHz	
	Data rate	300 MB/s	
Electronics	Fully pipelined	250 / 125 MHz fADCs, TDCs	
Photon Flux	Initial: 10 ⁷ γ/s	Final: 10 ⁸ γ/s	

Resolutions


Resolution: 8.5 MeV for π° 30 MeV for η

32 / 32

Jefferson Lab

How to Measure J^{PC} ?

Example from pion production: $\pi^-p \rightarrow \pi^-\pi^-\pi^+p$ at 18 GeV/c

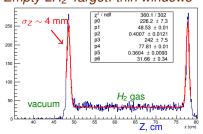
$I(\Omega) = \sum_{\alpha} \left| \sum_{\beta} V_{\alpha,\beta} A_{\alpha,\beta}(\Omega) \right|$

 $A(\Omega)$ = Resonance Angles × Isobar Angles × Isobar Breit Wigner

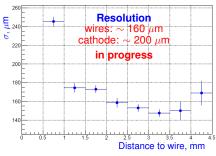
Partial Wave Analysis Method:

In every bin of 3π mass, fit for the (complex) sizes of different J^{PC} amplitudes using all available event kinematics.

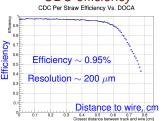
Dominant resonances are remarkably stable.

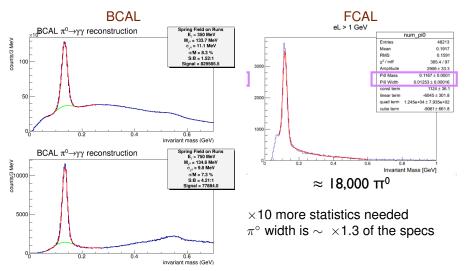


Track Reconstruction in Drift Chambers


Alignment, calibration: in progress Field-off alignment

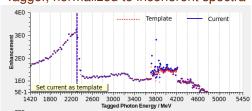
- · FDC tracks from the target
- CDC cosmics


Empty LH₂ Target: thin windows

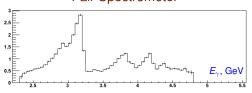

FDC: Resolution

CDC efficiency

EM calorimetry: Calibration using π° mass

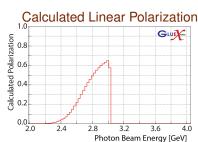

Calibration with π° well advanced; π° width is $\sim \times 1.15$ of the specs

Jefferson Lab


Coherent Bremsstrahlung

- 50 μm thick diamond radiator
- Precision alignment using a goniometer

Tagger, normalized to incoherent spectra



Pair Spectrometer

Goniometer - radiator mounting

