Low energy kaon scattering: present status and open possibilities

> Alessandra Filippi INFN Torino, Italy

> > KL2016 Workshop – JLAB, February 1, 2016

Outline

- Low energy kaon scattering physics: a short experimental overview
 - Kaon vs antikaons, charged vs neutral kaons
- Why is kaon scattering still instructive?
- What can we learn more from reactions induced by neutral kaons?
 - Unmeasured cross sections at low energy no data exist
 - **K**N Scattering lengths determination
 - Subthreshold behavior of $\overline{K}N$ interaction free space and in-medium
 - The Λ (1405) problem
 - Existence of aggregate K-multi N clusters
 - Information on mirror hypernuclei

Conclusions

Charged Kaon-Nucleon scattering database

DAΦNE

DAΦNE

- At low energy (<350 MeV/c) : **SCARCE DATABASE, LARGE ERRORS**
- Old measurements: < 1982, bubble chamber & emulsion experiments³

Neutral kaon interactions: total cross section on p and n

- Few measurements and dated, limited statistical accuracy
- K_L momenta down to 130 MeV/c
 - σ_{tot}(K_Lp) ~ 70 mb
 - σ_{tot}(K_Ld) ~ 150 mb
- Precision:
 - K_Lp: 10-20%
 - K_Ld: 5-10%
- The K⁰_Lp total cross section is a the average of the K⁰p and K
 ⁰p cross sections
- Charge symmetry assumed (and confirmed):
 - $\sigma_{tot}(K^0p) = \sigma_{tot}(K^+n)$
 - $\sigma_{tot}(\overline{K}^0p) = \sigma_{tot}(K^n)$

Neutral kaons scattering

- Neutral kaons: two different kinds of particles according to their strong or weak interactions
- K_s and K_L : weakly interacting particles
 - linear combinations of the strongly interacting K⁰ and K
 ⁰
- Neutral kaon scattering:
 - In dense material: almost all of the K⁰ component is lost (absorption)
 - On protons: the final states may contain both K^0 and \overline{K}^0 with different amplitudes
 - K⁰p: mixture of I=0 and I=1
 - K
 ⁰p: pure l=1 system
 - From the interference of amplitudes one may determine the relative sign of the K^0 and $\overline{K}{}^0$ potentials

Kaons/Antikaons as hadronic probes

- Unique and complementary features of $K^{\pm,0}$ (\overline{K}^0) as hadronic probes
- BUT: dramatically different strong interaction of K^{+,0} and K⁻/K⁰ with the nucleons and nuclei (unlike pions)

Key role: STRANGENESS conservation

 $K^{+} = (u\overline{s})$ $K^{0} = (d\overline{s})$ $S^{-} = +1$

 $\overline{K}^0 = (\overline{d}s)$

S = -1

Small K⁺N cross sections (O(10 mb))

- Absence of "ordinary" resonances
 - Only S=+1 systems (q⁴q
) could be formed, p>800 MeV/c

Only elastic and CEX reactions possible

- Large cross sections (> 50 mb)
- Excitation of I=0,1 Y* resonances (baryonic: q³), even below threshold
- Strong coupling to many channels: Λπ, Σπ, Υη,...
- Strongly absorbed in nuclei

K⁺ nucleon scattering at med-low momentum: I=1

K⁺p interaction (in H₂)

- elastic channel dominant up to 800 MeV/c
- S-wave dominance
- Pure I=1 source
- Strong contribution on Coulomb interaction at small angles, comparable to nuclear one
 - Sign of nuclear phase shift
 - Negative, S-wave, constructive interference at all momenta below 400 MeV/c
 - S-wave scattering length assessed with a precision of 1%
 - Low energy parameters evaluation

K nucleon scattering

Excitation of I=0 and I=1 baryonic resonances

110 100 90 $\sigma_T(K^-N)$ TOTAL CROSS SECTIONS (mb) T=0 40 I=I 30 20 104 0.6 08 0.9 04 0.5 07 1.0 U. MESONS (GeV/c) LABORATORY MOMENTUM OF K 1500 1550 1600 1650 1700 1750 1800 1850 TOTAL c.m. ENERGY (MeV)

State	L _{1.21}	Γ (MeV)	Dominan channel
Σ(1385)	P13	35-40	Δπ
A (1405)	S01	40	ΚN
A (1520)	D_{03}	15	Κ Ν, Σπ
A (1600)	Poi	60	Σπ, ŔN
$\Sigma(1660)$	P_{11}	50-100	$\Sigma \pi$
A (1670)	Set	25-50	$\Sigma \pi$
$\Sigma(1670)$	D ₁₃	50-60	$\Sigma \pi$
A (1690)	D ₀₃	30-80	$\Sigma \pi, \overline{K}N$
$\Sigma(1750)$	S11	60 - 100	ΚN
Σ(1765)	D15	120	Κ̈́N
A (1815)	F05	70-100	Κ̈́N
A (1830)	D_{05}	60-100	$\Sigma \pi$
$\Sigma(1840)$	P13	120	ΚN
A(1860)	P03	40 - 100	Κ̈́N
$\Sigma(1915)$	F15	70-130	mixed
$\Sigma(1940)$	D_{13}	100-300	mixed
$\Sigma(2030)$	F17	100 - 200	mixed
A (2100)	G ₀₇	100 - 200	Κ̈́N
A (2110)	F ₀₅	140 - 200	$\Sigma \pi, \bar{K}N$

Y* resonance energies, widths and quantum numbers*

K⁻N interaction at low energy

NO ChPT

- Baryonic resonances, I=0,1:
 Λ(1115), Σ(1190), Σ(1385), Λ(1405)...
- Non-perturbative coupled-channel approach to describe all aspects of the K⁻N interaction
- Low-energy data crucial input to enhance the predicting power of the KN models
 - Lack of experimental constraints close to threshold
 - scarcely selective models
 - poor below-threshold predictive power
 - Exp.data with inconsistencies
 - No model able to account for them

Scattering cross sections for elastic & inelastic processes

Hadronic branching ratios close to threshold

Data for below threshold resonance excitations: $\Sigma \pi$ spectra

Energy shift & width of kaonic atoms

6 parameters needed to fully describe low energy K⁻N scattering

S-wave scattering parametrization

- Low energy K
 K systems (p_K < 300 MeV/c) may be parametrized in terms of S-wave scattering lenghts (Dalitz, Tuan, Ann. Phys. 3, 307 (1960))
- Assumptions:
 - The energy is sufficiently low for the scattering to be in S-wave only
 - The S-wave phase shift in each channel with defined isospin and strangeness is determined by a single (complex) parameter, the scattering length
 - The "effective-range term" is negligible: "zero-effective range" treatment

$$\cot \delta = 1/kA$$
 $A = a + ib$

• General expression for the cross section in a single channel

$$\sigma = 4\pi \frac{a^2 + b^2 + b/k}{k^2 a^2 + (1 + kb)^2}$$

 The determination of the complex K⁻p scattering length is complicated due to the presence of both I=0 and I=1 sources, and to the Coulomb force ¹⁰

Zero-effective range parametrizations of neutral kaons cross sections

S-wave zero-effective-range approximation:

O

 \boldsymbol{O}

- strangeness +1, I=0 and I=1 scattering lengths: a₀, a₁ REAL (no absorption)
- strangeness -1, I=1 scattering length: $\overline{A}_1 = \overline{a}_1 + i \overline{b}_1$ COMPLEX (absorptive)

$$\sigma_{tot} = 2\pi \left[\frac{1}{2} \frac{a_0^2}{1+k^2 a_0^2} + \frac{1}{2} \frac{a_1^2}{1+k^2 a_1^2} + \frac{\overline{a}_1^2 + \overline{b}_1^2 + \overline{b}_1/k}{k^2 \overline{a}_1^2 + (1+k\overline{b}_1)^2} \right] \quad \text{total}$$

$$F(K_L^0 p \to K_L^0 p) = \pi \left| \frac{1}{2} \frac{a_0}{1-ika_0} + \frac{1}{2} \frac{a_1}{1-ika_1} \oplus \frac{\overline{a}_1 + i\overline{b}_1}{k^2 \overline{a}_1^2 + (1+k\overline{b}_1)^2} \right|^2 \quad \text{elastic}$$

$$F(K_L^0 p \to K_S^0 p) = \pi \left| \frac{1}{2} \frac{a_0}{1-ika_0} + \frac{1}{2} \frac{a_1}{1-ika_1} \oplus \frac{\overline{a}_1 + i\overline{b}_1}{k^2 \overline{a}_1^2 + (1+k\overline{b}_1)^2} \right|^2 \quad \text{regeneration}$$

$$F(K_L^0 p \to Y\pi) = \frac{2\pi}{k} \frac{\overline{b}_1}{k^2 (\overline{a}_1^2 + \overline{b}_1^2) + 2k\overline{b}_1 + 1} \quad \text{1-N absorption}$$

$$T(K_L^0 p \to Y\pi) = \frac{2\pi}{k} \frac{\overline{b}_1}{k^2 (\overline{a}_1^2 + \overline{b}_1^2) + 2k\overline{b}_1 + 1} \quad \text{1-N absorption}$$

Regeneration K⁰L cross section

$$K_2^0 p \rightarrow K_1^0 p \qquad K_1^0 \rightarrow \pi^+ \pi^-$$

$$T = \frac{1}{4}(Z_0 + Z_1) - \frac{1}{2}Y_1$$

|=0 + |=1 KN |=1 KN

- Interference between S=+1 and S=-1 amplitudes
- 300-800 MeV/c (A Bigi, NP**B110**, 25 (1976))
 - ~ 5 mb
- Main purpose:
 - Y_1^* (= $\Sigma(1385)$) spectroscopy
 - Get information on possible I=0, S=+1 Z* states (unsuccessful)
- Differential cross section backward peaked (Y Cho, PLB60, 293 (1976))

 $\cos \theta^*$

Hyperon production in K_Lp interaction

$$\begin{split} K^{0}_{L}p &\to \Lambda \pi^{+} & \Lambda \to p\pi^{-} \\ &\to \Sigma^{0}\pi^{+} & \Sigma^{0} \to \gamma \Lambda \\ &\to \Lambda \pi^{+}\pi^{0} \end{split}$$

$$R = \frac{\sigma(K_s^0 p)}{\sigma(Y)} = \frac{\sigma(K_s^0 p)}{\sigma(\Lambda p) + 2\sigma(\Sigma^0 p)}$$

- K_Lp interaction: I=1, S=-1
- Most of the old assessments deduced from scattering lengths evaluations
 - Wide errors, large ambiguities
 - 30-50 mb
- To discriminate among the different solutions for KN scattering length: measurements of the relative yields of the regeneration to the inelastic processes

K_Lp inelastic cross sections, 300-800 MeV/c

BEGPR Coll, W Cameron et al, PRL17, 599 (1978)

• $K_L p \rightarrow \Lambda \pi^+$: ~ 5 mb

 $K_L p → Λπ^0π^+$: < 1 mb dominated by Σ^{0,+}(1385) production 14

KN interaction: open problems

- Dynamics of antikaons interacting with nucleons and nuclei
- KN interaction at low energy: strongly attractive
 - Generation of $\Lambda(1405)$ as a quasi-bound state embedded in the $\pi\Sigma$ continuum
 - Investigations of \overline{K} -few nucleon systems, and possible bound states of a \overline{K} in heavier nuclei
 - Test of chiral (non-perturbative) models
- Strong coupled-channel dynamics: $\overline{K}N \Leftrightarrow \pi\Sigma$
- Large uncertainties in the extrapolation of KN interactions to the subthreshold region
- Limited available experimental inputs
 - K⁻ scattering cross sections in elastic and inelastic channels
 - Threshold branching ratios
 - Real and imaginary part of the K⁻p scattering length from kaonic hydrogen measurements
 - New inputs from K_Lp in Coulomb-free I=1?

K⁻N interaction description via ChPT

- General theoretical framework: effective field theory with coupled-channels, based on the chiral SU(3)_R × SU(3)_L meson-baryon effective Lagrangian
 - Fits combining all available experimental inputs: improved constraints on chiral SU(3) couplings
 - The present accuracy of the K⁻p cross sections and threshold branching ratios do not constrain the scattering amplitudes sufficiently well
 - Other precise inputs needed
- Essential ingredient: measurement of the shift and with of the 1S kaonic hydrogen line (and kaonic deuterium, if possible)
 - directly linked to the scattering length through the Trueman-Deser formula (including second order isospin breaking corrections)

$$\Delta E - i\Gamma / 2 = -2\alpha^{3} \mu_{T}^{2} a(K^{-}p) \Big[1 + 2\alpha \mu_{T} (1 - \ln \alpha) a(K^{-}p) \Big]_{6}$$

Kaonic hydrogen ground state shift and width

 Several measurements have been performed, with large inconsistencies

 The newest measurement by SIDDHARTA are fully consistent with the existing scattering data

$$\Delta E_{1S} = 283 \pm 36_{stat} \pm 6_{sys} \ eV$$
$$\Delta \Gamma_{1S} = 541 \pm 89_{stat} \pm 22_{sys} \ eV$$

M Bazzi et al, PLB704, 113 (2011)

Best fit of K⁻p observables: cross section data

Y Ikeda, T Hyodo, W Weise, PLB706, 63 (2011)

The available data have a maximum precision of ~ 20%

Fits outcome: subthreshold behavior

Y Ikeda, T Hyodo, W Weise, PLB706, 63 (2011)

- Extrapolation of the K⁻p forward scattering amplitude to the subthreshold region
- Experimental point: real and imaginary part of the K⁻p scattering length extracted from the kaonic hydrogen data (with the inclusion of Coulomb corrections)
 - Re $a(K^{-}p) = -0.65 \pm 0.10$ fm (shifted quite significantly from older values)
 - Im a(K⁻p) = 0.81 ± 0.15 fm
- The calculation confirms the existence of the Λ (1405) resonance as a quasi-bound I=0 $\overline{K}N$ state embedded in the $\Sigma\pi$ continuum
 - Two poles scenario of the coupled $\overline{K}N \Leftrightarrow \Sigma\pi$
 - Upper pole KN dominated: 1424 i 26 MeV
 - Lower pole $\Sigma\pi$ dominated: 1381 i 81 MeV

Y Ikeda et al., NPA881, 98 (2012)

The Λ(1405) case: present status

- Nature of $\Lambda(1405)$: dinamically generated resonance
- 1. Double pole in the complex energy plane one coupled to $\overline{\mathsf{KN}}$ the other to $\Sigma\pi$
- 2. Weakly bound $\overline{\mathsf{K}}\mathsf{N}$ state with $\Sigma\pi$ decay

Models based on <u>below-threshold</u> extrapolations

	۸(1405)	Σ(1385)
$\Sigma^+\pi^-$	0.33	0.06
Σ ⁰ π ⁰	0.33	no
$\Sigma^{-}\pi^{+}$	0.33	0.06
Λ π ⁰	no	0.88

Produced below the K⁻N threshold

Experimental difficulty: close-by I=0 and I=1 baryons with shared decay modes

$\Sigma\pi$ system: existing data

OLD MEASUREMENTS, charged $\Sigma\pi$

- Hemingway (1985)
- Braun, $K^-d \rightarrow \Sigma \pi n$ (1977) (high mom)

Models do not reproduce satisfactorily the spectra line shapes

RECENT MEASUREMENTS, also $\Sigma^0 \pi^0$

- ANKE (2008)
- CLAS, photoproduction PRC87, 035206 (2013)

Best measurement performed so far

CLAS data best fit: isospin interference

- I=0 dominant contribution, mass centroid near (Σ⁺π⁻) threshold:
 - m = 1338 ± 10 MeV/c²
 - Γ = 85 ± 10 MeV/c²
- I=1 half as big (not negligible!)
- 2x I=1 amplitudes:
 - 1) narrow and at higher mass
 - m= 1413 \pm 10 MeV/c²
 - $\Gamma = 52 \pm 10 \text{ MeV/c}^2$
 - 2) broader, lower mass
 - m= $1394 \pm 20 \text{ MeV/c}^2$
 - $\Gamma = 149 \pm 40 \text{ MeV/c}^2$
- Sizeable effect of KN coupled channels
- Additional I=1 component foreseen by L Rocas, E Oset (PRC88, 055206 (2013))
 - Resonant amplitude, $\neq \Sigma$ (1385)
 - New 5-quarks Σ baryon? (BS Zou, NPA835, 199 (2010))

Evaluation of K⁻n scattering lengths

- The I=1 $\overline{K}N$ interaction is still attractive, but weaker than I=0
 - $f(K^n \rightarrow K^n)$ non-resonant

A Cieply et al., PR**C84**, 045206 (2011)

- The K⁻n scattering length can only be measured from the kaonic deuterium shift and width
- No measurement ever for the K⁰p scattering length (same isospin, Coulomb free)
- K⁻n scattering length derivation $a(K^-n) = 0.57^{+0.04}_{-0.21} + i0.72^{+0.26}_{-0.41}$ fm
 - Use of coupled-channels amplitudes, Y Ikeda et al., NPA881, 98 (2012)
 - Instability of the real part, large uncertainties ($\pi\Lambda$ channel)

Consequences on a₀ and a₁ values

- The shift and width of the kaonic hydrogen are rather insensitive to the I=1 scattering amplitude
- The K⁻p scattering length provides constraints on the two isospin components
- The scattering data provide irregularly shaped areas for a_0 and a_1 pinning down their values more precisely
- The measurement of the K⁻d scattering length from kaonic deuterium would be an unvaluable tool to pose more stringent constraints to the chiral PQCD dynamics

a₀

-2

0.5

(scattering)

-1

Re ar [fm]

(scattering)

Summary: possible K_Lp(d) measurements

All of them could be collected at the same time

- K_L elastic scattering on protons: $K_L p \rightarrow K_L p$
- K_L quasi-elastic scattering on neutrons: $K_L d \rightarrow K_L np$
- K_{L} elastic scattering (coherent) on deuterons: $K_{L} d \rightarrow K_{L} d$

Inelastic K_L reactions on protons close to threshold (Y prod.)
 K_L p → Λπ⁺
 K_L p → Σ⁺π⁰, Σ⁰π⁺

■ Inelastic K_L interactions on deuterons close to thr. (**Y prod.**) K_Ld → YN π (Y = Λ, Σ) ⇒ investigation of Λ(1405)/Σ(1385)

• Charge-exchange reaction: $K_L p \rightarrow K^+ n$

• **Regeneration reaction**: $K_L p \rightarrow K_S p$

For all of them a momentum resolution of the produced particles around 10% 26 would be enough

Using heavier targets...

- Gaseous ³He, ⁴He: study of K⁰-few body interactions
 - No particular requirement on momentum resolution of emitted particles
 - Desirable: secondary vertex reconstruction, for hyperon identification
- Solid materials (as additional target disk beyond the LH₂ vessel?)
 - Hypernuclei production
 - High resolution required for formation pion spectroscopy₂₇

K-nuclear bound states?

- Existence/observability predicted by Akaishi-Yamazaki (2002):
 - Strongly bound, very dense systems: ρ>3ρ₀
 - Narrow widths: 20÷40 MeV
 - No $\rightarrow \Sigma \pi$
 - No $\rightarrow \Lambda \pi$ (isospin conservation)
 - Y+xN only allowed decay channel
 - Where more likely to be observed?
 - light targets (AY)
 - Heavier targets (J Mares at al)

Mirror hypernuclei and the CSB problem

- K_L beams of sufficient intensity interacting on nuclei could be used to produce
 - neutron rich hypernuclei, spectroscopizing the π^+ momentum in the reaction: ^AZ(\overline{K}^0, π^+)^A_A(Z-1)
 - Mirror hypernuclei, spectroscopizing the π^0 in the reaction: ${}^{A}Z(\overline{K}^0, \pi^0){}^{A}{}_{\Lambda}Z$
- Physical interest: Charge Symmetry Breaking effect
 - Difference in binding energies measured for a few mirror hypernuclei
 - Considerably stronger than in ordinary nuclear matter
 - $B_{\Lambda}(0_{g.s.}^{+}) = B_{\Lambda}(_{\Lambda}^{4}He) B_{\Lambda}(_{\Lambda}^{4}H) = 0.35 \pm 0.06 \text{ MeV}$
 - Predicted to be some ten of keV for p-shell hypernuclei
 - Due to $\Lambda\Sigma$ mixing (A Gal, PL**B744**, 352 (2015))
 - Desirable: measure the formation reactions with the same apparatus, to reduce systematic uncertainties (or with both \overline{K}^0/K^- beams)
- Required resolution on the hypernucleus energy level: < MeV</p>
 - This requires the momentum resolution of the pions to be at the minimum level of the percent: probably out of reach for GlueX in its present configuration

Experimental requirements

Measurement of the reaction cross sections below 350 MeV/c

 With a precision of at least 10% (best available measurements: >20%, even for K⁻)

Requirements

- K_L momenta produced below 350 MeV/c
- Good efficiency (~80%) for charged tracks detection
- Good efficiency for 70 MeV γ (from Σ^0) and π^0
- No particular requirement on PID
- Secondary vertex reconstruction (standard tracking)

Potential pitfalls

- Momentum threshold for charged particles? In particular, protons?
- Can the magnetic field be lowered?
- Which is the neutron identification efficiency at low momenta? Is TOF separation enough?
- How many K_L are expected to be produced at low momentum?
- How many K_L are lost due to their decay in the target?

K_L photoproduction on Be

(16 GeV γ on 1.75 r.l. Be) (GW Brandeburg et al, PR**D7**, 708 (1973))

Expected rates (tentative)

- Simple assumptions
 - 4π acceptance coverage
 - 80% tracking efficiency for charged particles
 - 80% detection efficiency for single photon
 - 60% detection efficiency for π⁰
 - 100% neutron rejection power
 - No momentum cutoff for protons (relevant for these reactions)
 - Momentum resolution ~10-20% (enough)
 - $I(K_L < 400 \text{ MeV/c}) \sim 2.2 \times 10^{-3} * 2000 \text{ K}_L/\text{s on}$ target $\Rightarrow 4.4 \text{ K}_L/\text{s}$
 - Negligible reduction of beam for K_L

Reaction	σ (mb)	Time for 300 evts (10%) , full eff (h)	Time for 300 evts efficiency scaled (h)
$K_L p \rightarrow K_L p$	50	0.3	0.4
$K_L p \rightarrow K_s p$	5	3	6
$K_L p \rightarrow \Lambda \pi^+$	5	3	6
$K_L p \to \Sigma^0 \pi^+$	3	5	12
$K_L p \rightarrow \Lambda \pi^+ \pi^0$	0.5	30	97

Detector is cylindrically symmetric about the beamline

Summary

- Sparse database available for KN interactions at low momentum
 - No data in most of the cases when existing, not sufficiently precise
- New measurements needed to provide a consistent description of (anti-)kaon interaction and as inputs for ChPT based theories
 - Reduce the uncertainty on below-threshold behaviour
 - Λ(1405) two-pole nature
 - few-body $\overline{K}NN$ $\Sigma\pi N$ systems
 - Total and differential cross sections close to threshold in several channels
 - K
 N isovector scattering length determination
 - New valuable inputs to set additional constraints on the dynamics of the $\overline{K}N \Leftrightarrow \Sigma\pi$ interaction
- New opportunity to exploit a neutral kaon beam to perform precision measurements of kaon interactions at low energies