predictions for excited strange baryons

Jose L. Goity
Hampton U and JLab

KL2016@ JLab

Feb. I, 2016

The interest of Kaon beams

- Study of electro-weak interactions in K mesons
-Production of excited K* mesons
- Production of strange baryons
- Search for exotic mesons and baryons
K_{L} beam: $\mathrm{S}= \pm \mathrm{I}$ in one shot (talks by Filippi and Manley)

Outline

- Some of the key questions concerning strange baryons -- hyperons
- Present status of excited hyperons
- Symmetries in excited baryons
- Predicting excited hyperon masses
- Other possible predictions
- Comments

Some key questions

- Missing hyperon states: complete $\mathrm{SU}(3)$ multiplets require (ignoring isospin)

PDG

$$
\begin{array}{rr}
\# \Sigma=\# \Xi=\# N+\# \Delta & 26 ; 12 ; 49 \\
\# \Omega=\# \Delta & 4 ; 22 \\
\# \Lambda=\# N+\# \text { singlets } & 18 ; 29
\end{array}
$$

- Should all observed hyperons belong into $\operatorname{SU}(3)$ multiplets?: dynamically generated states may not
- Should baryons filling $\mathrm{SU}(3)$ multiplets also fill SU(6) multiplets?: probably yes
- Do we have sufficient inputs and theoretical tools to make some predictions: yes!

Present status of hyperons from PDG

I/Nc baryon mass formulas

Symmetries in excited baryons

Flavor SU(3): broken by

$$
m_{s} \gg m_{u, d}
$$

It should be a good approximate symmetry because

$$
m_{s} \ll \text { hadronic scales }
$$

Expect baryons to fill $\mathrm{SU}(3)$ multiplets: $8 \mathrm{~s}, \mathrm{IOs}$ and Is .
GS baryons (low lying 8 and IO) complete What about others? -- only one in PDG!

$N_{3 / 2^{-}}$	1532	
$\Lambda_{3 / 2^{-}}$	1676	GMO relation
$\Sigma_{3 / 2^{-}}$	1667	
$\Xi_{3 / 2^{-}}$	1815	$2\left(N_{3 / 2}+\Xi_{3 / 2}\right)-3 \Lambda_{3 / 2}-\Sigma_{3 / 2}=-19 \pm 26 \mathrm{MeV}$

Additional symmetries in baryons

QCD observables admit expansions in $m_{u, d, s}$ and in $1 / N_{c}$
Consequence of the $1 / N_{c}$ expansion for baryons: approximate spin-flavor $S U\left(2 N_{f}\right)=S U(6)$ symmetry violated at order $1 / N_{c}$ or higher.

How good is $S U(6)$?
GS mass relations: Gursey-Radicati with $1 / N_{c}$ power counting included

$$
M_{G S}=c_{1} N_{c}+\frac{c_{H F}}{N_{c}}\left(S^{2}-\frac{3}{4} N_{c}\right)-c_{\mathcal{S}} \frac{m_{s}-m_{u, d}}{\Lambda} \mathcal{S}+\mathcal{O}\left(1 / N_{c}^{2} ; m_{s} / N_{c}\right)
$$

	$\Sigma-\Lambda=\mathcal{O}\left(m_{s} / N_{c}\right)$	74 MeV	
GMO	$\Xi_{8}-\Sigma_{8}=\frac{1}{2}\left(3 \Lambda-\Sigma_{8}\right)-N$	128 vs 141 MeV	
ES	$\Sigma_{10}-\Delta=\Xi_{10}-\Sigma_{10}$	153 vs 145	deviation is $\mathcal{O}\left(\left(m_{s}-m_{u, d}\right)^{2} / N_{c}\right)$
$"$	$\Omega^{-}-\Xi_{10}=\Xi_{10}-\Sigma_{10}$	142 vs 145	
$8-10$	$\Sigma_{10}-\Sigma_{8}=\Xi_{10}-\Xi_{8}$	212 vs 195	deviation is $\mathcal{O}\left(1 / N_{c}^{2}\right)$

A test with the $N \& \Delta$ axial couplings

large N_{c} prediction	$g_{A}^{N N}=g_{A}^{N \Delta}=g_{A}^{\Delta \Delta}$			
	$g_{A}^{N N}$	$g_{A}^{N \Delta}$	$g_{A}^{\Delta \Delta}$	
Exp	1.27	1.24	-	
Lattice QCD (ETM)	1.17	1.07	0.98	
deviations are $\mathcal{O}\left(1 / N_{c}^{2}\right) \sim 10 \%:$ OK!				

Many other tests with the octet and decuplet axial couplings
$\mathrm{SU}(6)$ broken according to I/Nc power counting works remarkably well in the GS 8 and 10
$\mathrm{SU}(6)$ plays a key role in baryon ChPT for improving the chiral expansion as well

Excited baryons

$$
S U(6) \times O(3) \rightarrow \text { Large } N_{c} \mathrm{QCD} \rightarrow S U(6)
$$

Observed fact: in all analyzed observables (masses, partial widths, photocouplings) operators involving factors of $S U(6)$ and $O(3)$ operators have small coefficients:
$\mathcal{O}\left(1 / N_{c}\right)$ suppressed in transition and in $S U(6)$ symmetric states (56-plet) $\mathcal{O}\left(1 / N_{c}^{0}\right)$ in $S U(6)$ mixed-symmetric states (70-plet)

Expansion in $1 / N_{c}$ and if necessary in "spin-orbit" couplings

Mass formulas

$$
\begin{aligned}
& M(R(S U(6)), L, J, R(S U(3)), Y)=M_{0}(R(S U(6)), L)+\delta M(R(S U(6)), L, J, R(S U(3)), Y) \\
& R(S U(6))=56,70,20 ?, \quad R(S U(3))=1,8,10 \\
& \delta M \text { expanded in } m_{s}-m_{u, d} \text { and in } 1 / N_{c}
\end{aligned}
$$

More predictivity: through additional mass relations

[56,2+] mass relations

$\left[56,2^{+}\right]$	masses	$[\mathrm{MeV}]$
State	$1 / N_{c}$	$P D G$
$N_{3 / 2}$	1674 ± 15	1700 ± 50
$\Lambda_{3 / 2}$	1876 ± 39	1880 ± 30
$\Sigma_{3 / 2}$	1881 ± 25	(1840)
$\Xi_{3 / 2}$	2081 ± 57	
$N_{5 / 2}$	1689 ± 14	1683 ± 8
$\Lambda_{5 / 2}$	1816 ± 33	1820 ± 5
$\Sigma_{5 / 2}$	1920 ± 24	1918 ± 18
$\Xi_{5 / 2}$	1997 ± 49	
$\Delta_{1 / 2}$	1897 ± 32	1895 ± 25
$\Sigma_{1 / 2}$	2068 ± 52	
$\Xi_{1 / 2}$	2237 ± 88	
$\Omega_{1 / 2}$	2408 ± 127	
$\Delta_{3 / 2}$	1906 ± 27	1935 ± 35
$\Sigma_{3 / 2}^{\prime}$	2061 ± 44	(2080)
$\Xi_{3 / 2}^{\prime}$	2216 ± 76	
$\Omega_{3 / 2}$	2373 ± 110	
$\Delta_{5 / 2}$	1921 ± 21	1895 ± 25
$\Sigma_{5 / 2}^{\prime}$	2051 ± 37	(2070)
$\Xi_{5 / 2}^{\prime}$	2181 ± 64	
$\Omega_{5 / 2}$	2313 ± 94	
$\Delta_{7 / 2}$	1942 ± 27	1950 ± 10
$\Sigma_{7 / 2}$	2036 ± 44	2033 ± 8
$\Xi_{7 / 2}$	2131 ± 76	
$\Omega_{7 / 2}$	2229 ± 110	

JLG, Schat \& Scoccola

[70, 1^{-}] mass relations

Masses $[\mathrm{MeV}]$		
State	Exp	Large N_{c}
$N_{1 / 2}$	1538 ± 18	1541
$\Lambda_{1 / 2}$	1670 ± 10	1667
$\Sigma_{1 / 2}$	(1620)	1637
$\Xi_{1 / 2}$	(1690)	1779
$N_{3 / 2}$	1523 ± 8	1532
$\Lambda_{3 / 2}$	1690 ± 5	1676
$\Sigma_{3 / 2}$	1675 ± 10	1667
$\Xi_{3 / 2}$	1823 ± 5	1815
$N_{1 / 2}^{\prime}$	1660 ± 20	1660
$\Lambda_{1 / 2}^{\prime}$	1785 ± 65	1806
$\Sigma_{1 / 2}^{\prime}$	1765 ± 35	1755
$\Xi_{1 / 2}^{\prime}$		1927
$N_{3 / 2}^{\prime}$	1700 ± 50	1699
$\Lambda_{3 / 2}^{\prime}$		1864
$\Sigma_{3 / 2}^{\prime}$		1769
$\Xi_{3 / 2}^{\prime}$		1980
$N_{5 / 2}$	1678 ± 8	1671
$\Lambda_{5 / 2}$	1820 ± 10	1836
$\Sigma_{5 / 2}$	1775 ± 5	1784
$\Xi_{5 / 2}$		1974
$\Delta_{1 / 2}$	1645 ± 30	1645
$\Sigma_{1 / 2}^{\prime \prime}$		1784
$\Xi_{1 / 2}^{\prime \prime}$		1922
$\Omega_{1 / 2}$		2061
$\Delta_{3 / 2}$	1720 ± 50	1720
$\Sigma_{3 / 2}^{\prime \prime}$		1847
$\Xi_{3 / 2}^{\prime \prime}$		1973
$\Omega_{3 / 2}$		2100
$\Lambda_{1 / 2}^{\prime \prime}$	1407 ± 4	1407
$\Lambda_{3 / 2}^{\prime \prime}$	1520 ± 1	1520

GMO, ES \& I5 I-8-IO relations

Sample

$$
\begin{aligned}
& \mathcal{O}\left(m_{s} / N_{c}^{2} ; m_{s}^{2}\right) \\
& \frac{1}{\sqrt{16930}}\left(14\left(\tilde{\Lambda_{3 / 2}}+\tilde{\Lambda_{3 / 2}}\right)+63 \tilde{\Lambda_{5 / 2}}+36\left(\tilde{\Sigma_{1 / 2}}+\tilde{\Sigma_{1 / 2}}\right)-68\left(\tilde{\Lambda_{1 / 2}}+\tilde{\Lambda_{1 / 2}}\right)-27 \tilde{\Sigma_{5 / 2}}\right) \\
& \frac{1}{\sqrt{1570}}\left(14\left(\tilde{\Sigma_{3 / 2}}+\tilde{\Sigma_{3 / 2}^{\prime}}\right)+21 \tilde{\Lambda_{5 / 2}}-9 \tilde{\Sigma_{5 / 2}}-18\left(\tilde{\Lambda_{1 / 2}}+\tilde{\Lambda_{1 / 2}^{\prime}}\right)-2\left(\tilde{\Sigma_{1 / 2}}+\tilde{\Sigma_{1 / 2}}\right)\right. \\
& \frac{1}{\sqrt{8066}}\left(14 \tilde{\Sigma_{1 / 2}^{\prime \prime}}+49 \tilde{\Lambda_{5 / 2}}+23\left(\tilde{\Sigma_{1 / 2}}+\tilde{\Sigma_{1 / 2}^{\prime}}\right)-45\left(\tilde{\Lambda_{1 / 2}}+\tilde{\Lambda_{1 / 2}^{\prime}}\right)-19 \tilde{\Sigma_{5 / 2}}\right) \\
& \frac{1}{2 \sqrt{695}}\left(14 \tilde{\Sigma}_{3 / 2}^{\prime \prime}+28 \tilde{\Lambda_{5 / 2}}+11\left(\Sigma_{1 / 2}^{\tilde{n}}+\Sigma_{1 / 2}^{\prime}\right)-27\left(\Lambda_{1 / 2}+\tilde{\Lambda_{1 / 2}^{\prime}}\right)-10 \tilde{\Sigma_{5 / 2}}\right) \\
& \hline \hline
\end{aligned}
$$

PDG identified states are sufficient to predict masses of missing states up to higher order terms in I / Nc and $\mathrm{SU}(3)$ breaking

JLG, Schat \& Scoccola

Only a reduced number of possible mass operators show to be important after fitting to the known masses

Checks with Lattice QCD

HSC R. Edwards et al (2013)

mass relations implied by $\mathrm{SU}(6)$ broken at order I / Nc hold remarkably well

Excited hyperons: mass predictions and puzzles

Mass predictions based on $\mathrm{SU}(6) \times \mathrm{O}(3)$

- One missing state in the $\left[70,1^{-}\right]$:
prediction: $\quad \Lambda_{3 / 2^{-}}(1830)$
- PDG: $\quad \Lambda_{1 / 2^{+}}(1810)$ a bit too light to fit into higher excited multiplets such as $\left[70,0^{+}\right]$or $\left[70,2^{+}\right] \quad$ Matagne \& Stancu sits exactly at the ΞK threshold
- Heavier states poorly established or need higher excited spin-flavor multiplets: too sparse for predictions

- Positive parity predicted masses:
$\Sigma_{1 / 2^{+}}(1790)$ in a decuplet in $\left[56,0^{+}\right]$
$\Sigma_{1 / 2^{+}}(2068)$ in a decuplet in $\left[56,2^{+}\right]$
$\Sigma_{3 / 2^{+}}(1880)$ in an octet in $\left[56,2^{+}\right]$
$\Sigma_{3 / 2^{+}}(2060)$ in a decuplet in $\left[56,2^{+}\right]$
$\Sigma_{5 / 2^{+}}(2050)$ in a decuplet in $\left[56,2^{+}\right]$

Most match with existing PDG entries

- Negative parity predicted masses:

$$
\begin{aligned}
& \Sigma_{1 / 2^{-}}(1637) \text { in an octet in }\left[70,1^{-}\right] \\
& \Sigma_{3 / 2^{-}}(1770) \text { in an octet in }\left[70,1^{-}\right] \\
& \Sigma_{1 / 2^{-}}(1785) \text { in a decuplet in }\left[70,1^{-}\right] \\
& \Sigma_{3 / 2^{-}}(1847) \text { in a decuplet in }\left[70,1^{-}\right]
\end{aligned}
$$

-Puzzles: several * and ** PDG entries seem too light to fit in any multiplet

- Lightest PDG entries coincide with thresholds. Cannot be described within any multiplet.
- Several possible identifications of predictions with PDG listings
- $\Xi_{5 / 2}(2030) * * *$ is best identified with a state in the $\left[56,2^{+}\right]$
- 12 predictions and a few possible matchings with listed PDG states
- Two remaining mass states should be in other multiplets.

Other observables: partial decay widths

[70, ${ }^{-}$] decay relations: $\mathrm{LO}=$ exact $\mathrm{SU}(4)$ limit

$\tilde{\Gamma}$: reduced widths: phase space factors removed

$$
\begin{aligned}
& \text { S-WaVe } \begin{aligned}
& \tilde{\Gamma}(N(1535) \rightarrow N \pi)-\tilde{\Gamma}(N(1650) \rightarrow N \pi) \\
& \tilde{\Gamma}(N(1535) \rightarrow N \pi)+\tilde{\Gamma}(N(1650) \rightarrow N \pi)=\frac{1}{5}\left(3 \cos 2 \theta_{N_{1}}-4 \sin 2 \theta_{N_{1}}\right) \rightarrow \theta_{N_{1}}=0.46(10) \text { or } 1.76(10) \\
& \tilde{\Gamma}(N(1535) \rightarrow N \eta)-\tilde{\Gamma}(N(1650) \rightarrow N \eta) \\
& \tilde{\Gamma}(N(1535) \rightarrow N \eta)+\tilde{\Gamma}(N(1650) \rightarrow N \eta)=\sin 2 \theta_{N_{1}} \rightarrow \theta_{N_{1}}=0.51(27) \\
& \tilde{\Gamma}(N(1535) \rightarrow N \pi)+\tilde{\Gamma}(N(1650) \rightarrow N \pi)=\tilde{\Gamma}(\Delta(1535) \rightarrow \Delta \pi) \quad 51(10)(\text { th }) \text { vs } 31(15)(\text { exp }) \\
& \frac{\tilde{\Gamma}(\Delta(1620) \rightarrow N \pi)}{\tilde{\Gamma}(\Delta(1700) \rightarrow \Delta \pi)}=0.1(\text { th } \quad \text { vs } \quad 0.29(15)(\text { exp })
\end{aligned}
\end{aligned}
$$

D-wave

$$
\begin{gathered}
2 \tilde{\Gamma}(\Delta(1620) \rightarrow \Delta \pi)+\tilde{\Gamma}(\Delta(1700) \rightarrow \Delta \pi)=15 \tilde{\Gamma}(\Delta(1620) \rightarrow N \pi)+32 \tilde{\Gamma}(\Delta(1700) \rightarrow N \pi) \\
5.9(1.9) \quad \text { vs } 8.3(2.3) \\
\tilde{\Gamma}(N(1535) \rightarrow \Delta \pi)+\tilde{\Gamma}(N(1650) \rightarrow \Delta \pi)+11 \tilde{\Gamma}(\Delta(1620) \rightarrow \Delta \pi)=132 \tilde{\Gamma}(\Delta(1700) \rightarrow N \pi)+90 \tilde{\Gamma}(N(1675) \rightarrow N \pi) \\
32(11) \text { vs } 41(10)
\end{gathered}
$$

Known hyperons partial decay widths in the 70-plet

	$\Lambda(1670)$				$\Lambda(1690)$				
	$\bar{K} N$	$\eta \Lambda$	$\pi \Sigma$	$\pi \Sigma^{*}$		$\pi \Sigma^{*}$	$\bar{K} N$	$\eta \Lambda$	$\pi \Sigma$
PW	S	S	S	D	S	D	D	D	D
LO	113(24)	0.11(0.12)	1.8(2.0)	0.16(0.09)	7.3(3.5)	9(1)	60(6)	~ 0	9.0(0.9)
NLO	9(15)	6.1(4.3)	15(11)	0.04(0.10)	114(49)	2.1(1.5)	16(5)	~ 0	5.3(2.9)
Exp	9.4(3.6)	6.6(3.6)	15(7.5)				15(4)		18(6.7)
							(1830)		
	$\bar{K} N$	$\eta \Lambda$	$\pi \Sigma$	$\pi \Sigma^{*}$	$\bar{K} N$	$\eta \Lambda$	$\pi \Sigma$	$K ヨ$	$\pi \Sigma^{*}$
PW	S	S	S	D	D	D	D	D	D
LO	43(13)	30(4)	150(20)	3.0(1.6)	3.0(1.6)	3.5(0.3)	69(6)	~ 0	54(7)
NLO	100(73)	94(47)	109(25)	5.9(5.2)	12(4)	9.6 (2.5)	38(11)	~ 0	57(18)
Exp	98(40)				5.5(3.4)		46.7(22)		
			$\Lambda(1405)$				$\Lambda(152$		
			$\pi \Sigma$			$\bar{K} N$			$\pi \Sigma$
PW			S			D			D
LO			50(19)			2.7(0.4)			8.2(1.3)
NLO			50(9)			6.7(1.1)			6.9(1.8)
Exp			50(5)			7(0.5)			6.5(0.5)

	$\Sigma(1670)$						
PW	S		D		D	D	D
LO	1.5(0.7)		1.5(0.2)		$2.1(0.5)$	4.8(0.5)	46(5)
NLO	4(11)		1.5(0.9)		2.5(1.4)	7.0(2.9)	28(11)
Exp					6(2.7)	6(3.6)	27(12.7)
	$\Sigma(1750)$						
	$\bar{K} N$	$\pi \Lambda$		$\pi \Sigma$	$\eta \Sigma$	$\bar{K} \Delta$	$\pi \Sigma^{*}$
PW	S	S		S	S	D	D
LO	45(8)	51(7)		6.2(5.3)	14(2)	0.07(0.04)	0.5(0.3)
NLO	30(34)	38(12)		4.2(7.6)	53(28)	0.4(0.2)	0.4(0.5)
Exp	27.5(21)			4.4(4.4)	38.5(28)		
	$\Sigma(1775)$						
	$\bar{K} N$	$\pi \Lambda$		$\pi \Sigma$	$\eta \Sigma$	$\bar{K} \Delta$	$\pi \Sigma^{*}$
PW	D	D		D	D	D	D
LO	39(3)	27(3)		3.0(1.2)	0.08(0.01)	1.6(0.2)	7(1)
NLO	55(12)	14(4)		$0.6(0.8)$	0.22(0.06)	3.9(0.8)	7.4(2.3)
Exp	48(7)	20.4(4.4)		4.2(2)			12(2.8)

JLG, Jayalath \& Scoccola

	E(1820)				
	π \#*		$\bar{K} \Lambda$	$\bar{K} \Sigma$	$\pi \Xi$
PW	S	D	D	D	D
LO	2.3(0.6)	2.6(0.3)	10(1)	14(1)	4.2(0.9)
NLO	2.4(2.2)	3.2(0.6)	18(3)	29(4)	0.3(0.6)
Exp					

$$
\chi_{\mathrm{dof}}^{2} \sim 1.2
$$

S-wave: 14 PDG PW inputs fitted with 7 parameters D-wave: 25

PW predictions for unobserved states in 70-plet are possible with these same calculations: to be done

Comments

- K K_{L} beam opens renewed opportunities to research hyperon physics at JLab.
- Predictions grounded on symmetries can be made once a sufficient number of states in a given multiplet can be identified. Numerous are already available.
- Interesting puzzles exist for PDG listed excited hyperons which do not fit into any of the low lying excited multiplets: they need to be further revisited and investigated.
- Excited Es are very poorly known. Establishing and discovering new states is important for establishing the multiplet structure of excited baryons in particular.
- An upcoming source of predictions to be watched is Lattice QCD. (D. Richards talk)

Present status of excited hyperons (PDG)

I/Nc baryon mass formulas

Chew-Frautschi for spin-flavor singlet piece of baryon masses

$$
\left[\mathbf{5 6}, 0^{+}\right]_{G S},\left[\mathbf{5 6},\left(2^{+}, 4^{+}, 6^{+}\right)\right],\left[\mathbf{7 0},\left(1^{-}, 2^{+}, 3^{-}, 5^{-}\right)\right]
$$

+ a grain of salt

JLG \& N. Matagne

- $M_{0}^{2}[56, \ell]=[(1.18 \pm 0.003)+(1.05 \pm 0.01) \ell] \mathrm{GeV}^{2}$
- $M_{0}^{2}[\mathbf{7 0}, \ell]=[(1.13 \pm 0.02)+(1.18 \pm 0.02) \ell] \mathrm{GeV}^{2}$
- $\left(M_{0}[\mathbf{7 0}, \ell]-M_{0}[\mathbf{5 6}, \ell]\right)^{2} \simeq(5.7+4.2 \ell) \times 10^{-4} \mathrm{GeV}^{2}$
- Splitting between trajectories $\mathcal{O}\left(N_{c}^{0}\right)$: due to exchange interaction. In magnitude smaller than expected.
- Regge trajectories with physical masses include contributions which do not have linear behavior.
- Strong indication of small 56-70 configuration mixings and good approximate $O(3)$ symmetry

