predictions for excited strange baryons

Jose L. Goity Hampton U and JLab

KL2016 @ JLab

Feb. 1, 2016

The interest of Kaon beams

- Study of electro-weak interactions in K mesons
- •Production of excited K* mesons
- Production of strange baryons
- •Search for exotic mesons and baryons
- K_L beam: $S=\pm 1$ in one shot (talks by Filippi and Manley)

Outline

- Some of the key questions concerning strange baryons -- hyperons
- Present status of excited hyperons
- Symmetries in excited baryons
- Predicting excited hyperon masses
- Other possible predictions
- Comments

Some key questions

 Missing hyperon states: complete SU(3) multiplets require (ignoring isospin)

	PDG
$\#\Sigma = \#\Xi = \#N + \#\Delta$	26; 12; 49
$\#\Omega=\#\Delta$	4;22
$#\Lambda = #N + #$ singlets	18;29

- Should all observed hyperons belong into SU(3) multiplets?: dynamically generated states may not
- Should baryons filling SU(3) multiplets also fill SU(6) multiplets?: probably yes
- Do we have sufficient inputs and theoretical tools to make some predictions: yes!

Present status of hyperons from PDG

I/Nc baryon mass formulas

Symmetries in excited baryons

Flavor SU(3): broken by $m_s >> m_{u,d}$

It should be a good approximate symmetry because

 $m_s <<$ hadronic scales

Expect baryons to fill SU(3) multiplets: 8s, 10s and 1s. GS baryons (low lying 8 and 10) complete What about others? -- only one in PDG!

$N_{3/2^{-}}$	1532
$\Lambda_{3/2}^{-}$	1676
$\Sigma_{3/2^{-}}$	1667
$\Xi_{3/2^{-}}$	1815

QCD observables admit expansions in $m_{u,d,s}$ and in $1/N_c$

Consequence of the $1/N_c$ expansion for baryons: approximate spin-flavor $SU(2N_f) = SU(6)$ symmetry violated at order $1/N_c$ or higher.

How good is SU(6) ?

GS mass relations: Gursey-Radicati with $1/N_c$ power counting included

$$M_{GS} = c_1 N_c + \frac{c_{HF}}{N_c} \left(S^2 - \frac{3}{4}N_c\right) - c_s \frac{m_s - m_{u,d}}{\Lambda} \mathcal{S} + \mathcal{O}(1/N_c^2; m_s/N_c)$$

A test with the $N \& \Delta$ axial couplings

large N_c prediction $g_A^{NN} = g_A^{N\Delta} = g_A^{\Delta\Delta}$

	g_A^{NN}	$g_A^{N\Delta}$	$g^{\Delta\Delta}_A$
Exp	1.27	1.24	
Lattice QCD (ETM)	1.17	1.07	0.98
deviations are $O(1/N^2)$	1007	$\cdot OVI$	

deviations are $\mathcal{O}(1/N_c^2) \sim 10\%$: OK!

Many other tests with the octet and decuplet axial couplings

SU(6) broken according to 1/Nc power counting works remarkably well in the GS 8 and 10

SU(6) plays a key role in baryon ChPT for improving the chiral expansion as well

Excited baryons

$SU(6) \times O(3) \rightarrow \text{Large } N_c \text{ QCD} \rightarrow SU(6)$

Observed fact: in all analyzed observables (masses, partial widths, photocouplings) operators involving factors of SU(6) and O(3) operators have small coefficients:

 $\mathcal{O}(1/N_c)$ suppressed in transition and in SU(6) symmetric states (56-plet) $\mathcal{O}(1/N_c^0)$ in SU(6) mixed-symmetric states (70-plet)

Expansion in $1/N_c$ and if necessary in "spin-orbit" couplings

Mass formulas

 $M(R(SU(6)), L, J, R(SU(3)), Y) = M_0(R(SU(6)), L) + \delta M(R(SU(6)), L, J, R(SU(3)), Y)$

 $R(SU(6)) = 56, 70, 20?, \quad R(SU(3)) = 1, 8, 10$

 δM expanded in $m_s - m_{u,d}$ and in $1/N_c$

More predictivity: through additional mass relations

[56,2⁺] mass relations

 2313 ± 94

 1942 ± 27

 2036 ± 44

 $\begin{array}{c} 2131\pm76\\ 2229\pm110 \end{array}$

 1950 ± 10

 2033 ± 8

 $\Omega_{5/2}$

 $\Delta_{7/2}$

 $\Sigma_{7/2}$

 $\Xi_{7/2}$

 $\Omega_{7/2}$

$[56, 2^+]$	masses	[MeV]					
State	1/N				${\cal O}(\Lambda/N_c^2)$		Exp[MeV]
Nava	$\frac{1/N_c}{1674 + 15}$	$\frac{1700}{1700+50}$			$\frac{1}{2}(\Delta_{5/2} - \Delta_{3/2} - N_{5/2} + N_{3/2})$	=	-12 ± 33
$\Lambda_{3/2}$	1071 ± 10 1876 ± 39	1100 ± 30 1880 ± 30			$\sqrt{\frac{2}{2}}$ (Λ Λ 7 (Λ Λ Λ))		15 15
$\Sigma_{3/2}$	1881 ± 25	(1840)			$\sqrt{\frac{1}{53}}(\Delta_{7/2} - \Delta_{5/2} - \frac{1}{5}(N_{5/2} - N_{3/2}))$	=	15 ± 15
$\Xi_{3/2}^{3/2}$	2081 ± 57	~ /			$\frac{1}{2\sqrt{5}}(\Delta_{7/2} - \Delta_{1/2} - 3(N_{5/2} - N_{3/2}))$	=	24 ± 34
$N_{5/2}$	1689 ± 14	1683 ± 8			$\frac{1}{2\sqrt{3}}(\Lambda_{5/2} - \Lambda_{3/2} + \Sigma_{5/2} - \Sigma_{3/2} - 2(\Sigma_{5/2}' - \Sigma_{3/2}'))$	=	11 ± 36
$\Lambda_{5/2}$	1816 ± 33	1820 ± 5			$\frac{1}{\sqrt{210}} \left(7 \Sigma_{3/2}' + 5 \Sigma_{7/2} - 12 \Sigma_{5/2}'\right)$	=	-7 ± 38
$\Sigma_{5/2}$	1920 ± 24	1918 ± 18			$\frac{1}{\sqrt{218}} \left(4 \sum_{i=1}^{n} \frac{1}{2} + \sum_{i=1}^{n} \frac{1}{2} - 5 \sum_{i=1}^{n} \frac{1}{2} \right)$		
$\frac{\Xi_{5/2}}{\Delta}$	1997 ± 49 1807 ± 29	1905 95			$\sqrt{57}$ (1 - 1/2 + - 7/2 + - 3/2)		
$\Sigma_{1/2}$	1897 ± 52 2068 ± 52	1690 ± 20			$\mathcal{O}(m_{c}/N^2)$		Exp[MeV]
$\Xi_{1/2}$	2000 ± 02 2237 ± 88			$1 (o \Lambda o N)$	$+27\Lambda$ 22 M 15 Σ 20 Σ $+20\Lambda$		$2 \omega p [110, r]$
$ \frac{-1/2}{\Omega_{1/2}} $	2201 ± 00 2408 ± 127			$\sqrt{3346}(8\Lambda_{3/2} - 8\Lambda_{3/2})$	$+ 37\Lambda_{5/2} - 22N_{5/2} - 15\Sigma_{5/2} - 30\Sigma_{7/2} + 30\Delta_{7/2})$	=	0.0 ± 12
$\frac{\Delta 2_{1/2}}{\Delta_{2/2}}$	1906 ± 27	1935 ± 35		$\frac{1}{2\sqrt{13}}$	$(\Lambda_{5/2} - \Lambda_{3/2} + 3(\Sigma_{5/2} - \Sigma_{3/2}) - 4(N_{5/2} - N_{3/2}))$	=	34 ± 34
$\frac{-3/2}{\sum_{3/2}'}$	2061 ± 44	(2080)					
$\Xi'_{2/2}$	2216 ± 76	× ,	(GMO)		$2(N+\Xi)$	=	$3 \Lambda + \Sigma$
$\Omega_{3/2}^{3/2}$	2373 ± 110		(EQS)		$\Sigma - \Delta$	=	$\Xi - \Sigma = \Omega - \Xi$
$\Delta_{5/2}$	1921 ± 21	1895 ± 25					
$\Sigma_{5/2}'$	2051 ± 37	(2070)					
$\Xi_{5/2}'$	2181 ± 64						

JLG, Schat & Scoccola

[70, I⁻] mass relations

	$Masses \ [MeV]$	
State	Exp	Large N_c
$N_{1/2}$	1538 ± 18	1541
$\Lambda_{1/2}$	1670 ± 10	1667
$\Sigma_{1/2}$	(1620)	1637
$\Xi_{1/2}$	(1690)	1779
N _{3/2}	1523 ± 8	1532
$\Lambda_{3/2}$	1690 ± 5	1676
$\Sigma_{3/2}$	1675 ± 10	1667
$\Xi_{3/2}$	1823 ± 5	1815
$N'_{1/2}$	1660 ± 20	1660
$\Lambda_{1/2}^{\prime}$	1785 ± 65	1806
$\Sigma_{1/2}'$	1765 ± 35	1755
$\Xi_{1/2}^{\prime}$		1927
$N'_{3/2}$	1700 ± 50	1699
$\Lambda'_{3/2}$		1864
$\Sigma'_{3/2}$		1769
$\Xi_{3/2}^{'}$		1980
$N_{5/2}$	1678 ± 8	1671
$\Lambda_{5/2}$	1820 ± 10	1836
$\Sigma_{5/2}$	1775 ± 5	1784
$\Xi_{5/2}$		1974
$\Delta_{1/2}$	1645 ± 30	1645
$\Sigma_{1/2}''$		1784
$\Xi_{1/2}^{\prime\prime}$		1922
$\Omega_{1/2}$		2061
$\Delta_{3/2}$	1720 ± 50	1720
$\Sigma_{3/2}^{\prime\prime'}$		1847
$\Xi_{3/2}^{\prime\prime}$		1973
$\Omega_{3/2}$		2100
$\Lambda_{1/2}^{\prime\prime}$	1407 ± 4	1407
$\Lambda_{3/2}^{\prime\prime}$	1520 ± 1	1520

GMO, ES & 15 1-8-10 relations

Sample

$$\mathcal{O}(m_s/N_c^2; m_s^2) \\ \frac{1}{\sqrt{16930}} \left(14(\Lambda_{3/2}^{\tilde{}} + \Lambda_{3/2}^{\tilde{}}) + 63\Lambda_{5/2}^{\tilde{}} + 36(\tilde{\Sigma_{1/2}} + \tilde{\Sigma_{1/2}}) - 68(\Lambda_{1/2}^{\tilde{}} + \Lambda_{1/2}^{\tilde{}}) - 27\tilde{\Sigma_{5/2}}) \right) \\ \frac{1}{\sqrt{1570}} \left(14(\tilde{\Sigma_{3/2}} + \tilde{\Sigma_{3/2}}) + 21\Lambda_{5/2}^{\tilde{}} - 9\tilde{\Sigma_{5/2}} - 18(\Lambda_{1/2}^{\tilde{}} + \Lambda_{1/2}^{\tilde{}}) - 2(\tilde{\Sigma_{1/2}} + \tilde{\Sigma_{1/2}}) \right) \\ \frac{1}{\sqrt{8066}} \left(14\tilde{\Sigma_{1/2}}'' + 49\Lambda_{5/2}^{\tilde{}} + 23(\tilde{\Sigma_{1/2}} + \tilde{\Sigma_{1/2}}) - 45(\Lambda_{1/2}^{\tilde{}} + \Lambda_{1/2}^{\tilde{}}) - 19\tilde{\Sigma_{5/2}}) \right) \\ \frac{1}{2\sqrt{695}} \left(14\tilde{\Sigma_{3/2}}'' + 28\Lambda_{5/2}^{\tilde{}} + 11(\tilde{\Sigma_{1/2}} + \tilde{\Sigma_{1/2}}) - 27(\Lambda_{1/2}^{\tilde{}} + \Lambda_{1/2}^{\tilde{}}) - 10\tilde{\Sigma_{5/2}}) \right) \\$$

PDG identified states are sufficient to predict masses of missing states up to higher order terms in I/Nc and SU(3) breaking

JLG, Schat & Scoccola

Only a reduced number of possible mass operators show to be important after fitting to the known masses

Checks with Lattice QCD

HSC R. Edwards et al (2013)

Fernando & JLG

$[56, 0^+]$		
Relation	$M_{\pi}[$	[MeV]
	391	524
$2(N+\Xi) - (3\Lambda + \Sigma) = 0$	179 ± 180	106 ± 155
$\Sigma'' - \Delta = \Xi'' - \Sigma'' = \Omega'' - \Xi''$	13 ± 45	-27 ± 26
	$84{\pm}40$	41±49
	48 ± 42	41 ± 57
$\frac{1}{3}(\Sigma + 2\Sigma'') - \Lambda - \left(\frac{2}{3}(\Delta - N)\right) = 0$	$51{\pm}65$	29 ± 41
$\Sigma'' - \Sigma = \Xi'' - \Xi$	58 ± 63	77 ± 80
$3\Lambda + \Sigma - 2(N + \Xi) + (\Omega'' - \Xi'' - \Sigma'' + \Delta) = 0$	$144{\pm}189$	174 ± 170
$\Sigma'' - \Delta + \Omega'' - \Xi'' - 2(\Xi^* - \Sigma'') = 0$	107 ± 110	67 ± 147

Relation		$M_{\pi}[\text{MeV}]$	
	391	524	702
$2(N_{3/2} + \Xi_{3/2}) - (3\Lambda_{3/2} + \Sigma_{3/2}) = 0$	$98{\pm}126$	$49{\pm}173$	0
$2(N_{5/2} + \Xi_{5/2}) - (3\Lambda_{5/2} + \Sigma_{5/2}) = 0$	40 ± 98	55 ± 65	0
$\Sigma_{1/2}'' - \Delta_{1/2} = \Xi_{1/2}'' - \Sigma_{1/2}'' = \Omega_{1/2} - \Xi_{1/2}''$	-13±110	$36{\pm}33$	0
	23 ± 44	43 ± 22	0
	85 ± 54	$35{\pm}19$	0
$\Sigma_{3/2}'' - \Delta_{3/2} = \Xi_{3/2}'' - \Sigma_{3/2}'' = \Omega_{3/2} - \Xi_{1/2}''$	48 ± 46	36 ± 23	0
	56 ± 29	$30{\pm}16$	0
	45 ± 31	41 ± 15	0
$\Sigma_{5/2}'' - \Delta_{5/2} = \Xi_{5/2}'' - \Sigma_{5/2}'' = \Omega_{5/2} - \Xi_{5/2}''$	35 ± 40	34 ± 26	0
	62 ± 31	26 ± 23	0
	57 ± 34	52 ± 18	0
$\Sigma_{7/2}'' - \Delta_{7/2} = \Xi_{7/2}'' - \Sigma_{7/2}'' = \Omega_{7/2} - \Xi_{7/2}''$	38 ± 38	35 ± 25	0
	67 ± 31	36 ± 20	0
	59 ± 31	22 ± 18	0
$\Delta_{5/2} - \Delta_{3/2} - (N_{5/2} - N_{3/2}) = 0$	70 ± 68	$4{\pm}68$	44 ± 33
$(\Delta_{7/2} - \Delta_{5/2}) - \frac{7}{5}(N_{5/2} - N_{3/2}) = 0$	68 ± 78	2.5 ± 92	75 ± 41
$\Delta_{7/2} - \Delta_{1/2} - 3(N_{5/2} - N_{3/2}) = 0$	$129{\pm}175$	13 ± 192	133 ± 74
$\frac{8}{15}(\Lambda_{3/2} - N_{3/2}) + \frac{22}{15}(\Lambda_{5/2} - N_{5/2})$			
$-(\Sigma_{5/2} - \Lambda_{5/2}) - 2(\Sigma_{7/2}'' - \Delta_{7/2}) = 0$	$91 {\pm} 100$	29 ± 75	0
$\Lambda_{5/2} - \Lambda_{3/2} + 3(\Sigma_{5/2} - \Sigma_{3/2}) - 4(N_{5/2} - N_{3/2}) = 0$	$10{\pm}207$	10 ± 272	0
$\Lambda_{5/2} - \Lambda_{3/2} + \Sigma_{5/2} - \Sigma_{3/2} - 2(\Sigma_{5/2}'' - \Sigma_{3/2}'') = 0$	111±81	12 ± 72	87 ± 59
$7(\Sigma_{3/2}'' - \Sigma_{7/2}'') - 12(\Sigma_{5/2}'' - \Sigma_{7/2}'') = 0$	44 ± 319	$39{\pm}268$	67 ± 266
$4(\Sigma_{1/2}'' - \Sigma_{7/2}'') - 5(\Sigma_{3/2}'' - \Sigma_{7/2}'') = 0$	83 ± 170	87 ± 104	58 ± 161

$[70, 1^-]$		
Relation	M_{π} [N	ſeV]
	391	524
$14(S_{\Lambda_{3/2}} + S_{\Lambda_{3/2}'}) + 63S_{\Lambda_{5/2}} + 36(S_{\Sigma_{1/2}} + S_{\Sigma_{1/2}'})$		
$-68(S_{\Lambda_{1/2}} + S_{\Lambda_{1/2}'}) - 27S_{\Sigma_{5/2}} = 0$	$9.4{\pm}40$	0.96 ± 34
$14(S_{\Sigma_{3/2}} + S_{\Sigma_{3/2}'}) + 21S_{\Lambda_{5/2}} - 9S_{\Sigma_{5/2}}$		
$-18(S_{\Lambda_{1/2}} + S_{\Lambda_{1/2}'}) - 2(S_{\Sigma_{1/2}} + S_{\Sigma_{1/2}'}) = 0$	37 ± 45	5.4 ± 38
$14S_{\Sigma_{1/2}''} + 49S_{\Lambda_{5/2}} + 23(S_{\Sigma_{1/2}} + S_{\Sigma_{1/2}'})$		
$-45(S_{\Lambda_{1/2}} + S_{\Lambda_{1/2}'}) - 19S_{\Sigma_{5/2}} = 0$	$9.4{\pm}40$	0.7 ± 34
$14 S_{\Sigma_{3/2}''} + 28 S_{\Lambda_{5/2}} + 11 (S_{\Sigma_{1/2}} + S_{\Sigma_{1/2}'})$		
$-27(S_{\Lambda_{1/2}} + S_{\Lambda_{1/2}'}) - 10S_{\Sigma_{5/2}} = 0$	$0.8 {\pm} 40$	0.1 ± 33

mass relations implied by SU(6) broken at order I/Nc hold remarkably well

Excited hyperons: mass predictions and puzzles

Mass predictions based on SU(6)xO(3)

• One missing state in the $[70, 1^-]$: prediction: $\Lambda_{3/2^-}(1830)$

 Λs

• PDG: $\Lambda_{1/2^+}(1810)$ a bit too light to fit into higher excited multiplets such as $[70, 0^+]$ or $[70, 2^+]$ Matagne & Stancu sits exactly at the ΞK threshold

• Heavier states poorly established or need higher excited spin-flavor multiplets: too sparse for predictions

• Positive parity predicted masses:

$$\begin{split} &\Sigma_{1/2^+}(1790) \text{ in a decuplet in } [56,0^+] \\ &\Sigma_{1/2^+}(2068) \text{ in a decuplet in } [56,2^+] \\ &\Sigma_{3/2^+}(1880) \text{ in an octet in } [56,2^+] \\ &\Sigma_{3/2^+}(2060) \text{ in a decuplet in } [56,2^+] \\ &\Sigma_{5/2^+}(2050) \text{ in a decuplet in } [56,2^+] \end{split}$$

Most match with existing PDG entries

 Negative parity predicted masses: 	$\Sigma_{1/2^{-}}(1637)$ in an octet in [70, 1 ⁻]
	$\Sigma_{3/2}$ (1770) in an octet in [70, 1 ⁻]
	$\Sigma_{1/2^{-}}(1785)$ in a decuplet in [70, 1 ⁻]
	$\Sigma_{3/2^{-}}(1847)$ in a decuplet in [70, 1 ⁻]

•Puzzles: several * and ** PDG entries seem too light to fit in any multiplet

- Lightest PDG entries coincide with thresholds. Cannot be described within any multiplet.
- Several possible identifications of predictions with PDG listings
- $\Xi_{5/2}(2030)$ *** is best identified with a state in the $[56, 2^+]$
- I2 predictions and a few possible matchings with listed PDG states
- Two remaining mass states should be in other multiplets.

Other observables: partial decay widths

[70, I⁻] decay relations: LO=exact SU(4) limit

 $\widetilde{\Gamma}$: reduced widths: phase space factors removed

S-wave

$$\frac{\tilde{\Gamma}(N(1535) \to N\pi) - \tilde{\Gamma}(N(1650) \to N\pi)}{\tilde{\Gamma}(N(1535) \to N\pi) + \tilde{\Gamma}(N(1650) \to N\pi)} = \frac{1}{5} (3 \cos 2\theta_{N_1} - 4 \sin 2\theta_{N_1}) \to \theta_{N_1} = 0.46(10) \text{ or } 1.76(10)$$

$$\frac{\tilde{\Gamma}(N(1535) \to N\eta) - \tilde{\Gamma}(N(1650) \to N\eta)}{\tilde{\Gamma}(N(1535) \to N\eta) + \tilde{\Gamma}(N(1650) \to N\eta)} = \sin 2\theta_{N_1} \to \theta_{N_1} = 0.51(27)$$

$$\tilde{\Gamma}(N(1535) \to N\pi) + \tilde{\Gamma}(N(1650) \to N\pi) = \tilde{\Gamma}(\Delta(1535) \to \Delta\pi) \quad 51(10) \text{ (th) } vs \ 31(15) \text{ (exp)}$$

$$\frac{\tilde{\Gamma}(\Delta(1620) \to N\pi)}{\tilde{\Gamma}(\Delta(1700) \to \Delta\pi)} = 0.1 \text{ (th)} \quad vs \quad 0.29(15) \text{ (exp)}$$

D-wave

$$\begin{split} 2\tilde{\Gamma}(\Delta(1620) \rightarrow \Delta \pi) + \tilde{\Gamma}(\Delta(1700) \rightarrow \Delta \pi) = 15\tilde{\Gamma}(\Delta(1620) \rightarrow N\pi) + 32\tilde{\Gamma}(\Delta(1700) \rightarrow N\pi) \\ 5.9(1.9) \quad vs \quad 8.3(2.3) \end{split}$$

$$\tilde{\Gamma}(N(1535) \to \Delta \pi) + \tilde{\Gamma}(N(1650) \to \Delta \pi) + 11\tilde{\Gamma}(\Delta(1620) \to \Delta \pi) = 132\tilde{\Gamma}(\Delta(1700) \to N\pi) + 90\tilde{\Gamma}(N(1675) \to N\pi)$$

$$32(11) \quad vs \quad 41(10)$$

Known hyperons partial decay widths in the 70-plet

		-					-				-		-			
	_	Λ ((1670)				$\Lambda(1690)$							$\Sigma(1670)$		
	ĒΝ	$\eta\Lambda$	$\pi\Sigma$	$\pi\Sigma^*$		$\pi\Sigma^*$	ĒΝ	$\eta \Lambda$	$\pi\Sigma$			$\pi\Sigma^*$		ĒΝ	$\pi\Lambda$	$\pi\Sigma$
PW	S	S	S	D	S	D	D	D	D	PW	S	L)	D	D	D
LO	113(24)	0.11(0.12)	1.8(2.0)	0.16(0.09)	7.3(3.5)	9(1)	60(6)	~ 0	9.0(0.9)	LO	1.5(0.7)	1.5(0.2)	2.1(0.5)	4.8(0.5)	46(5)
NLO	9(15)	6.1(4.3)	15(11)	0.04(0.10)	114(49)	2.1(1.5)	16(5)	~ 0	5.3(2.9)	NLO	4(11)	1.5(0.9)	2.5(1.4)	7.0(2.9)	28(11)
Exp	9.4(3.6)	6.6(3.6)	15(7.5)				15(4)		18(6.7)	Exp				6(2.7)	6(3.6)	27(12.7)
		Δ(18	800)				Δ(1830)							$\Sigma(1750)$		
	$\bar{K}N$	$\eta\Lambda$	$\pi\Sigma$	$\pi\Sigma^*$	ĒΝ	$\eta\Lambda$	$\pi\Sigma$	KΞ	$\pi\Sigma^*$		$\bar{K}N$	$\pi\Lambda$	$\pi\Sigma$	$\eta\Sigma$	$ar{K}\Delta$	$\pi\Sigma^*$
PW	S	S	S	D	D	D	D	D	D	PW	S	S	S	S	D	D
LO	43(13)	30(4)	150(20)	3.0(1.6)	3.0(1.6)	3.5(0.3)	69(6)	~ 0	54(7)	LO	45(8)	51(7)	6.2(5.3)	14(2)	0.07(0.04)	0.5(0.3)
NLO	100(73)	94(47)	109(25)	5.9(5.2)	12(4)	9.6(2.5)	38(11)	~ 0	57(18)	NLO	30(34)	38(12)	4.2(7.6)	53(28)	0.4(0.2)	0.4(0.5)
Exp	98(40)				5.5(3.4)		46.7(22)			Exp	27.5(21)		4.4(4.4)	38.5(28)		
			$\Lambda(1405)$				Λ(1520))						Σ(1775)		
			$\pi\Sigma$			ĒΝ	×	*	$\pi\Sigma$		$\bar{K}N$	$\pi\Lambda$	$\pi\Sigma$	$\eta\Sigma$	$ar{K}\Delta$	$\pi\Sigma^*$
PW			S			D			D	PW	D	D	D	D	D	D
LO			50(19)			2.7(0.4)			8.2(1.3)	LO	39(3)	27(3)	3.0(1.2)	0.08(0.01)	1.6(0.2)	7(1)
NLO			50(9)			6.7(1.1)			6.9(1.8)	NLO	55(12)	14(4)	0.6(0.8)	0.22(0.06)	3.9(0.8)	7.4(2.3)
Exp			50(5)			7(0.5)			6.5(0.5)	Exp	48(7)	20.4(4.4)	4.2(2)			12(2.8)

			$\Xi(1820)$		
		Ξ*	$\bar{K}\Lambda$	$\bar{K}\Sigma$	$\pi\Xi$
PW	S	D	D	D	D
LO	2.3(0.6)	2.6(0.3)	10(1)	14(1)	4.2(0.9
NLO	2.4(2.2)	3.2(0.6)	18(3)	29(4)	0.3(0.6
Exp					

JLG, Jayalath & Scoccola

 $\chi^2_{\rm dof} \sim 1.2$

S-wave: I4 PDG PW inputs fitted with 7 parameters D-wave: 25 " 8 "

PW predictions for unobserved states in 70-plet are possible with these same calculations: to be done

Comments

- K_L beam opens renewed opportunities to research hyperon physics at JLab.
- Predictions grounded on symmetries can be made once a sufficient number of states in a given multiplet can be identified. Numerous are already available.
- Interesting puzzles exist for PDG listed excited hyperons which do not fit into any of the low lying excited multiplets: they need to be further revisited and investigated.
- Excited Ξ s are very poorly known. Establishing and discovering new states is important for establishing the multiplet structure of excited baryons in particular.
- An upcoming source of predictions to be watched is Lattice QCD. (D. Richards talk)

Present status of excited hyperons (PDG)

Chew-Frautschi for spin-flavor singlet piece of baryon masses

 $[\mathbf{56}, 0^+]_{GS}, [\mathbf{56}, (2^+, 4^+, 6^+)], [\mathbf{70}, (1^-, 2^+, 3^-, 5^-)]$

+ a grain of salt

• $M_0^2[\mathbf{56}, \ell] = [(1.18 \pm 0.003) + (1.05 \pm 0.01) \,\ell] \,\mathrm{GeV}^2$

- $M_0^2[\mathbf{70}, \ell] = [(1.13 \pm 0.02) + (1.18 \pm 0.02) \,\ell] \,\mathrm{GeV}^2$
- $(M_0[\mathbf{70}, \ell] M_0[\mathbf{56}, \ell])^2 \simeq (5.7 + 4.2\,\ell) \times 10^{-4} \text{ GeV}^2$
- Splitting between trajectories $\mathcal{O}(N_c^0)$: due to exchange interaction. In magnitude smaller than expected.
- Regge trajectories with physical masses include contributions which do not have linear behavior.
- Strong indication of small **56-70** configuration mixings and good approximate O(3) symmetry

9

8