*K*⁰_{*L*}*P* SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

Department of Physics Kent State University Kent, OH 44242 USA

February 1, 2016

ヘロト ヘ部ト ヘヨト ヘヨト

3

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

Introduction PWA Formalism KN and $\overline{K}N$ Final States $\pi\Lambda$ Final States $\pi\Sigma$ Final States K Ξ Final States Summary Acknowledgments

1/28

Introduction

- PWA Formalism
- KN and $\overline{K}N$ Final States
- $\pi\Lambda$ Final States
- $\pi\Sigma$ Final States
- ► KΞ Final States
- Summary
- Acknowledgments

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

ntroduction

PWA Formalism

KN and $\overline{K}N$ Final States

τΛ Final States

 $\pi\Sigma$ Final States

 $K\Xi$ Final States

Summary

Introduction

PWA Formalism

- KN and $\overline{K}N$ Final States
- $\pi\Lambda$ Final States
- $\pi\Sigma$ Final States
- ► KΞ Final States
- Summary
- Acknowledgments

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

ntroduction

PWA Formalism

KN and $\overline{K}N$ Final States

τΛ Final States

 $\pi\Sigma$ Final States

 $K\Xi$ Final States

Summary

- Introduction
- PWA Formalism
- KN and $\overline{K}N$ Final States
- $\pi\Lambda$ Final States
- $\pi\Sigma$ Final States
- ► KΞ Final States
- Summary
- Acknowledgments

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

ntroduction

PWA Formalism

KN and $\overline{K}N$ Final States

 $_{\tau\Lambda}$ Final States

 $\pi\Sigma$ Final States

 $K\Xi$ Final States

Summary

- Introduction
- PWA Formalism
- KN and $\overline{K}N$ Final States
- πΛ Final States
- $\pi\Sigma$ Final States
- ► KΞ Final States
- Summary
- Acknowledgments

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

ntroduction

PWA Formalism

KN and $\overline{K}N$ Final States

 $_{\tau\Lambda}$ Final States

 $\pi\Sigma$ Final States

 $K\Xi$ Final States

Summary

- Introduction
- PWA Formalism
- KN and $\overline{K}N$ Final States
- $\pi\Lambda$ Final States
- $\pi\Sigma$ Final States
- ► KΞ Final States
- Summary
- Acknowledgments

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

ntroduction

PWA Formalism

KN and $\overline{K}N$ Final States

 $_{\tau\Lambda}$ Final States

 $\pi\Sigma$ Final States

 $K\Xi$ Final States

Summary

- Introduction
- PWA Formalism
- KN and $\overline{K}N$ Final States
- $\pi\Lambda$ Final States
- $\pi\Sigma$ Final States
- KE Final States
- Summary
- Acknowledgments

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

ntroduction

PWA Formalism

KN and $\overline{K}N$ Final States

τΛ Final States

 $\pi\Sigma$ Final States

 $K\Xi$ Final States

Summary

- Introduction
- PWA Formalism
- KN and $\overline{K}N$ Final States
- $\pi\Lambda$ Final States
- $\pi\Sigma$ Final States
- ► KΞ Final States
- Summary
- Acknowledgments

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

ntroduction

PWA Formalism

KN and $\overline{K}N$ Final States

 $_{\tau\Lambda}$ Final States

 $\pi\Sigma$ Final States

 $K\Xi$ Final States

Summary

- Introduction
- PWA Formalism
- KN and $\overline{K}N$ Final States
- $\pi\Lambda$ Final States
- $\pi\Sigma$ Final States
- ► KΞ Final States
- Summary
- Acknowledgments

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

ntroduction

PWA Formalism

KN and $\overline{K}N$ Final States

 $_{\tau\Lambda}$ Final States

 $\pi\Sigma$ Final States

 $K\Xi$ Final States

Summary

Introduction

- Main interest in creating high-quality secondary K⁰_L beam is to investigate hyperon spectroscopy.
- Here we review what can be learned by studying K⁰_Lp scattering going to two-body final states.
- Mean lifetime of the K⁻ is 12.38 ns (cτ = 3.7 m) whereas mean lifetime of the K⁰_L is 51.16 ns (cτ = 15.3 m). Thus, it is much easier to perform measurements of K⁰_Lp scattering at low beam energies than K⁻p scattering due to higher beam flux.

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

Introduction

PWA Formalism KN and $\overline{K}N$ Final States $\pi\Delta$ Final States $K\Xi$ Final States Summary Acknowledgments

Formalism

- Here, we summarize some of the physics issues involved with such processes.
- The differential cross section and polarization for K⁰_Lp scattering are given by

$$\frac{d\sigma}{d\Omega} = \lambda^2 (|f|^2 + |g|^2),$$
$$P\frac{d\sigma}{d\Omega} = 2\lambda^2 \text{Im}(fg^*),$$

where $\lambda = \hbar/k$, with *k* the magnitude of c.m. momentum for the incoming meson. Here $f = f(W, \theta)$ and $g = g(W, \theta)$ are the usual spin-nonflip and spin-flip amplitudes at c.m. energy *W* and meson c.m. scattering angle θ . K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

ntroductior

PWA Formalism

KN and \overline{KN} Final States $\pi\Lambda$ Final States $\pi\Sigma$ Final States K Ξ Final States Summary Acknowledgments

Partial-Wave Expansion

▶ In terms of partial waves, *f* and *g* can be expanded as

$$f(W,\theta) = \sum_{l=0}^{\infty} [(l+1)T_{l+} + lT_{l-}]P_l(\cos\theta),$$

$$g(W,\theta) = \sum_{l=1}^{\infty} [T_{l+} - T_{l-}] P_l^1(\cos \theta).$$

- ► Here *l* is the initial orbital angular momentum, $P_l(\cos \theta)$ is a Legendre polynomial, and $P_l^1(\cos \theta) = \sin \theta \times dP_l(\cos \theta)/d(\cos \theta)$ is an associated Legendre function.
- ► The total angular momentum for T_{l+} is $J = l + \frac{1}{2}$, while that for T_{l-} is $J = l \frac{1}{2}$.

D. Mark Manley

ntroduction

PWA Formalism KN and $\overline{K}N$ Final States $\pi \Lambda$ Final States $\pi \Sigma$ Final States Summary Acknowledgments

Isospin Amplitudes

We may ignore small CP-violating terms and write

$$K_L^0 = \frac{1}{\sqrt{2}} (K^0 - \overline{K^0}),$$

$$K_S^0 = \frac{1}{\sqrt{2}}(K^0 + \overline{K^0}).$$

• We have both I = 0 and I = 1 amplitudes for *KN* and \overline{KN} scattering, so that amplitudes $T_{l\pm}$ can be expanded in isospin amplitudes as

$$T_{l\pm} = C_0 T_{l\pm}^0 + C_1 T_{l\pm}^1,$$

where $T_{l\pm}^{I}$ are partial-wave amplitudes with isospin I and total angular momentum $J = l \pm \frac{1}{2}$, with C_{I} the appropriate isospin Clebsch-Gordon coefficients.

(日)

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

ntroduction

PWA Formalism

KN and \overline{KN} Final States πΛ Final States πΣ Final States

 $K \equiv$ Final States

Summary

Acknowledgments

6/28

KN and $\overline{K}N$ Final States

$$T(K^{-}p \to K^{-}p) = \frac{1}{2}T^{1}(\overline{K}N \to \overline{K}N) + \frac{1}{2}T^{0}(\overline{K}N \to \overline{K}N)$$

$$T(K^{-}p \to \overline{K^{0}}n) = \frac{1}{2}T^{1}(\overline{K}N \to \overline{K}N) - \frac{1}{2}T^{0}(\overline{K}N \to \overline{K}N)$$

$$T(K^{+}p \to K^{+}p) = T^{1}(KN \to KN)$$

$$T(K^{+}n \to K^{+}n) = \frac{1}{2}T^{1}(KN \to KN) + \frac{1}{2}T^{0}(KN \to KN)$$

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

ntroduction

PWA Formalism

KN and $\overline{K}N$ Final States

πΛ Final States πΣ Final States KΞ Final States Summary Acknowledgments

7/28

KN and KN Final States (cont'd)

$$\begin{split} T(K_L^0 p \to K_S^0 p) &= \frac{1}{2} \left(\frac{1}{2} T^1(KN \to KN) + \frac{1}{2} T^0(KN \to KN) \right) \\ &- \frac{1}{2} T^1(\overline{K}N \to \overline{K}N) \\ T(K_L^0 p \to K_L^0 p) &= \frac{1}{2} \left(\frac{1}{2} T^1(KN \to KN) + \frac{1}{2} T^0(KN \to KN) \right) \\ &+ \frac{1}{2} T^1(\overline{K}N \to \overline{K}N) \\ T(K_L^0 p \to K^+ n) &= \frac{1}{\sqrt{2}} \left(\frac{1}{2} T^1(KN \to KN) - \frac{1}{2} T^0(KN \to KN) \right) \\ &- \frac{1}{2} T^1(\overline{K}N \to \overline{K}N) \end{split}$$

(ロ) (部) (目) (日) (日) (の)

K⁰_LP SCATTERING TO 2-BODY FINAL STATES D. Mark Manley

KN and $\overline{K}N$ Final States

Data for $K_L^0 p \to K_S^0 p$ and $K_L^0 p \to K^+ n$

Figure: Distribution of measured data for $K_L^0 p \rightarrow K_S^0 p$ and $K_L^0 p \rightarrow K^+ n$. $d\sigma/d\Omega$ data are shown as blue open circles and polarization data are shown as red open circles. σ data are shown on the $\theta = 0$ line.

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

ntroduction

PWA Formalism

KN and $\overline{K}N$ Final States

A Final States

KE Final States

Summary

Discussion

- ► No $d\sigma/d\Omega$ data are available for $K_L^0 p \to K_L^0 p$ below $W \sim 2948$ MeV.
- A fair amount of data are available for the reaction, $K^+n \rightarrow K^0p$, measured on a deuterium target.
- ▶ Next two slides show a sample of available data for $K^0_L p \to K^0_S p$ compared with predictions determined from our previous PWA of $\overline{K}N \to \overline{K}N$ data, combined with $KN \to KN$ amplitudes from SAID solution. The predictions at lower and higher energies tend to agree less well with the data.

D. Mark Manley

ntroduction

PWA Formalism

KN and $\overline{K}N$ Final States

τΛ Final States
 τΣ Final States
 ΚΞ Final States

$d\sigma/d\Omega$ Data for $K_L^0 p \to K_S^0 p$

Figure: Selected data for $K_L^0 p \to K_S^0 p$ at 1660 MeV and 1720 MeV. The curves are predictions using amplitudes from our previous PWA of $\overline{K}N \to \overline{K}N$ combined with $KN \to KN$ amplitudes from SAID solution.

K⁰₂P SCATTERING TO 2-BODY FINAL STATES D. Mark Manley Introduction PWA Formalism

KN and $\overline{K}N$ Final States $\pi\Lambda$ Final States $\pi\Sigma$ Final States K Ξ Final States Summary

$d\sigma/d\Omega$ Data for $K_L^0 p \to K_S^0 p$

Figure: Selected data for $K_L^0 p \to K_S^0 p$ at 1750 MeV and 1840 MeV. The curves are predictions using amplitudes from our previous PWA of $\overline{K}N \to \overline{K}N$ combined with $KN \to KN$ amplitudes from SAID solution.

K⁰_LP SCATTERING TO 2-BODY FINAL STATES D. Mark Manley

WA Formalis

KN and $\overline{K}N$ Final States

rΛ Final States rΣ Final States KΞ Final States Summary

$\pi\Lambda$ Final States

STATES D. Mark Manley

itroduction

PWA Formalism

 $K_L^0 P$ SCATTERING TO 2-BODY FINAL

KN and $\overline{K}N$ Final States

 $\pi\Lambda$ Final States

 $\pi\Sigma$ Final States

 $K \equiv$ Final States

Summary

Acknowledgments

$$T(K^{-}p \to \pi^{0}\Lambda) = \frac{1}{\sqrt{2}}T^{1}(\overline{K}N \to \pi\Lambda)$$
$$T(K_{L}^{0}p \to \pi^{+}\Lambda) = -\frac{1}{\sqrt{2}}T^{1}(\overline{K}N \to \pi\Lambda)$$

Data for $K_L^0 p \to \pi^+ \Lambda$

Figure: Distribution of measured data for $K_L^0 p \rightarrow \pi^+ \Lambda$. $d\sigma/d\Omega$ data are shown as blue open circles and polarization data are shown as red open circles. σ data are shown on the $\theta = 0$ line.

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

Introduction PWA Formalism KN and $\overline{K}N$ Final States $\pi\Lambda$ Final States $\pi\Sigma$ Final States

KE Final States

Summary

Discussion

- K⁻p → π⁰Λ and K⁰_Lp → π⁺Λ amplitudes imply that their observables measured at same energy should be identical except for small differences due to isospin-violating mass differences in the hadrons.
- ► No $d\sigma/d\Omega$ data for $K^-p \to \pi^0 \Lambda$ are available at c.m. energies W < 1540 MeV, although data for $K_L^0 p \to \pi^+ \Lambda$ are available at such energies (next slide).
- At 1540 MeV and higher, dσ/dΩ and polarization data for the two reactions are in fair agreement, as shown in the following slides.

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

ntroduction

WA Formalism

KN and $\overline{K}N$ Final States

 $\pi\Lambda$ Final States

 $r\Sigma$ Final States

KE Final States

Summary

Low-energy $d\sigma/d\Omega$ Data for $K_L^0 p \to \pi^+ \Lambda$

Figure: Data for $K_L^0 p \to \pi^+ \Lambda$ at 1480 MeV and 1500 MeV. No data for $K^- p \to \pi^0 \Lambda$ are available below 1540 MeV.

$d\sigma/d\Omega$ Data for $K^-p \to \pi^0 \Lambda$ and $K^0_L p \to \pi^+ \Lambda$

Figure: Comparison of selected $d\sigma/d\Omega$ data for $K^-p \rightarrow \pi^0 \Lambda$ (red) and $K^0_L p \rightarrow \pi^+ \Lambda$ (blue) at 1540 MeV and 1620 MeV. The curves are from our previous PWA of $K^-p \rightarrow \pi^0 \Lambda$ data.

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

Introduction PWA Formalism KN and $\overline{K}N$ Final States $\pi \Lambda$ Final States $\pi \Sigma$ Final States $K \Xi$ Final States

$d\sigma/d\Omega$ Data for $K^-p \to \pi^0 \Lambda$ and $K^0_L p \to \pi^+ \Lambda$

Figure: Comparison of selected $d\sigma/d\Omega$ data for $K^-p \rightarrow \pi^0 \Lambda$ (red) and $K^0_L p \rightarrow \pi^+ \Lambda$ (blue) at 1760 MeV and 1840 MeV. The curves are from our previous PWA of $K^-p \rightarrow \pi^0 \Lambda$ data.

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

Introduction PWA Formalism KN and KN Final States

πΛ Final States πΣ Final States KΞ Final States Summary

Polarization Data for $K^- p \to \pi^0 \Lambda$ and $K^0_L p \to \pi^+ \Lambda$

Figure: Comparison of selected polarization data for $K^-p \rightarrow \pi^0 \Lambda$ (red) and $K^0_L p \rightarrow \pi^+ \Lambda$ (blue) at 1760 MeV and 1880 MeV. The curves are from our previous PWA of $K^-p \rightarrow \pi^0 \Lambda$ data.

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

ntroduction

PWA Formalism

KN and $\overline{K}N$ Final States

 $\pi\Lambda$ Final States

 $\tau\Sigma$ Final States

KE Final States

Summary

$\pi\Sigma$ Final States

$$\begin{split} T(K^-p \to \pi^- \Sigma^+) &= -\frac{1}{2} T^1(\overline{K}N \to \pi\Sigma) - \frac{1}{\sqrt{6}} T^0(\overline{K}N \to \pi\Sigma) \\ T(K^-p \to \pi^+ \Sigma^-) &= \frac{1}{2} T^1(\overline{K}N \to \pi\Sigma) - \frac{1}{\sqrt{6}} T^0(\overline{K}N \to \pi\Sigma) \\ T(K^-p \to \pi^0 \Sigma^0) &= -\frac{1}{\sqrt{6}} T^0(\overline{K}N \to \pi\Sigma) \\ T(K^0_L p \to \pi^+ \Sigma^0) &= -\frac{1}{2} T^1(\overline{K}N \to \pi\Sigma) \\ T(K^0_L p \to \pi^0 \Sigma^+) &= -\frac{1}{2} T^1(\overline{K}N \to \pi\Sigma) \end{split}$$

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

ntroduction

PWA Formalism

KN and $\overline{K}N$ Final States

Λ Final States

 $\pi\Sigma$ Final States

KE Final States

Summary

Data for $K_L^0 p \to \pi^0 \Sigma^+$ and $K_L^0 p \to \pi^+ \Sigma^0$

Figure: Distribution of measured data for $K_L^0 p \to \pi^0 \Sigma^+$ and $K_L^0 p \to \pi^+ \Sigma^0$. $d\sigma/d\Omega$ data are shown as blue open circles and polarization data are shown as red open circles. σ data are shown on the $\theta = 0$ line.

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

ntroduction

PWA Formalism

KN and \overline{KN} Final States

rΛ Final States

 $\pi\Sigma$ Final States

KE Final States

Summary

Discussion

- ► Reactions $K_L^0 p \to \pi^+ \Sigma^0$ and $K_L^0 p \to \pi^0 \Sigma^+$ are isospin selective (only I = 1 amplitudes are involved) whereas reactions $K^- p \to \pi^- \Sigma^+$ and $K^- p \to \pi^+ \Sigma^-$ are not. New measurements with a K_L^0 beam would lead to better understanding of Σ^* states and help constrain amplitudes for $K^- p \to \pi \Sigma$ reactions
- No $d\sigma/d\Omega$ data are available for $K_L^0 p \to \pi^0 \Sigma^+$
- Next two slides compare $d\sigma/d\Omega$ data for K^-p and K_L^0p reactions leading to $\pi\Sigma$ final states at W = 1660 MeV (or $P_{\text{lab}} = 716 \text{ MeV}/c$)
- Quality of K⁰_Lp data is comparable to that for K⁻p data. It would be advantageous to combine K⁰_Lp data in a new coupled-channel PWA with available K⁻p data

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

Introduction PWA Formalism KN and $\overline{K}N$ Final States $\pi\Lambda$ Final States $\kappa\Sigma$ Final States $K\Xi$ Final States Summary Acknowledgments

Figure: Comparison of selected $d\sigma/d\Omega$ data for $K^-p \rightarrow \pi^-\Sigma^+$ and $K^-p \rightarrow \pi^+\Sigma^-$ at 1660 MeV. The curves are from our previous PWA of $K^-p \rightarrow \pi\Sigma$ data.

Figure: Comparison of selected $d\sigma/d\Omega$ data for $K^-p \rightarrow \pi^0 \Sigma^0$ and $K^0_L p \rightarrow \pi^+ \Sigma^0$ at 1660 MeV. The curves are from our previous PWA of $K^-p \rightarrow \pi \Sigma$ data.

KE Final States

$$\begin{split} T(K^-p \to K^0 \Xi^0) &= \frac{1}{2} T^1(\overline{K}N \to K \Xi) + \frac{1}{2} T^0(\overline{K}N \to K \Xi) \\ T(K^-p \to K^+ \Xi^-) &= \frac{1}{2} T^1(\overline{K}N \to K \Xi) - \frac{1}{2} T^0(\overline{K}N \to K \Xi) \\ T(K^0_L p \to K^+ \Xi^0) &= -\frac{1}{\sqrt{2}} T^1(\overline{K}N \to K \Xi) \end{split}$$

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

troduction

PWA Formalism

KN and $\overline{K}N$ Final States

Λ Final States

 $\tau\Sigma$ Final States

KE Final States

Summary

Discussion

- ► Threshold for K⁻p and K⁰_Lp reactions leading to KΞ final states is fairly high (W_{thresh} = 1816 MeV)
- ► There are no $d\sigma/d\Omega$ data available for $K^0_L p \to K^+ \Xi^0$ and very few (none recent) for $K^- p \to K^0 \Xi^0$ or $K^- p \to K^+ \Xi^-$
- Measurements for these reactions would be very helpful, especially for comparing with predictions from dynamical coupled-channel (DCC) models
- ► $K_L^0 p \to K^+ \Xi^0$ is isospin-1 selective, whereas the reactions $K^- p \to K^0 \Xi^0$ and $K^- p \to K^+ \Xi^-$ involve both I = 0 and I = 1 amplitudes
- The *Review of Particle Physics* lists only two states with branching fractions (BF) to KΞ, namely, Λ(2100)⁷/₂ (BF < 3%) and Σ(2030)⁷/₂ (BF < 2%)

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

Introduction PWA Formalism KN and $\overline{K}N$ Final States $\pi \Delta$ Final States K Ξ Final States Summary Acknowledgments

- New data for K⁰_Lp scattering could significantly improve our knowledge of Λ* and Σ* Resonances
- ► Very few polarization data are available for any $K_L^0 p$ reactions
- Several K⁰_Lp reactions are isospin selective, so would help constrain PWAs of K⁻p scattering
- Long lifetime of K⁰_L would allow measurements to be made at lower energies than can be done easily with K⁻ beams

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

ntroduction

PWA Formalism

KN and $\overline{K}N$ Final States

 $_{\tau\Lambda}$ Final States

 $\pi\Sigma$ Final States

 $K\Xi$ Final States

Summary

- New data for K⁰_Lp scattering could significantly improve our knowledge of Λ* and Σ* Resonances
- Very few polarization data are available for any K⁰_Lp reactions
- Several K⁰_Lp reactions are isospin selective, so would help constrain PWAs of K⁻p scattering
- Long lifetime of K⁰_L would allow measurements to be made at lower energies than can be done easily with K⁻ beams

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

troduction WA Formalism W and $\overline{K}N$ Fina

 $_{\tau\Lambda}$ Final States

 $\pi\Sigma$ Final States

KE Final States

Summary

- New data for K⁰_Lp scattering could significantly improve our knowledge of Λ* and Σ* Resonances
- ► Very few polarization data are available for any $K_L^0 p$ reactions
- Several K⁰_Lp reactions are isospin selective, so would help constrain PWAs of K⁻p scattering
- Long lifetime of K⁰_L would allow measurements to be made at lower energies than can be done easily with K⁻ beams

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

Introduction PWA Formalism KN and KN Final States πΛ Final States KΞ Final States Summary

- New data for K⁰_Lp scattering could significantly improve our knowledge of Λ* and Σ* Resonances
- ► Very few polarization data are available for any $K_L^0 p$ reactions
- Several K⁰_Lp reactions are isospin selective, so would help constrain PWAs of K⁻p scattering
- Long lifetime of K⁰_L would allow measurements to be made at lower energies than can be done easily with K⁻ beams

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

Introduction PWA Formalism KN and $\overline{K}N$ Final States $\pi \Delta$ Final States $K \Xi$ Final States Summary Acknowled meets

- Thanks to Igor Strakovsky and the other organizers for inviting me to talk at this workshop
- Thanks also to Igor for providing the data distribution plots shown in this talk
- Thanks to my Ph.D. student, Brian Hunt, who prepared all the figures of observables in this talk
- This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Medium Energy Nuclear Physics, under Award No. DE-SC0014323
- Thank YOU for your attention!

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

Introduction PWA Formalism KN and $\overline{K}N$ Final States $\pi \Delta$ Final States $K \Sigma$ Final States Summary Acknowledgments

- Thanks to Igor Strakovsky and the other organizers for inviting me to talk at this workshop
- Thanks also to Igor for providing the data distribution plots shown in this talk
- Thanks to my Ph.D. student, Brian Hunt, who prepared all the figures of observables in this talk
- This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Medium Energy Nuclear Physics, under Award No. DE-SC0014323
- Thank YOU for your attention!

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

Introduction PWA Formalism KN and $\overline{K}N$ Final States $\pi \Lambda$ Final States $\pi \Sigma$ Final States $K \Xi$ Final States Summary Acknowledgments

- Thanks to Igor Strakovsky and the other organizers for inviting me to talk at this workshop
- Thanks also to Igor for providing the data distribution plots shown in this talk
- Thanks to my Ph.D. student, Brian Hunt, who prepared all the figures of observables in this talk
- This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Medium Energy Nuclear Physics, under Award No. DE-SC0014323
- Thank YOU for your attention!

K⁰_LP SCATTERING TO 2-BODY FINAL STATES

D. Mark Manley

Introduction PWA Formalism KN and \overline{KN} Final States $\pi\Lambda$ Final States $\pi\Sigma$ Final States $K\Xi$ Final States Summary Acknowledgments

- Thanks to Igor Strakovsky and the other organizers for inviting me to talk at this workshop
- Thanks also to Igor for providing the data distribution plots shown in this talk
- Thanks to my Ph.D. student, Brian Hunt, who prepared all the figures of observables in this talk
- This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Medium Energy Nuclear Physics, under Award No. DE-SC0014323
- Thank YOU for your attention!

D. Mark Manley

Introduction PWA Formalism KN and $\overline{K}N$ Final States $\pi\Lambda$ Final States $\pi\Sigma$ Final States K Ξ Final States Summary Acknowledgments

- Thanks to Igor Strakovsky and the other organizers for inviting me to talk at this workshop
- Thanks also to Igor for providing the data distribution plots shown in this talk
- Thanks to my Ph.D. student, Brian Hunt, who prepared all the figures of observables in this talk
- This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Medium Energy Nuclear Physics, under Award No. DE-SC0014323
- Thank YOU for your attention!

D. Mark Manley

Introduction PWA Formalism KN and $\overline{K}N$ Final States $\pi\Lambda$ Final States $\pi\Sigma$ Final States K Ξ Final States Summary Acknowledgments