Cascade Production in \overline{K} - and Photon-induced Reactions

<u>Collaboration</u>: Benjamin Jackson (UGA) Helmut Haberzettl (GWU) Yongseok Oh (KNU) K. N. (UGA)

KL2016, Feb. 1-3, 2016

Our Ξ collaboration:

Theoretical investigation of the reactions:

- $\overline{K}N \rightarrow K\Xi$ [J-PARC]
- $\gamma N \rightarrow KK\Xi$ [JLab] $\pi N \rightarrow KK\Xi$ [J-PARC] $p\bar{p} \rightarrow \Xi\bar{\Xi}$ [FAIR]
- Build a reliable model to analyze the cascade spectroscopy data: Start learning the production mechanism of the established Ξ s. [g.s. $\Xi_{1/2+}(1318)$]

To date:

• $\overline{K}N \rightarrow K\Xi$: recent calculations:

Sharov, Korotkikh and Lanskoy (EPJA47, '11), Shyam, Scholten and Thomas (PRC84, '11), Feijoo, Magas and Ramos (PRC92, '15), $U\chi$ PT + high-spin resonances Kamano, Nakamura, Lee and Sato (PRC90, '14), DCC approach they all point to the importance of the S=-1 hyperons

• $\gamma N \rightarrow KK\Xi$: no calculation is available so far, except for:

Liu and Ko (PRC69, '04), in connection with the Ξ_5 production. Our group (PRC74, '06; PRC83, '12), analyzing the CLAS data.

$\overline{K}N \rightarrow K\Xi$

$KN \rightarrow K\Xi$: model

$$M_{c} \begin{cases} M_{c++}^{T} = M_{c--}^{T} = \sum_{L} a_{LT} \left(\frac{p'}{\Lambda_{S}}\right)^{L} \exp\left[-\alpha^{LT} \frac{p'^{2}}{\Lambda_{S}^{2}}\right] P_{L}\left(\theta\right) & a_{LT}, \ b_{LT}, \ \alpha^{LT} = \text{fit parameters} \\ M_{c}^{T} = -M_{c-+}^{T} = \sum_{L} b_{LT} \left(\frac{p'}{\Lambda_{S}}\right)^{L} \exp\left[-\alpha^{LT} \frac{p'^{2}}{\Lambda_{S}^{2}}\right] P_{L}^{1}\left(\theta\right) & \text{(scale parameter)} \end{cases}$$

$\overline{KN} \rightarrow K\Xi$: model

[Jackson, Oh, Haberzettl, K.N., PRC91(2015)065208]

the model parameters may be fixed from the relevant decay rates(PDG) and/or quark models and SU(3) symmetry considerations.

	Λ st	ates		Σ states				
State	J^P	Γ (MeV)		State	J^P	Γ (MeV)		
$\Lambda(1600)$	$1/2^{+}$	≈ 150	***	$\Sigma(1660)$	$1/2^{+}$	≈ 100	***	
$\Lambda(1670)$	$1/2^{-}$	≈ 35	****	$\Sigma(1670)$	$3/2^{-}$	≈ 60	****	
$\Lambda(1690)$	$3/2^{-}$	≈ 60	****	$\Sigma(1750)$	$1/2^{-}$	≈ 90	***	
$\Lambda(1800)$	$1/2^{-}$	≈ 300	***	$\Sigma(1775)$	$5/2^{-}$	≈ 120	****	
$\Lambda(1810)$	$1/2^{+}$	≈ 150	***	$\Sigma(1915)$	$5/2^{+}$	≈ 120	****	
$\Lambda(1820)$	$5/2^{+}$	≈ 80	****	$\Sigma(1940)$	$3/2^{-}$	≈ 220	***	
$\Lambda(1830)$	$5/2^{-}$	pprox 95	****	$\Sigma(2030)$	$7/2^{+}$	≈ 180	****	
$\Lambda(1890)$	$3/2^{+}$	≈ 100	****	$\Sigma(2250)$	$?^{?}$	≈ 100	***	
$\Lambda(2100)$	$7/2^{-}$	≈ 200	****					
$\Lambda(2110)$	$5/2^{+}$	≈ 200	***					
$\Lambda(2350)$	$9/2^{+}$	≈ 150	***					

no enough information to fix the parameters of the model.

$\overline{KN} \rightarrow K\Xi$: model

[Jackson, Oh, Haberzettl, K.N., PRC91(2015)065208]

the model parameters may be fixed from the relevant decay rates(PDG) and/or quark models and SU(3) symmetry considerations.

	Λ st	tates			Σ st	tates		no enou
State	J^P	Γ (MeV)		State	J^P	Γ (MeV)		paramet
$\Lambda(1600)$	$1/2^{+}$	≈ 150	***	$\Sigma(1660)$	$1/2^{+}$	≈ 100	***	-
$\Lambda(1670)$	$1/2^{-}$	≈ 35	****	$\Sigma(1670)$	$3/2^{-}$	≈ 60	****	
$\Lambda(1690)$	$3/2^{-}$	≈ 60	****	$\Sigma(1750)$	$1/2^{-}$	≈ 90	***	
$\Lambda(1800)$	$1/2^{-}$	≈ 300	***	$\Sigma(1775)$	$5/2^{-}$	≈ 120	****	
$\Lambda(1810)$	$1/2^{+}$	≈ 150	***	$\Sigma(1915)$	$5/2^{+}$	≈ 120	****	
$\Lambda(1820)$	$5/2^{+}$	≈ 80	****	$\Sigma(1940)$	$3/2^{-}$	≈ 220	***	
$\Lambda(1830)$	$5/2^{-}$	≈ 95	****	$\Sigma(2030)$	$7/2^{+}$	≈ 180	****	
$\Lambda(1890)$	$3/2^{+}$	≈ 100	****	$\Sigma(2250)$??	≈ 100	***	
$\Lambda(2100)$	$7/2^{-}$	≈ 200	****		$\int \mathbf{\nabla} = 0$	2250) M	- 2270 +	50 MoV
$\Lambda(2110)$	$5/2^{+}$	≈ 200	***		$\sum_{j=1}^{j} \sum_{j=1}^{j} \sum_{j$	$(2250) \rightarrow M$	$= 2270 \pm$ = 2210 +	30 MeV
$\Lambda(2350)$	$9/2^{+}$	≈ 150	***		[- 9/2- (22307 / 141	2210 ±	

no enough information to fix the parameters of the model.

[A. de Bellefon et al., N. Cim. A7('72)]

$\overline{KN} \rightarrow K\Xi$: model

[Jackson, Oh, Haberzettl, K.N., PRC91(2015)065208]

the model parameters may be fixed from the relevant decay rates(PDG) and/or quark models and SU(3) symmetry considerations.

Λ states				Σ states				no enough information to fix the		
State	J^P	Γ (MeV)		State	J^P	Γ (MeV)		parameters of the model.		
$\Lambda(1600)$	$1/2^{+}$	≈ 150	***	$\Sigma(1660)$	$1/2^{+}$	≈ 100	***			
$\Lambda(1670)$	$1/2^{-}$	≈ 35	****	$\Sigma(1670)$	$3/2^{-}$	≈ 60	****			
$\Lambda(1690)$	$3/2^{-}$	≈ 60	****	$\Sigma(1750)$	$1/2^{-}$	≈ 90	***			
$\Lambda(1800)$	$1/2^{-}$	≈ 300	***	$\Sigma(1775)$	$5/2^{-}$	≈ 120	****			
$\Lambda(1810)$	$1/2^{+}$	≈ 150	***	$\Sigma(1915)$	$5/2^{+}$	≈ 120	****			
$\Lambda(1820)$	$5/2^{+}$	≈ 80	****	$\Sigma(1940)$	$3/2^{-}$	≈ 220	***			
$\Lambda(1830)$	$5/2^{-}$	≈ 95	****	$\Sigma(2030)$	$7/2^{+}$	≈ 180	****			
$\Lambda(1890)$	$3/2^{+}$	≈ 100	****	$\Sigma(2250)$??	≈ 100	***			
$\Lambda(2100)$	$7/2^{-}$	≈ 200	****		$\int \Sigma = C$	$2250) \rightarrow M$	= 2270 +	50 MeV		
$\Lambda(2110)$	$5/2^{+}$	≈ 200	***		$\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} (1 - 1)^{n}$	$2250) \rightarrow M$	$= 2270 \pm$ = 2210 ±	30 MeV		
$\Lambda(2350)$	$9/2^+$	≈ 150	***		[-9/2- (<i>2200, 1</i> 11		[A. de Bellefon et al., N. Cim. A7('72		

Strategy: consider all the 3- & 4-star hyperon resonances which affects the fit quality significantly ($\delta \chi^2 / N > 0.1$).

[Jackson, Oh, Haberzettl, K.N., PRC91(2015)065208]

Λ(1116)	Σ(1193)
Λ(1405)	Σ(1385)
Λ(1520)	

the model parameters may be fixed from the relevant decay rates(PDG) and/or quark models and SU(3) symmetry considerations.

	Λ s	tates		Σ states				no enough information to fix the	
State	J^P	Γ (MeV)		State	J^P	Γ (MeV)		paramete	ers of the model.
$\Lambda(1600)$	$1/2^{+}$	≈ 150	***	$\Sigma(1660)$	$1/2^{+}$	≈ 100	***		
$\Lambda(1670)$	$1/2^{-}$	≈ 35	****	$\Sigma(1670)$	$3/2^{-}$	≈ 60	****		
$\Lambda(1690)$	$3/2^{-}$	≈ 60	****	$\Sigma(1750)$	$1/2^{-}$	≈ 90	***		
$\Lambda(1800)$	$1/2^{-}$	≈ 300	***	$\Sigma(1775)$	$5/2^{-}$	≈ 120	****		$W \simeq 1914 M_{\odot} V$
$\Lambda(1810)$	$1/2^{+}$	≈ 150	***	$\Sigma(1915)$	$5/2^{+}$	≈ 120	****		$W_{\text{thr}} = 1814 \text{ MeV}$
$\rightarrow \Lambda(1820)$	$5/2^{+}$	≈ 80	****	$\Sigma(1940)$	$3/2^{-}$	≈ 220	***		
$\Lambda(1830)$	$5/2^{-}$	pprox 95	****	$\Sigma(2030)$	$7/2^+$	≈ 180	****		
$\Lambda(1890)$	$3/2^{+}$	≈ 100	****	$\Sigma(2250)$??	≈ 100	***		
$\Lambda(2100)$	$7/2^{-}$	≈ 200	****		$\int \Sigma$ ($2250) \longrightarrow M_{\odot}$	= 2270 +	50 MeV	
$\Lambda(2110)$	$5/2^{+}$	≈ 200	***	│ └>	$\sum_{n=1}^{2} \frac{\sum_{n=1}^{2} \sum_{n=1}^{2} \sum_$	$2250) \rightarrow M$	$= 2270 \pm$ = 2210 ±	30 MeV	
$\Lambda(2350)$	$9/2^+$	≈ 150	***		(-9/2- ([A.	de Bellefon et al., N. Cim. A7("

Strategy: consider all the 3- & 4-star hyperon resonances which affects the fit quality significantly ($\delta \chi^2 / N > 0.1$).

 $\Lambda_{3/2+}(1890)$ Σ_{5/2-}(2265) Σ_{7/2+}(2030) Σ_{3/2+}(1385) (g.s. Λ and Σ)

on-shell: $\frac{M_{1/2\pm}, M_{5/2\pm} \propto (\varepsilon_N \mp m_N)(\varepsilon_{\Xi} \mp m_{\Xi})}{M_{3/2\pm}, M_{7/2\pm} \propto (\varepsilon_N \pm m_N)(\varepsilon_{\Xi} \pm m_{\Xi})}$

$KN \rightarrow K\Xi(1320)$: model results

$KN \rightarrow K\Xi(1320)$: model results

+ 2 Re $\left[\alpha_{02} \alpha_1^* + \alpha_1 \tilde{\alpha}_2^* \cos^2 \theta + \beta_1 \tilde{\beta}_2^* \sin^2 \theta \right] \cos \theta$

[Jackson, Oh, Haberzettl, K.N., PRC91(2015)065208]

 $\alpha_{\rm L}$ = spin-non-flip partial-wave m.e. $\beta_{\rm L}$ = spin-flip partial-wave m.e.

$KN \rightarrow K\Xi(1320)$: model results (prediction)

$$T = \pi_{\Xi} P$$
 measure *T* and *P*

 $\gamma N \rightarrow KK\Xi$: model

Nakayama, Oh and Haberzettl (PRC74, '06) Man, Oh and Nakayama (PRC83, '12)

Man, Oh and Nakayama (PRC83, '12)

Man, Oh and Nakayama (PRC83, '12)

Kaon-exchange: responsible for the forward (backward) angle peaking of the K+ (X-) distribution

Man, Oh and Nakayama (PRC83, '12)

above threshold resonances off

Man, Oh and Nakayama (PRC83, '12)

Man, Oh and Nakayama (PRC83, '12)

$\gamma N \rightarrow KK\Xi$: beam and target asymmetries

Summary :

$\succ \overline{\mathrm{K}}\mathrm{N} \rightarrow \mathrm{K}\Xi(1320):$

a) overall, existing data are described well.

- b) suited for learning about S=-1 hyperon resonances in the 2 GeV mass region:
 - Hints for the coupling to $\Sigma_{7/2+}(2030)$, $\Sigma_{5/2-}(2265)$, $\Lambda_{3/2+}(1890)$: more accurate data required for a definite confirmation and more complete model.
- c) P-wave dominance even close to threshold in $K^- + p \rightarrow K^+ + \Xi^-$.

total and differential cross section data are consistent with each other.

d) for further detailed analysis : more accurate data required.

> γp → KK $\Xi(1320)$:

a) basic features of $\gamma p \rightarrow K^+K^+\Xi^-(1318)$ understood:

K-exchange currents : essential for describing the $d\sigma/d\Omega$ data.

(above the threshold S=-1 resonances needed)

b) suited for learning about S=-1 hyperon resonances in the 2 GeV mass region:

• Hints for the coupling to $\Lambda_{3/2+}(1890)$, $\Sigma_{7/2+}(2030)$: required to describe $m_{K\Xi}$ data.

c) more data needed, especially, the spin observables:

beam-asymmetry : sensitive to the K-exchange currents ($\Sigma = -1$).

target-asymmetry : sensitive to the ps-pv mixing in the KNY couplings.

