Hyperon Studies at JPAC

Who we are and what we do

General approach: Role of reaction theory

Hyperon Studies

Adam Szczepaniak Indiana University Jefferson Lab

Joint Physics Analysis Center

NEWS
 ABOUT JPAC

http://www.indiana.edu/ ~jpac/index.html

Jefferson Lab
OThomas Jefferson National Accelerator Facility

THE GEORGE WASHINGTON UNIVERSITY washington, DC
HOME PROJECTS PUBLICATIONS LINKS

There may be hadrons that look like ...

...we need to know how to interpret "peaks"

$$
\Lambda_{b} \rightarrow K^{-} p J / \psi
$$

a resonance in $p J / \psi$?

$$
\text { ... or a } \bar{K} p \text { reflection? }
$$

S-matrix principles: Crossing, Analyticity, Unitarity

$$
\begin{gathered}
A(s, t)=\sum_{l} A_{l}(s) P_{l}\left(z_{s}\right) \\
\text { Analyticity } \\
A_{l}(s)=\lim _{\epsilon \rightarrow 0} A_{l}(s+i \epsilon)
\end{gathered}
$$

bumps/peaks on the real axis (experiment)
come from singularities in
unphysical sheets
These singularities come from QCD

Amplitude Analysis @ JPAC

Events, X-sections,MC

QCD Predictions

$$
\begin{gathered}
A(s, t)=\sum_{l=0}^{\infty} f_{l}(s) P_{l}\left(z_{s}\right)=\sum_{l=0}^{\infty} g_{l}(t) P_{l}\left(z_{t}\right) \\
\text { Amplitude analysis: } \\
\text { based on S-matrix principles: }
\end{gathered}
$$

- analyticity
- unitarity
- crossing

Global effort
JLab/IU/GWU Physics Analysis Center

QCD on the Lattice : simulated scattering experiment

(known
kinematical function) ${ }^{2}\left(\mathrm{E}_{\mathrm{i}}=\right.$ "data" $)=\mathrm{T}\left(\mathrm{E}_{\mathrm{i}}\right)$

(infinite volume amplitude)
$E_{i}=$ discrete energy spectrum of states in the lattice

in general "solution" of the Lusher condition requires an analytical model for T

JPAC : Example of Analysis Projects

Light meson decays and light quark resonance $\omega / \phi \rightarrow 3 \pi$, пү (dispersive)
$\omega \rightarrow$ 3п (Veneziano, B4)
$\eta \rightarrow 3 \pi, \eta^{\prime} / f 1 \rightarrow \eta \pi$ п, (Khuri-Treiman, B4)
$\mathrm{J} / \Psi \rightarrow \boldsymbol{\gamma} \boldsymbol{\Pi} 0 \boldsymbol{\Pi} 0$
Photo-production: (production models, FESR and duality) $\mathrm{yp} \rightarrow \pi 0 \mathrm{p}$
Yp $\rightarrow \mathrm{pK}+\mathrm{K}$ - (and Kp)
үр \rightarrow п+п-р, пOпр, $\omega р$
Launched in the Fall of 2013
>20 analysis/papers published
Exotica and XYZ's:
$\pi-p \rightarrow \pi-\eta p \& \pi-p \rightarrow \pi-\eta \prime p$ (FESR)
$B^{0} \rightarrow \Psi^{\prime} \pi^{-} K^{+} u, \Psi(4260) \rightarrow J / \Psi \pi+\pi-, \Lambda_{b} \rightarrow K-p J / \Psi$

Adam Szczepaniak (IU/JLab) Mike Pennington (JLab) Tim Londergan (IU) Geoffrey Fox (IU) Emilie Passemar (IU/JLab) Cesar Fernandez-Ramirez (Jlab - Mexico) Vincent Mathieu (IU) Micheal Doering (GWU) Ron Workman (GWU)

BESIII collaboration Medina Ablikim (Beijing) Ryan Mitchell, (IU)

LHCb collaboration T.Skwarnicki (Syracuse) J.Rademacker, (Bristol)

Joint Physics Analysis Center
HOME PROJECTS PUBLICATIONS LINKS

http://www.indiana.edu/~jpac/

Vladyslav Pauk (Mainz - JLab) Matthew Shepherd (IU)
Alessandro Pilloni (Rome - JLab) Justin Stevens (JLab)
Astrid Blin (Valencia)
Andrew Jackura (IU)
Lingyun Dai (IU/JLab - Valencia)
Meng Shi (JLab $=$ Beijing) Igor Danilkin (JLab - Mainz)
Peng Guo (IU/JLab -CSU)

COMPASS collaboration
Mikhail Mikhasenko (Bonn)
Fabian Krinner (TUM)
Boris Grube (TUM)

BaBar collaboration
Antimo Palano (Bari)

special thanks to Vincent Mathieu


```
taplicit sowle prectiton (0-3,0-x)
```


disensiton parmestiee

$A=$ Aept
retw

$$
\gamma p \rightarrow \pi^{0} p
$$

- Formalism
- Model
- Resources

Run

Joint Physics Analysis Center
HOME PROJECTS PUBLICATIONS LINKS
II INDIANA UNIVERSITY Jefferson Lab

Jefferson Lab

THE GEORGE THE GEORGE
WASHINGTON UNIVERSITY wAShington oc

$$
\gamma p \rightarrow \pi^{0} p
$$

We present the model published in [Mat15a] .

differential cross section for $\gamma p \rightarrow \pi^{0} p$ is computed with Regge amplitudes in the domain $E_{7} \geq \quad$ and $0.01 \leq|t| \leq 3$ (in GeV${ }^{2}$).
The for and $0.01 \leq|t| \leq 3\left(\mathrm{in} \mathrm{GeV}^{2}\right)$.

We use the CGLN invariant amplitudes A_{i} defined in [Chew57a].
See the section Formalism for the definition of the variables.
The fitting procedure is detailed in [Mat15a] . We report bere only the main feature of the model.
Formalism
The differential cross section is a function of 2 variables. The first is the beam energy in the laboratory frame E_{7} (in GeV) or the total energy squared s (in GeV^{2}). The second is the cosine of the $\quad \mathrm{ag}$ angle in the rest frame $\cos \theta$ or the momentum transfered squared $t\left(\right.$ in $\left.\mathrm{GeV}^{2}\right)$.
The momenta of the particles are k (photon), q (pion), p_{2} (target) and p_{4} (recoil), The pion mass is μ and the proton mass is M.

$$
\text { The Mandelstam variables, } s=\left(k+p_{2}\right)^{2}, t=(k-q)^{2}, u=\left(k-p_{4}\right)^{2} \text { are related un veh } s+t+u=2 M^{2}+\mu^{2} \text {. }
$$

$\frac{d \sigma}{d t}=\frac{389.4}{64 \pi} \frac{k_{t}^{2}}{4 M^{2} E^{2}}\left[2 \sin ^{2} \theta_{t}\left(t\left|F_{1}\right|^{2}+4 p_{t}^{2}\left|F_{2}\right|^{2}\right)+\left(1-\cos \begin{array}{l}\text { Download the output file, the plot } \quad \text { In the file, the columns are: } \mathrm{t}\left(\mathrm{G}_{0} \mathrm{~V}^{2}\right) \text {, the plot with } \mathrm{Ox}=\cos ,\end{array}\right.\right.$
The differential cross section is expressed in $\mu \mathrm{b} / \mathrm{GeV}^{2}$. We used ($\left.\Lambda c\right)^{2}$ The t-channel is the rest frame of the process $\gamma \pi^{0} \rightarrow p \bar{p}$.
In the t-channel, the momenta of the nucleon $p e$ and the pion k_{ℓ} and

$$
k_{\mathrm{t}}=\frac{1}{2} \sqrt{t-4 M^{2}}, \quad q_{\mathrm{t}}=\frac{t}{2}
$$

The invariant amplitudes F_{i} are related through the CGLN A_{i} amplity 응

$$
\begin{aligned}
& F_{1}=-A_{1}+2 M A_{4}, \\
& F_{2}=A_{1}+t A_{2} \\
& F_{3}=2 M A_{1}-t A_{4}, \\
& F_{4}=A_{3}
\end{aligned}
$$

Hyperon Physics

Bridge between light (\mathbf{u}, d) and heavy (\mathbf{c}, b) quark baryons
Test Quark Model vs QCD (lattice)
Photon couples to quarks is, glueballs, hybrids or use in associated production of K^{*} 's and Hyperons

Hyperon spectrum less understood e.g $\Lambda(1405)$ only recently pole positions have started to be reported by the PDG

Some quark model states

 have not been seen yet

Analyticity is a

 powerful constraint
cf. Regge phenomenology

Im $A_{\text {Regge }}(N, t)$ Can use cross$\int^{N} d s \operatorname{Im} A(s, t)$
 channel reggeons to study direct channel resonances

$\operatorname{Im} A(s, t)=0$

$\operatorname{Im} A(s, t) \neq 0$

PWA for KN

Model the amplitude
 Fit to data
 Analytically continue to complex values of energy to search for poles

Partial-wave analysis (Lmax=5), Coupled channels, Unitarity
Analyticity: Right threshold behavior (angular momentum barrier), Resonances and backgrounds are incorporated "byhand" through K matrices

In the range $2.19<s<4.70 \mathrm{GeV} 2$ (8000 data points, 7500 data points, 5000 data points) We fit the KSU analysis singleenergy partial waves [Zhang et al., PRC 88, 035204 (2015)] Caveat: we lose correlations among partial waves

Cesar Fernandez Ramirez et al., arXiv:1510.07065 [hep-ph]

$$
\begin{array}{r}
S_{\ell}=I+2 i\left[C_{\ell}(s)\right]^{1 / 2} T_{\ell}(s)\left[C_{\ell}(s)\right]^{1 / 2} \\
T_{\ell}(s)=\left[K^{-1}(s)-i \rho_{\ell}(s)\right]^{-1} \\
{\left[i \rho_{\ell}(s)\right]_{k k}=\frac{s-s_{k}}{\pi} \int_{s_{k}}^{\infty} \frac{\left[C_{\ell}(s)\right]_{k k}}{s^{\prime}-s} \frac{d s^{\prime}}{s^{\prime}-s_{k}}} \\
k=\pi \Sigma, \bar{K} N, \pi \Lambda, \pi \Sigma(1385), \pi \Lambda(1520), \eta \Sigma, \eta \Lambda, \bar{K}^{*} N, \pi \Delta(1232), \pi \pi \Sigma, \pi \pi \Lambda
\end{array}
$$

Resonance

$$
\left[K_{a}(s)\right]_{k j}=x_{k}^{a} \frac{M_{a}}{M_{a}^{2}-s} x_{j}^{a}
$$

Generates pole in the 2nd Riemann sheet

Background

$$
\left[K_{b}(s)\right]_{k j}=x_{k}^{b} \frac{M_{b}}{M_{b}^{2}+s} x_{j}^{b}
$$

Generates pole in the real axis for $\mathrm{s}<0$ in the1st Riemann sheet

Phase Space/Analicticity

$$
\begin{aligned}
& {\left[C_{\ell}(s)\right]_{k k}=\frac{q_{k}(s)}{q_{0}}\left[\frac{q_{k}^{2}(s) r^{2}}{1+q_{k}^{2}(s) r^{2}}\right]^{\ell}} \\
& \text { * Right threshold behavior } \\
& \text { * Angular momentum barrier } \\
& \text { * Right high-energy behavior } \\
& \text { * } r=1 \mathrm{fm} \text { (interaction radius) } \\
& {\left[q_{k}(s)\right]^{2}=\frac{m_{1} m_{2}}{s_{k}}\left[s-s_{k}\right]} \\
& {\left[i \rho_{\ell}(s)\right]_{k k}=\frac{s-s_{k}}{\pi} \int_{s_{k}}^{\infty} \frac{\left[C_{\ell}\left(s^{\prime}\right)\right]_{k k}}{s^{\prime}-s} \frac{d s^{\prime}}{s^{\prime}-s_{k}}=-a_{0} \frac{a^{\ell}}{\pi \Gamma(\ell)}\left[\frac{\pi \Gamma(\ell)\left(s-s_{k}\right) \sqrt{s_{k}-s}}{1+a\left(s-s_{k}\right)}\right.} \\
& -\frac{\sqrt{\pi} \Gamma\left(\ell+\frac{1}{2}\right)}{\ell a^{\ell+1 / 2}}\left(\left[1+a\left(s-s_{k}\right)\right]_{2} F_{1}\left[1, \ell+1 / 2,-1 / 2,1 / a\left(s_{k}-s\right)\right]\right. \\
& \left.\left.-\left[3+2 \ell+a\left(s-s_{k}\right)\right]_{2} F_{1}\left[1, \ell+1 / 2,1 / 2,1 / a\left(s_{k}-s\right)\right]\right)\right]
\end{aligned}
$$

Valid for I real and bigger than -1/2

Partial Waves

Partial Waves

Resonances as Regge Poles

near the resonance pole

$$
\alpha^{\prime} \sim 1 \mathrm{GeV}^{-2}
$$

$$
T_{l} \sim \frac{1}{\alpha^{\prime}\left(m_{l}^{2}-s\right)} \quad=\frac{1}{l-\left(l-\alpha^{\prime} m_{l}^{2}+\alpha^{\prime} s\right)}
$$

if $\quad l=\alpha_{0}+\alpha^{\prime} m_{l}^{2} \quad$ than $\quad T_{l} \sim \frac{1}{l-\alpha(s)} \quad$ with

$$
\alpha(s)=\alpha_{0}+\alpha^{\prime} s
$$

In general $T=T(l, s)$ and a pole corresponds to a trajectory in the l,s space

A pole in s at a fixed integer I is connected to another pole at a different integer I

(3^{*}) $\Sigma(1940)$ nobody gets it, but there is a gap in Ragge trajectory

On the nature of $\Lambda(1405)$

- Puzzle since the 60's
- Quantum numbers those of a uds state
- Constituent quark models fail to reproduce the mass
- 1550 MeV [Capstick, Isgur, PRD 34, 2809 (1986)]
- 1524 MeV [Löring, Metsch, Petry, EPJA 10, 447 (2001)]
- Amplitude analysis of KN scattering and $\boldsymbol{\pi \Sigma} \mathrm{K}^{+}$data finds two poles [Mai, Meißner, EPJA 51, 30 (2015)]
- 1429-12i MeV
- 1325-90i MeV
- Lattice says: KN molecule [Hall et al., PRL 114, 132002 (2015)]
- Lattice says: three-quark state [Engel et al., PRD 87, 034502 (2013); PRD 87, 074504 (2013)]
- Regge phenomenology [Fernandez-Ramirez et al., arXiv:1512.03136 (2015)]
- Quark-diquark models obtain one $\Lambda(1405)$ with the right energy
- 1430 MeV [Santopinto, Ferretti, PRC 92, 025202 (2015)]
* 1406 MeV [Faustov, Galkin, PRD 92, 054005 (2015)]

$\wedge(1405)$

Re

(a) Λ resonances.

(b) Σ resonances.

FIG. 1. (color online). Chew-Frautschi plot for the the leading Λ and Σ Regge trajectories. Dashed lines are displayed to guide the eye.

(a) Λ resonances.

(b) Σ resonances.

FIG. 2. (color online). Projections of the leading Λ and Σ Regge trajectories onto the $\left(-\Im\left(s_{p}\right), J\right)$ plane. Dashed lines are displayed to guide the eye.

$$
\alpha(s)=\alpha_{0}+\alpha^{\prime} s+i \gamma \rho\left(s, s_{t}\right)
$$

Compare fits $0^{-}{ }^{-}, 0^{\circ}$ b, 0^{-}

$$
\Lambda_{a}(1405)=1429-12 i \mathrm{MeV}
$$

$$
\Lambda_{b}(1405)=1352-90 i \mathrm{MeV}
$$

$$
\begin{aligned}
i \rho_{A}\left(s, s_{t}\right) & =i \sqrt{s-s_{t}} \\
i \rho_{B}\left(s, s_{t}\right) & =i \sqrt{1-s_{t} / s} \\
i \rho_{C}\left(s, s_{t}\right) & =\frac{s-s_{t}}{\pi} \int_{s_{t}}^{\infty} \frac{\sqrt{1-s_{t} / s^{\prime}}}{s^{\prime}-s_{t}} \frac{d s^{\prime}}{s^{\prime}-s} \\
& =\frac{2}{\pi} \frac{s-s_{t}}{\sqrt{s\left(s_{t}-s\right)}} \arctan \sqrt{\frac{s}{s_{t}-s}}
\end{aligned}
$$

$\Lambda_{a}(1405)$ is closer to the "normal" trajectory

Summary

- New, analytical model for hyperon spectrum
- Need to incorporate Regge constraints
- in direct channel as a constraint on, eg, K-matrix matrix poles
- in cross channels, as constrained on p.w. extraction,
- $\Lambda(1405)$: One more piece to the puzzle (more confusion?)

TABLE II. Summary of Λ^{*} pole masses $\left(M_{p}=\operatorname{Re} \sqrt{s_{p}}\right)$ and widths $\left(\Gamma_{p}=-2 \operatorname{Im} \sqrt{s_{p}}\right)$ in MeV. Our poles are depicted in Fig. 5 unless they have a very large imaginary part. In [2] the $\Lambda(1520)$ pole was obtained at ($M_{p}=1518.8, \Gamma_{p}=17.2$). Ref. [5] implements two models labeled as KA and KB (see text). I stands for isospin, η for naturality, J for total angular momentum, P for parity, and ℓ for orbital angular momentum. For baryons, $\eta=+$, natural parity, if $P=(-1)^{J-1 / 2}$ and $\eta=-$, unnatural parity, if $P=-(-1)^{J-1 / 2}$ where P stands for parity. Resonances marked with \dagger are unreliable themselves due to systematics and lack of good-quality $\chi^{2} / d o f$. Resonances marked with \ddagger are most likely artifacts of the fits.

$I^{\eta} J^{P} \ell$	This work		KSU from [3]		KA from [5]		KB from [5]		PDG [1]	
	M_{p}	Γ_{p}	M_{p}	Γ_{p}	M_{p}	Γ_{p}	M_{p}	Γ_{p}	Name	Status
$0^{-} \frac{1}{2}^{-} S$	$1435.8 \pm 5.9^{\dagger}$	279 ± 16	1402	49	-	-	-	-	Λ (1405)	****
	$1573{ }^{\ddagger}$	300	-	-	-	-	1512	370	-	-
	$1636.0 \pm 9.4^{\dagger}$	211 ± 35	1667	26	1669	18	1667	24	$\Lambda(1670)$	****
	-	-	1729	198	-	-	-	-	$\Lambda(1800)$	***
	$1983 \pm 21^{\dagger}$	282 ± 22	1984	233	-	-	-	-	Λ (2000)	*
	$2043 \pm 39^{\dagger}$	350 ± 29	-	-	-	-	-	-	-	-
$0^{+} \frac{1}{2}^{+} P$	1568 ± 12	132 ± 22	1572	138	1544	112	1548	164	$\Lambda(1600)$	***
	$1685 \pm 29^{\dagger}$	59 ± 34	1688	166	-	-	-	-	$\Lambda(1710)$	*
	$1835 \pm 10^{\ddagger}$	180 ± 22	-	-	-	-	-	-	-	
	$1837.2 \pm 3.4^{\dagger}$	58.7 ± 6.5	1780	64	-	-	1841	62	$\Lambda(1810)$	
	-	-	2135	296	2097	166	-	-	-	
$0^{-} \frac{3}{2}^{+} P$	1690.3 ± 3.8	46.4 ± 11.0	-	-	-	-	1671	10	-	
	1846.36 ± 0.81	70.0 ± 6.0	1876	145	1859	112	-	-	Λ (1890)	*
	-	-	2001	994	-	-	-	-	-	
$0^{+} \frac{3}{2}^{-} D$	1519.33 ± 0.34	17.8 ± 1.1	1518	16	1517	16	1517	16	$\Lambda(1520)$	*
	1687.40 ± 0.79	66.2 ± 2.3	1689	53	1697	66	1697	74	Λ (1690)	*
	2051 ± 20	269 ± 35	1985	447	-	-	-	-	$\Lambda(2050)$	
	$2133 \pm 120^{\ddagger}$	1110 ± 280	-	-	-	-	-	-	Λ (2325)	
$0^{-} \frac{5}{2}^{-} D$	1821.4 ± 4.3	102.3 ± 8.6	1809	109	1766	212	-	-	Λ (1830)	*
	-	-	1970	350	1899	80	1924	90	-	
	2199 ± 52	570 ± 180	-	-	-	-	-	-	-	
$0^{+} \frac{5}{2}^{+} \mathrm{F}$	1817 ± 57	85 ± 54	1814	85	1824	78	1821	64	Λ (1820)	*
	1931 ± 25	189 ± 36	1970	350	-	-	-	-	$\Lambda(2110)$	
$0^{-} \frac{7}{2}^{+} F$	-	-	-	-	1757	146	-	-	-	
	2012 ± 81	210 ± 120	1999	146	-	-	2041	238	$\Lambda(2020)$	
$0^{+} \frac{7}{2}^{-} G$	2079.9 ± 8.3	216.7 ± 6.8	2023	239	-	-	-	-	$\Lambda(2100)$	*

TABLE III. Summary of Σ^{*} pole masses $\left(M_{p}=\operatorname{Re} \sqrt{s_{p}}\right)$ and widths $\left(\Gamma_{p}=-2 \operatorname{Im} \sqrt{s_{p}}\right)$ in MeV. Our poles are depicted in Fig. 5 unless they have a very large imaginary part. Notation is the same as in Table II. Resonances marked with \dagger are unreliable themselves due to systematics and lack of good-quality $\chi^{2} / d o f$.

