
Who we are  
and what we do

General approach: 
Role of reaction 

theory 

Hyperon Studies at JPAC

Adam Szczepaniak 
Indiana University 

Jefferson Lab 

Hyperon Studies

http://www.indiana.edu/
~jpac/index.html



There may be hadrons that look like …

…but before we know this it is 
necessary to identify resonances



…we need to know how to interpret “peaks”
(Violin Resonances)

?

a resonance in          ? 
⇤b ! K�pJ/ 

pJ/ 

... or a         reflection ?



S-matrix principles: Crossing, Analyticity, Unitarity

A(s,t)

M-decay channel 

t s
M

s-channel 

t

s

M

Crossing

A(s, t) =
X

l

Al(s)Pl(zs)

Al(s) = lim
✏!0

Al(s+ i✏)

Analyticity

bumps/peaks on the 
real axis (experiment) 

come from 
singularities in 

unphysical sheets 

Al(s+ i✏) 6= Al(s� i✏)

s-plane

 Unitarity
These singularities 

come from QCD



Global effort 
JLab/IU/GWU Physics Analysis Center

Amplitude Analysis @ JPAC

Events, X-sections,MC  QCD Predictions

Amplitude analysis: 
based on S-matrix principles:

• analyticity 
• unitarity
• crossing

t

us
A(s, t) =

1X

l=0

fl(s)Pl(zs) =
1X

l=0

gl(t)Pl(zt)



QCD on the Lattice : simulated 
scattering experiment 

Z(Ei=“data”) = T(Ei)

Ei = discrete energy spectrum of states in the lattice 

 (known 
kinematical function) 

(infinite volume 
amplitude ) 

in general “solution” of the Lusher condition requires an 
analytical model for T 

D.Wilson et. al



JPAC : Example of Analysis Projects 
Light meson decays and light quark resonance

ω/φ → 3π, πγ (dispersive)
ω → 3π (Veneziano, B4)
η→3π, η’/f1→ηπ π, (Khuri-Treiman, B4)
J/Ψ→γπ0π0

J/Ψ → 3π, KKπ (Veneziano, B4)

Photo-production: (production models, FESR and duality)
γp → π0p
γp → pK+K- (and Kp)
γp → π+π-p, π0ηp, ωp

π-p → π-ηp & π-p→π-η’p (FESR) 
B0→ Ψ’ π- K+ u, Ψ(4260) → J/Ψ π+π-, Λb → K- pJ/Ψ

Exotica and XYZ’s:

Launched  in the Fall 
of 2013 

>20 analysis/papers 
published 
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BESIII collaboration
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• 20.8 GeV x 105
• 40.8 GeV x 104
• 64.8 GeV x 103
• 100.7 GeV x 102
• 150.2 GeV x 101
• 199.3 GeV x 100

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.001

1

1000

106

-t HGeV2L

ds
êdtH
mb
.G
eV
-
2 L

p-p Æ p0n

Im E 
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E 

resonance pole 

analyticity & complex energy plane 

special thanks to 
Vincent Mathieu



Bridge between light (u,d) and heavy (c,b) quark baryons

Test Quark Model vs QCD (lattice) 

Photon couples to quarks is, glueballs , hybrids or use 
in associated production of K*'s and Hyperons  

Hyperon spectrum less understood e.g Λ(1405) only 
recently pole positions have started to be reported by 
the PDG

Hyperon Physics 



Some quark model states 
have not been seen yet

2-- (L=2,S=1)



c

d

A

a

b

Analyticity is a 
powerful constraint s < (2GeV)2

s-unitarity

c

d

a

b

R∑R

low-s

s > (2GeV)2

a c

b d

t-channel 
pole (cut)  
develops 

high-s

 cf. Bonn/Gatchina, EBAC, Julich, 
Giessen,GWU, Mainz, Zagreb,)  

 cf. Regge phenomenology



Can use cross-
channel 

reggeons to 
study direct 

channel 
resonances 

∫Nds Im A(s,t)
a c

b d

a c

b d

us
-

u
u
d

K+p

u
s-

u
u
d

K-p

ρ,a2

Im A(s,t)= 0

 Im ARegge(N,t) 

Im A(s,t) ≠ 0



Model the amplitude
Fit to data
Analytically continue to 
complex values of 
energy to search for 
poles

PWA for KN 
_

In the range 2.19<s<4.70 GeV2 (8000 data points, 7500 data 
points, 5000 data points) We fit the KSU analysis single-
energy partial waves [Zhang et al., PRC 88, 035204 (2015)] 
Caveat: we lose correlations among partial waves

Partial-wave analysis (Lmax= 5), Coupled channels, Unitarity
Analyticity: Right threshold behavior (angular momentum 
barrier), Resonances and backgrounds are incorporated “by-
hand” through K matrices

Cesar Fernandez Ramirez et al., arXiv:1510.07065 [hep-ph]



k = ⇡⌃, K̄N,⇡⇤,⇡⌃(1385),⇡⇤(1520), ⌘⌃, ⌘⇤, K̄⇤N,⇡�(1232),⇡⇡⌃,⇡⇡⇤

S` = I + 2i [C`(s)]
1/2 T`(s) [C`(s)]

1/2

T`(s) =
⇥
K�1(s)� i⇢`(s)

⇤�1

[i⇢`(s)]kk =
s� sk

⇡

Z 1

sk

[C`(s)]kk
s0 � s

ds0

s0 � sk

Resonance Background

Generates pole in the 
2nd Riemann sheet

Generates pole in the real 
axis for s<0 in the1st Riemann sheet

[Ka(s)]kj = x

a
k

Ma

M

2
a � s

x

a
j [Kb(s)]kj = x

b
k

Mb

M

2
b + s

x

b
j



Phase Space/Analicticity

16

❖ Right threshold behavior
❖ Angular momentum barrier

❖ Right high-energy behavior
❖ r =1 fm (interaction radius)

[i⇢`(s)]kk =
s� sk

⇡

Z 1

sk

[C`(s0)]kk
s0 � s

ds0

s0 � sk
= �a0

a`

⇡�(`)


⇡�(`)(s� sk)

p
sk � s

1 + a (s� sk)

�
p
⇡�(`+ 1

2 )

` a`+1/2
([1 + a(s� sk)] 2F1 [1, `+ 1/2,�1/2, 1/a(sk � s) ]

� [3 + 2`+ a(s� sk)] 2F1 [1, `+ 1/2, 1/2, 1/a(sk � s)])
i

Valid for l real and bigger than -1/2

[C`(s)]kk =
qk(s)

q0


q2k(s)r

2

1 + q2k(s)r
2

�`

[qk(s)]
2 =

m1m2

sk
[s� sk]



Partial Waves
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Partial Waves
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Pole Positions
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Resonances as Regge Poles 

Tl ⇠
1

↵0(m2
l � s)

=
1

l � (l � ↵0m2
l + ↵0s)

near the resonance pole  
↵0 ⇠ 1 GeV�2

l = ↵0 + ↵0m2
lif Tl ⇠

1

l � ↵(s)

↵(s) = ↵0 + ↵0s

with than 

In general T = T (l, s) and a pole corresponds to 
a trajectory in the l,s space  

A pole in s at a fixed integer l is connected to 
another pole at a different integer l 
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⇤(1690)
P03 ?
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(3 *) Σ(1940) nobody gets it,  but there is a gap in Ragge trajectory 

?



Puzzle since the 60’s
Quantum numbers those of a uds state 
Constituent quark models fail to reproduce the mass

1550 MeV [Capstick, Isgur, PRD 34, 2809 (1986)]
1524 MeV [Löring, Metsch, Petry, EPJA 10, 447 (2001)]

Amplitude analysis of KN scattering and πΣK+ data finds two poles [Mai, Meiβner, EPJA 
51, 30 (2015)] 

1429-12i MeV
1325-90i MeV

Lattice says: KN molecule [Hall et al., PRL 114, 132002 (2015)]
Lattice says: three-quark state [Engel et al., PRD 87, 034502 (2013); PRD 87, 074504 (2013)]
Regge phenomenology [Fernandez-Ramirez et al., arXiv:1512.03136 (2015)]
Quark-diquark models obtain one Λ(1405) with the right energy

1430 MeV [Santopinto, Ferretti, PRC 92, 025202 (2015)]
1406 MeV [Faustov, Galkin, PRD 92, 054005 (2015)]

On the nature of Λ(1405) 



Λ(1405)



Re

25

2

and = [↵(s
p

)] = 0. It is customary to plot J vs. <(s
p

)
(Chew–Frautschi plot [21]), i.e. the projection of the real
part of the Regge trajectory onto the (<(s

p

),J) plane.
Figure 1 shows the Chew–Frautschi plot for the ⇤ and
⌃ leading Regge trajectories. The dashed lines are de-
picted to guide the eye. We note that each line contains
two nearly degenerate Regge trajectories corresponding
to di↵erent signatures, e.g. the I⌘ = 0+ trajectory in
Fig. 1(a) contains the ⇤(1116) and the ⇤(1820) while
⇤(1520) and ⇤(2100) lie on another trajectory with signa-
ture ⌧ = �1. In principle, trajectories with odd and even
signatures are di↵erent. However, the di↵erence is due
to exchange forces which in this case appear to be weak
making the trajectories nearly degenerate [15–17]. In the
following we will treat these states as if they were part
of the same Regge trajectory. In Fig. 1, the linear align-
ment of ⇤ and ⌃ resonances is apparent. This is common
to ordinary (three-quark) baryons [13, 18, 19]. Inspect-
ing the real part of the leading 0� trajectory shown in
Fig. 1 we observe that both ⇤(1405)

a

and ⇤(1405)
b

states
could be attributed to the trajectory, but only one can
belong to it. In principle, the pole that does not belong
to the 0� leading trajectory could be either an ordinary
three-quark state or a non-ordinary state. If it were a
three-quark state it should lie on a daughter Regge tra-
jectory that has to be, approximately, parallel to the lead-
ing trajectory. However, this second pole cannot belong
to a daughter Regge trajectory because, if that were the
case, the daughter Regge trajectory would overlap the
leading trajectory. Hence, at least one of the ⇤(1405)
states is a non-ordinary state, i.e. its composition should
be di↵erent from an ordinary three-quark baryon.

It is in principle possible that neither of the ⇤(1405)
poles belong to the 0� leading trajectory. To further ad-
dress this question, in Fig. 2 we plot J vs. �=(s

p

). It
is apparent that both the ⇤ and the ⌃ trajectories fol-
low a square-root-like behavior implied by unitarity that
implies a relation between the phase-space volume and
resonance widths [16]. The ⇤ and the ⌃ leading trajec-
tories correspond to ordinary baryons as indicated by the
linear behavior in the Chew–Frautschi plot (Fig. 1). We
find that all of these trajectories also follow a square-root-
like behavior when the J vs. �=(s

p

) plot is considered.
Hence, we conclude that the Regge trajectory of ordinary
baryons should follow square-root-like behavior in the J
vs. �=(s

p

) plot. Inspecting Fig. 2(a) one concludes that
⇤(1405)

a

appears on the 0� Regge trajectory of ordinary,
three-quark, states while the ⇤(1405)

b

is a candidate for
a new non-ordinary baryon resonance. In the following
we summarize results of a quantitative analysis.

To assess the model dependence of these conclusions we
choose three alternative parameterizations of the Regge
trajectory. We define [17, 22]:

↵(s) = ↵0 + ↵0s+ i � ⇢(s, s
t

) , (1)

where ↵0, ↵0, � and s
t

can be obtained by fitting the

1/2

3/2

5/2

7/2

5 4 3 2 1 0 1 2 3 4 5

J Natural parity

Λ(1116)

Λ(1520)

Λ(1820)

Λ(2100)

Unnatural parity

Λ(1830)

Λ(2020)

3/2+

Λ(1405)bΛ(1405)a

  

 ℜ(sp) (GeV2) 

 

(a) ⇤ resonances.
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(b) ⌃ resonances.

FIG. 1. (color online). Chew–Frautschi plot for the the lead-
ing ⇤ and ⌃ Regge trajectories. Dashed lines are displayed
to guide the eye.

poles s = s
p

to < [↵(s
p

)] = J and = [↵(s
p

)] = 0. For
⇢(s, s

t

), we use,

i ⇢
A

(s, s
t

) =i
p
s� s

t

, (2)

i ⇢
B

(s, s
t

) =i
p
1� s

t

/s , (3)

i ⇢
C

(s, s
t

) =
s� s

t

⇡

Z 1

st

p
1� s

t

/s0

s0 � s
t

ds0

s0 � s

=
2

⇡

s� s
tp

s(s
t

� s)
arctan

r
s

s
t

� s
. (4)

Model C is the analytic continuation of the phase space
(dispersive approach) where ↵0 and ↵0 are the subtrac-
tion constants. It is motivated by the relation between
the imaginary part of the Regge trajectory and the width
of the resonances [16]. Models A and B are alternative
phenomenological parameterizations. Model B should

3
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(a) ⇤ resonances.
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(b) ⌃ resonances.

FIG. 2. (color online). Projections of the leading ⇤ and ⌃
Regge trajectories onto the (�=(sp), J) plane. Dashed lines
are displayed to guide the eye.

not be trusted on the left hand cut that should not be
present in ↵(s). For each model we fit the 0+, 1+, and
1� trajectories that we use as benchmarks. For the 0�

trajectory we fitted the three trajectories depending on
which of the two ⇤(1405) poles is included to lie on the
trajectory. We refer to this trajectory as 0�

a(b) when

⇤(1405)
a(b) is included or as 0�

c

when neither pole is in-
cluded. To obtain the parameters and their uncertainties
we proceed as follows. First, we randomly choose values
for the pole positions s

p

by sampling a gaussian distri-
bution according to the uncertainties given in Table I.
We use least-squares method to fit the trajectory param-
eters, Eq. (1), by minimizing the distance d between the
trajectory ↵(s) evaluated at the complex pole position

TABLE II. Fitted parameters of the leading Regge trajecto-
ries as defined in Eq. (1). The parameter � has units of GeV�1

for model A and is dimensionless for models B and C.

Model I⌘ �↵0 ↵0 (GeV�1) � st (GeV2)

A 0�a 3.3(1.5) 1.68(43) 0.56(50) 2.44(65)

0�b 2.19(76) 1.37(24) 0.35(31) 1.2(1.1)

0�c 3.4(1.9) 1.70(58) 0.62(48) 2.60(82)

0+ 1.25(58) 1.09(12) 0.37(19) 2.63(78)

1� 0.317(86) 0.924(27) 0.236(21) 1.79(14)

1+ 0.858(64) 0.913(19) 0.113(27) 1.47(45)

B 0�a 3.5(1.7) 1.75(52) 1.02(77) 2.43(58)

0�b 2.6(1.3) 1.50(38) 0.81(67) 1.5(1.1)

0�c 3.4(1.9) 1.73(59) 1.17(76) 2.64(69)

0+ 1.22(86) 1.09(20) 0.52(35) 2.08(94)

1� 0.41(13) 0.953(39) 0.482(48) 1.92(13)

1+ 0.855(88) 0.913(23) 0.203(57) 1.6(1.1)

C 0�a 3.9(2.1) 1.69(41) �2.2(2.7) 2.92(87)

0�b 2.21(86) 1.30(22) �0.7(1.1) 1.4(1.2)

0�c 3.1(2.1) 1.57(58) �1.4(1.4) 2.78(80)

0+ 1.54(85) 1.10(12) �1.3(1.1) 3.06(91)

1� 0.26(21) 0.861(32) �0.471(63) 1.91(26)

1+ 1.09(22) 0.944(32) �0.47(29) 2.87(50)

s = s
p

and the real angular momenta J ,

d2 =
X

poles

{ [J �<↵(s
p

)]2 + [0�=↵(s
p

)]2 } . (5)

The procedure is repeated, each time obtaining a new
set of trajectory parameters. The expected value of each
parameter is computed as the mean of the 104 samples
and the uncertainty is given by the standard deviation.
The results are summarized in Table II.
The canonical values of the intercept ↵0 and slope ↵0

can be found in e.g. [15, 23]. Typically, these parameters
are obtained from fits to the real part of the trajectory
only i.e. using the relation J = ↵̄0+ ↵̄0M2 with M being
the Breit–Wigner mass of the resonance. The canonical
values are ↵̄0 ' �0.6 and ↵̄0 ' 0.9 GeV�2 for the 0+

trajectory and ↵̄0 ' �0.8 and ↵̄0 ' 0.9 GeV�2 for the
1+ trajectory [15]. These yield good results, for exam-
ple, when applied to backward K+p ! K+p reaction
at high-energy, where hyperon exchange far from thresh-
old dominates the cross section [23]. The intercepts ↵0

for the 0+ and 1+ trajectories were also obtained in [24]
by fitting the high-energy kaon backward scattering data
(with ↵0 fixed to 1 GeV2) yielding ↵0 = �1.24 or �1.15
for the 0+ trajectory and ↵0 = �0.9 or �0.8 for the 1+.
If we limit our analysis to the real parts parameterized
by linear functions we obtain ↵̄0 ' �0.74 and ↵̄0 ' 0.98
GeV�2 for 0+ and ↵̄0 ' �0.89 and ↵̄0 ' 0.92 GeV�2

for 1+. The results of our analysis (Table II) obtained by
fitting trajectory parameters in the resonant region using

Im



Compare fits 0-a, 0-b, 0-c

⇤a(1405) = 1429� 12i MeV

⇤b(1405) = 1352� 90i MeV

Λa(1405) is 
closer to the  

“normal” 
trajectory 



•New, analytical model for hyperon spectrum 

•Need to incorporate Regge constraints 
• in direct channel as a constraint on, eg, K-matrix 
matrix poles 
• in cross channels, as constrained on p.w. 
extraction, 

•Λ(1405): One more piece to the puzzle (more 
confusion?)

Summary 
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TABLE II. Summary of ⇥⇥ pole masses (Mp = Re
⇥
sp) and widths (�p = �2 Im

⇥
sp) in MeV. Our poles are depicted in Fig.

5 unless they have a very large imaginary part. In [2] the ⇥(1520) pole was obtained at (Mp = 1518.8, �p = 17.2). Ref. [5]
implements two models labeled as KA and KB (see text). I stands for isospin, � for naturality, J for total angular momentum,
P for parity, and ⇤ for orbital angular momentum. For baryons, � = +, natural parity, if P = (�1)J�1/2 and � = �, unnatural
parity, if P = �(�1)J�1/2 where P stands for parity. Resonances marked with † are unreliable themselves due to systematics
and lack of good-quality ⇥2/dof . Resonances marked with ‡ are most likely artifacts of the fits.

This work KSU from [3] KA from [5] KB from [5] PDG [1]

I� JP ⇤ Mp �p Mp �p Mp �p Mp �p Name Status

0� 1
2

�
S 1435.8± 5.9† 279± 16 1402 49 — — — — ⇥(1405) ****

1573‡ 300 — — — — 1512 370 — —

1636.0± 9.4† 211± 35 1667 26 1669 18 1667 24 ⇥(1670) ****

— — 1729 198 — — — — ⇥(1800) ***

1983± 21† 282± 22 1984 233 — — — — ⇥(2000) *

2043± 39† 350± 29 — — — — — — — —

0+ 1
2

+
P 1568± 12 132± 22 1572 138 1544 112 1548 164 ⇥(1600) ***

1685± 29† 59± 34 1688 166 — — — — ⇥(1710) *

1835± 10‡ 180± 22 — — — — — — — —

1837.2± 3.4† 58.7± 6.5 1780 64 — — 1841 62 ⇥(1810) ***

— — 2135 296 2097 166 — — — —

0� 3
2

+
P 1690.3± 3.8 46.4± 11.0 — — — — 1671 10 — —

1846.36± 0.81 70.0± 6.0 1876 145 1859 112 — — ⇥(1890) ****

— — 2001 994 — — — — — —

0+ 3
2

�
D 1519.33± 0.34 17.8± 1.1 1518 16 1517 16 1517 16 ⇥(1520) ****

1687.40± 0.79 66.2± 2.3 1689 53 1697 66 1697 74 ⇥(1690) ****

2051± 20 269± 35 1985 447 — — — — ⇥(2050) *

2133± 120‡ 1110± 280 — — — — — — ⇥(2325) *

0� 5
2

�
D 1821.4± 4.3 102.3± 8.6 1809 109 1766 212 — — ⇥(1830) ****

— — 1970 350 1899 80 1924 90 — —

2199± 52 570± 180 — — — — — — — —

0+ 5
2

+
F 1817± 57 85± 54 1814 85 1824 78 1821 64 ⇥(1820) ****

1931± 25 189± 36 1970 350 — — — — ⇥(2110) ***

0� 7
2

+
F — — — — 1757 146 — — — —

2012± 81 210± 120 1999 146 — — 2041 238 ⇥(2020) *

0+ 7
2

�
G 2079.9± 8.3 216.7± 6.8 2023 239 — — — — ⇥(2100) ****

such well-established states. Any di⇤erence can be asso-
ciated with model details. The third pole obtained can
be matched to the ⇥(2050) state which was first obtained
in KSU analysis and it is not found in either KA or KB.
However, we obtain a very di⇤erent pole position, that
can be understood if we realize that the deeper in the
complex plane we need to go to find a resonance, the
more important analyticity and model dependence be-
come. Finally, we obtain a higher-energy and deep in the
complex plane pole (Mp = 2133, �p = 1110). It is likely
that this state is an artifact of the fits although its quan-
tum numbers and mass would befit the one-star ⇥(2325)
in PDG (but not its width which is reported to be � 150
MeV).

D05 poles. The four-star ⇥(1830) is obtained in the
D05 partial wave and our result agrees with the one ob-
tained by KSU model. Model KA also obtains this pole,
although at smaller mass (1766) and larger width (�p/

2 = 106+47
�31). However, the associated uncertainites are

large enough to not consider the disagreement worrisome.
We obtain a second pole as KA and KSU model do, but
the three analyses find this pole at very di⇤erent loca-
tions. Hence, we can conclude that this second pole in
the partial wave does exist but its exact position is de-
batable.
F05 poles. According to the PDG, the F05 partial

wave contains one four-star resonance, ⇥(1820), and one
three-star resonance, ⇥(2110). This is not obvious from
Fig. 2 because the partial wave looks like a one well-
isolated resonance instead of the combination of two
states. All the analyses find the ⇥(1820) at the same
location within uncertainites. The ⇥(2110) is a good ex-
ample of how a resonance can show up in a partial wave
without a bump when it is deep in the complex plane.
The fact that both our analysis and KSU require the
⇥(2110) ratifies its three-star status, although the exact
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TABLE III. Summary of ⇥⇥ pole masses (Mp = Re
⇥
sp) and widths (�p = �2 Im

⇥
sp) in MeV. Our poles are depicted in Fig.

5 unless they have a very large imaginary part. Notation is the same as in Table II. Resonances marked with † are unreliable
themselves due to systematics and lack of good-quality �2/dof .

This work KSU from [3] KA from [5] KB from [5] PDG [1]

I� JP ⇥ Mp �p Mp �p Mp �p Mp �p Name Status

1� 1
2

�
S — — 1501 171 — — 1551 376 ⇥(1620) *

— — 1708 158 1704 86 — — ⇥(1750) ***

1813± 32† 227± 43 — — — — — — — —

— — 1887 187 — — — — ⇥(1900) *

1990.8± 4.3† 173.1± 5.4 — — — — 1940 172 ⇥(2000) *

— — 2040 295 — — — — — —

1+ 1
2

+
P 1567.3± 5.7 88.4± 7.0 — — 1547 184 1457 78 ⇥(1560) **

— — — — — — — — ⇥(1660) ***

1707.7± 6.6 122.1± 8.5 1693 163 1706 102 — — ⇥(1770) *

— — 1776 270 — — — — ⇥(1880) **

— — — — — — 2014 140 — —

1� 3
2

+
P 1574.1± 7.2 99± 19 — — — — — — — —

— — 1683 243 — — — — — —

— — 1874 349 — — — — — —

1980± 26 429± 18 — — — — — — — —

1+ 3
2

�
D — — — — 1607 252 1492 138 ⇥(1580) *

1666.3± 7.0 26± 19 1674 54 1669 64 1672 66 ⇥(1670) ****

— — — — — — — — ⇥(1940) ***

1� 5
2

�
D 1744± 11 165.7± 9.0 1759 118 1767 128 1765 128 ⇥(1775) ****

1952± 21 88± 28 2183 296 — — — — — —

1+ 5
2

+
F — — — — — — 1695 194 — —

1893.9± 7.2 59± 42 1897 133 1890 99 — — ⇥(1915) ****

2098.2± 5.8 474± 10 2084 319 — — — — ⇥(2070) *

1� 7
2

+
F 2024± 11 189.5± 8.1 1993 176 2025 130 2014 206 ⇥(2030) ****

1+ 7
2

�
G 2177± 12 156± 19 2252 290 — — — — ⇥(2100) *

location is debatable.
F07 and G07 poles. Both the KSU model and us fit

the same single-energy partial waves from [33], hence we
are both biased by such extraction and we should be ob-
taining similar results for the simplest cases. F07 and G07

partial waves present a clear resonant structure (see Fig.
2) that can be well reproduced with just one pole K ma-
trix and one background K matrix. Both analyses yield
similar resonance positions compatible within uncertain-
ties. The �(2020) (F07) state obtained in KSU, awarded
a one-star status by the PDG, gains further confirmation
on existence and pole position by both our analysis and
KB.

2. ⇥⇥ Resonances

All the ⇥� resonances obtained are summarized in Ta-
ble III and displayed in Figs. 5(b) and 6(b) (see respec-
tive captions for details). Throughout this section pole
masses and widths are reported in MeV unless stated

otherwise.
S11 poles. Our fit to the S11 partial wave has large

uncertainties. Hence, resonances existence, their location
and errors should be taken with care. For example, the
resonance that we get at 1813�i227/2 has large error bars
both for the real and the imaginary part and no other
analysis finds a similar state. It is a state that should not
be taken as well founded. Contrary to KSU and KB (KA)
analyses we find no evidence of the ⇥(1620) (⇥(1750))
state. We find a resonance compatible with KB analysis
whose most likely PDG assignment is ⇥(2000) and we do
not find any evidence of the ⇥(1900) state.
P11 poles. In the P11 partial wave we find two res-

onances that we match to the ⇥(1560) and the ⇥(1770)
states in PDG. KSU analysis does not find a resonance
that can be matched to ⇥(1560) state while our analysis,
KA and KB do. Although, with very di⇤erent values of
the mass and the width. The ⇥(1770) state is also found
by KSU and KA models, the latter agreeing with our
analysis for both the mass and the width. KSU analy-
sis provides a larger width and a smaller mass, but not
far from ours. None of the analyses finds evidence of


