Hyperon Studies at JPAC

Who we are and what we do

General approach: Role of reaction theory

Hyperon Studies

Adam Szczepaniak Indiana University Jefferson Lab

There may be hadrons that look like ...

...but before we know this it is necessary to identify resonances

...we need to know how to interpret "peaks"

$$\Lambda_b \to K^- p J/\psi$$

a resonance in pJ/ψ ?

S-matrix principles: Crossing, Analyticity, Unitarity

s-plane
$$A_l(s+i\epsilon) \neq A_l(s-i\epsilon)$$

 \bullet $Unitarity$

$$A(s,t) = \sum_{l} A_{l}(s)P_{l}(z_{s})$$

Analyticity

$$A_{l}(s) = \lim_{\epsilon \to 0} A_{l}(s+i\epsilon)$$

bumps/peaks on the real axis (experiment) come from singularities in unphysical sheets

These singularities come from QCD

Amplitude Analysis @ JPAC

JLab/IU/GWU Physics Analysis Center

QCD on the Lattice : simulated scattering experiment

(infinite volume kinematical function) Z(E_i="data") = T(E_i) (infinite volume amplitude)

E_i = discrete energy spectrum of states in the lattice

in general "solution" of the Lusher condition requires an analytical model for T

JPAC : Example of Analysis Projects

Light meson decays and light quark resonance $\omega/\phi \rightarrow 3\pi$, $\pi\gamma$ (dispersive) $\omega \rightarrow 3\pi$ (Veneziano, B4) $\eta \rightarrow 3\pi$, $\eta'/f1 \rightarrow \eta\pi \pi$, (Khuri-Treiman, B4) $J/\Psi \rightarrow \gamma\pi0\pi0$

Photo-production: (production models, FESR and duality) γр → π0р Launched in the Fall $yp \rightarrow pK+K-$ (and Kp) of 2013 $\gamma p \rightarrow \pi + \pi - p, \pi 0 \eta p, \omega p$ >20 analysis/papers Exotica and XYZ's: published π -p \rightarrow π -np & π -p \rightarrow π -n'p (FESR) $B^0 \rightarrow \Psi' \pi$ - K⁺ u, $\Psi(4260) \rightarrow J/\Psi \pi$ + π -, $\Lambda_b \rightarrow$ K- pJ/ Ψ $J/\Psi \rightarrow 3\pi$, KK π (Veneziano, B4)

Adam Szczepaniak (IU/JLab) Mike Pennington (JLab) Tim Londergan (IU) Geoffrey Fox (IU) Emilie Passemar (IU/JLab) Cesar Fernandez-Ramirez (Jlab Mexico) Vincent Mathieu (IU) Micheal Doering (GWU) Ron Workman (GWU)

BESIII collaboration

Medina Ablikim (Beijing) Ryan Mitchell, (IU)

LHCb collaboration

. . .

. . .

T.Skwarnicki (Syracuse) J.Rademacker, (Bristol) Vladyslav Pauk (Mainz → JLab) Alessandro Pilloni (Rome → JLab) Astrid Blin (Valencia) Andrew Jackura (IU) Lingyun Dai (IU/JLab → Valencia) Meng Shi (JLab → Beijing) Igor Danilkin (JLab → Mainz) Peng Guo (IU/JLab → CSU)

COMPASS collaboration

Mikhail Mikhasenko (Bonn) Fabian Krinner (TUM) Boris Grube (TUM)

• • •

. . .

. . .

BaBar collaboration Antimo Palano (Bari)

GlueX collaboration

Matthew Shepherd (IU) Justin Stevens (JLab)

CLAS collaboration

Diane Schott (GWU/JLab) Viktor Mokeev (JLab) HASPECT

Marco Battaglieri (Genova) Derek Glazier (Glasgow) Raffaella De Vita (Genoa)

special thanks to Vincent Mathieu

double complex function A(gamma,target,recoil,pip,pim, ,lambdo_g,lambdo_t,lambdo_r, parans) implicit double precision (a-h,o-z) dimension gamma(4) dimension target(4) dimension recoil(4) dimension pip(4),pim(4) dimension params(100) double complex Ampl (gamma(4)+target(4))**2 - (gamma(1)+target(1))**2 (gama(2)+target(2))**2 - (gama(3)+target(3))**2 (pip(4)+pim(4))**2 - (pip(1)+pim(1))**2 (pip(2)+pim(2))**2 - (pip(3)+pim(3))**2 (pip(4)+recoil(4))**2 - (pip(1)+recoil(1))**2 52 (pip(2)+recoil(2))**2 - (pip(3)+recoil(3))**2 (gamma(4)-pim(4))**2 - (gamma(1)-pim(1))**2 (gama(2)-pin(2))**2 - (gama(3)-pin(3))**2 t1 = (target(4)-recoil(4))**2 - (target(1)-recoil(1))**2 - (target(2)-recoil(2))**2 - (target(3)-recoil(3))**2 coll Ath(s,s1,s2,t1,t2,lambda_g,lambda_t,lambda_r,params,Ampl)

The F_i amplitudes have good quantum numbers of the t -channel, the naturality $n = P(-1)^J$ and the product CP.

Hyperon Physics

Bridge between light (u,d) and heavy (c,b) quark baryons

Test Quark Model vs QCD (lattice)

Photon couples to quarks is, glueballs, hybrids or use in associated production of K*'s and Hyperons

Hyperon spectrum less understood e.g $\Lambda(1405)$ only recently pole positions have started to be reported by the PDG

Some quark model states have not been seen yet

ΙG	naturality =P(-1) ^J	twist =+1 if J=0,2, =-1 if J=1,3	name
0+	+1	+1	f ₀ ,f ₂ ,
0+	+1	-1	η/η'1,η/η'3, (1~+,3~+,)
0+	-1	+1	η/η'₀,η/η'₂,
0+	-1	-1	f ₁ ,f ₃ ,
0-	+1	+1	ho,h2, (0+-,2+-,)
0-	+1	-1	ω/φ ₁ ,ω/φ ₃ ,
0-	-1	+1	<u>ω/φ₀,ω/φ₂,(0,2,</u> :not seen)
0-	-1	-1	h1,h3,
1+	+1	+1	b ₀ ,b ₂ , (0+-,2+-,)
1+	+1	-1	ρ ₁ ,ρ ₃ ,
1+	-1	+1	ρο, ρ₂, (0 ,2 , :not seen)
1+	-1	-1	b1,b3,
1-	+1	+1	a ₀ ,a ₂ ,
1-	+1	-1	π ₁ ,π ₃ , (1 ⁻⁺ ,3 ⁻⁺ ,)
1.	-1	+1	Π,Τζ,
1-	-1	-1	a1,a3,

Analyticity is a powerful constraint

۵

d

PWA for KN Model the amplitude Fit to data Analytically continue to complex values of energy to search for poles

Partial-wave analysis (Lmax= 5), Coupled channels, Unitarity Analyticity: Right threshold behavior (angular momentum barrier), Resonances and backgrounds are incorporated "byhand" through K matrices

In the range 2.19<s<4.70 GeV2 (8000 data points, 7500 data points, 5000 data points) We fit the KSU analysis singleenergy partial waves [Zhang et al., PRC 88, 035204 (2015)] Caveat: we lose correlations among partial waves

Cesar Fernandez Ramirez et al., arXiv:1510.07065 [hep-ph]

$$S_{\ell} = I + 2i \left[C_{\ell}(s) \right]^{1/2} T_{\ell}(s) \left[C_{\ell}(s) \right]^{1/2}$$
$$T_{\ell}(s) = \left[K^{-1}(s) - i\rho_{\ell}(s) \right]^{-1}$$
$$[i\rho_{\ell}(s)]_{kk} = \frac{s - s_{k}}{\pi} \int_{s_{k}}^{\infty} \frac{\left[C_{\ell}(s) \right]_{kk}}{s' - s} \frac{ds'}{s' - s_{k}}$$

 $k = \pi \Sigma, \bar{K}N, \pi\Lambda, \pi\Sigma(1385), \pi\Lambda(1520), \eta\Sigma, \eta\Lambda, \bar{K}^*N, \pi\Delta(1232), \pi\pi\Sigma, \pi\pi\Lambda$

Resonance

Background

$$[K_a(s)]_{kj} = x_k^a \frac{M_a}{M_a^2 - s} x_j^a$$

$$[K_b(s)]_{kj} = x_k^b \ \frac{M_b}{M_b^2 + s} \ x_j^b$$

Generates pole in the 2nd Riemann sheet Generates pole in the real axis for s<0 in the1st Riemann sheet

Phase Space/Analicticity

$$[C_{\ell}(s)]_{kk} = \frac{q_k(s)}{q_0} \left[\frac{q_k^2(s)r^2}{1 + q_k^2(s)r^2} \right]^{\ell}$$

Right threshold behavior
 Angular momentum barrier
 Right high-energy behavior
 r =1 fm (interaction radius)

$$[q_k(s)]^2 = \frac{m_1 m_2}{s_k} [s - s_k]$$

$$\begin{split} \left[i\rho_{\ell}(s)\right]_{kk} &= \frac{s-s_{k}}{\pi} \int_{s_{k}}^{\infty} \frac{\left[C_{\ell}(s')\right]_{kk}}{s'-s} \frac{ds'}{s'-s_{k}} = -a_{0} \frac{a^{\ell}}{\pi\Gamma(\ell)} \left[\frac{\pi\Gamma(\ell)(s-s_{k})\sqrt{s_{k}-s}}{1+a\left(s-s_{k}\right)}\right] \\ &- \frac{\sqrt{\pi}\Gamma(\ell+\frac{1}{2})}{\ell a^{\ell+1/2}} \left(\left[1+a(s-s_{k})\right]_{2}F_{1}\left[1,\ell+1/2,-1/2,1/a(s_{k}-s)\right]\right] \\ &- \left[3+2\ell+a(s-s_{k})\right]_{2}F_{1}\left[1,\ell+1/2,1/2,1/a(s_{k}-s)\right]\right) \end{split}$$

Valid for I real and bigger than -1/2

Partial Waves

Partial Waves

Resonances as Regge Poles

near the resonance pole

$$\begin{aligned} \alpha' &\sim 1 \text{ GeV}^{-2} \\ T_l &\sim \frac{1}{\alpha'(m_l^2 - s)} &= \frac{1}{l - (l - \alpha' m_l^2 + \alpha' s)} \\ \text{if} \quad l &= \alpha_0 + \alpha' m_l^2 \text{ than } \quad T_l &\sim \frac{1}{l - \alpha(s)} \quad \text{with} \\ \alpha(s) &= \alpha_0 + \alpha' s \end{aligned}$$

In general T = T(l, s) and a pole corresponds to a trajectory in the l,s space

A pole in s at a fixed integer I is connected to another pole at a different integer I

(3 *) $\Sigma(1940)$ nobody gets it, but there is a gap in Ragge trajectory

On the nature of $\Lambda(1405)$

- Puzzle since the 60's
- Quantum numbers those of a uds state
- Constituent quark models fail to reproduce the mass
 - I550 MeV [Capstick, Isgur, PRD 34, 2809 (1986)]
 - * 1524 MeV [Löring, Metsch, Petry, EPJA 10, 447 (2001)]
- Amplitude analysis of KN scattering and πΣK⁺ data finds two poles [Mai, Meißner, EPJA 51, 30 (2015)]
 - 1429-12i MeV
 - 1325-90i MeV
- * Lattice says: KN molecule [Hall et al., PRL 114, 132002 (2015)]
- * Lattice says: three-quark state [Engel et al., PRD 87, 034502 (2013); PRD 87, 074504 (2013)]
- Regge phenomenology [Fernandez-Ramirez et al., arXiv:1512.03136 (2015)]
- Quark-diquark models obtain one $\Lambda(1405)$ with the right energy
 - 1430 MeV [Santopinto, Ferretti, PRC 92, 025202 (2015)]
 - 1406 MeV [Faustov, Galkin, PRD 92, 054005 (2015)]

Λ(1405)

Re

Im

(a) Λ resonances.

(b) Σ resonances.

FIG. 1. (color online). Chew–Frautschi plot for the the leading Λ and Σ Regge trajectories. Dashed lines are displayed to guide the eye.

(a) Λ resonances.

(b) Σ resonances.

FIG. 2. (color online). Projections of the leading Λ and Σ Regge trajectories onto the $(-\Im(s_p), J)$ plane. Dashed lines are displayed to guide the eye.

Compare fits 0⁻a, 0⁻b, 0⁻c

$$\Lambda_a(1405) = 1429 - 12i \text{ MeV}$$

 $\Lambda_b(1405) = 1352 - 90i \text{ MeV}$

$$\begin{aligned} \alpha(s) &= \alpha_0 + \alpha' s + i \gamma \rho(s, s_t) \\ &i \rho_A(s, s_t) = i \sqrt{s - s_t} , \\ &i \rho_B(s, s_t) = i \sqrt{1 - s_t/s} , \\ &i \rho_C(s, s_t) = \frac{s - s_t}{\pi} \int_{s_t}^{\infty} \frac{\sqrt{1 - s_t/s'}}{s' - s_t} \frac{ds'}{s' - s} \\ &= \frac{2}{\pi} \frac{s - s_t}{\sqrt{s(s_t - s)}} \arctan \sqrt{\frac{s}{s_t - s}} \end{aligned}$$

A_a(1405) is closer to the "normal" trajectory

Summary

- New, analytical model for hyperon spectrum
- Need to incorporate Regge constraints
 - in direct channel as a constraint on, eg, K-matrix matrix poles
 - in cross channels, as constrained on p.w. extraction,

Λ(1405): One more piece to the puzzle (more confusion?)

TABLE II. Summary of Λ^* pole masses $(M_p = \text{Re }\sqrt{s_p})$ and widths $(\Gamma_p = -2 \text{ Im }\sqrt{s_p})$ in MeV. Our poles are depicted in Fig. 5 unless they have a very large imaginary part. In [2] the $\Lambda(1520)$ pole was obtained at $(M_p = 1518.8, \Gamma_p = 17.2)$. Ref. [5] implements two models labeled as KA and KB (see text). I stands for isospin, η for naturality, J for total angular momentum, P for parity, and ℓ for orbital angular momentum. For baryons, $\eta = +$, natural parity, if $P = (-1)^{J-1/2}$ and $\eta = -$, unnatural parity, if $P = -(-1)^{J-1/2}$ where P stands for parity. Resonances marked with \dagger are unreliable themselves due to systematics and lack of good-quality χ^2/dof . Resonances marked with \ddagger are most likely artifacts of the fits.

	This work		KSU from [3]		KA from [5]		KB from [5]		PDG [1]	
$I^\eta \; J^P \; \ell$	M_p	Γ_p	M_p	Γ_p	M_p	Γ_p	M_p	Γ_p	Name	Status
$0^{-} \frac{1}{2}^{-} S$	$1435.8\pm5.9^\dagger$	279 ± 16	1402	49					$\Lambda(1405)$	****
	1573^{\ddagger}	300					1512	370		
	$1636.0\pm9.4^{\dagger}$	211 ± 35	1667	26	1669	18	1667	24	$\Lambda(1670)$	****
			1729	198					$\Lambda(1800)$	***
	$1983\pm21^{\dagger}$	282 ± 22	1984	233					$\Lambda(2000)$	*
	$2043\pm 39^\dagger$	350 ± 29								
$0^+ \frac{1}{2}^+ P$	1568 ± 12	132 ± 22	1572	138	1544	112	1548	164	$\Lambda(1600)$	***
_	$1685\pm29^\dagger$	59 ± 34	1688	166					$\Lambda(1710)$	*
	$1835\pm10^{\ddagger}$	180 ± 22								
	$1837.2\pm3.4^\dagger$	58.7 ± 6.5	1780	64			1841	62	$\Lambda(1810)$	
			2135	296	2097	166				
$0^{-} \frac{3}{2}^{+} P$	1690.3 ± 3.8	46.4 ± 11.0					1671	10		
	1846.36 ± 0.81	70.0 ± 6.0	1876	145	1859	112			$\Lambda(1890)$	ł
			2001	994						
$0^+ \frac{3}{2}^- D$	1519.33 ± 0.34	17.8 ± 1.1	1518	16	1517	16	1517	16	$\Lambda(1520)$	X
	1687.40 ± 0.79	66.2 ± 2.3	1689	53	1697	66	1697	74	$\Lambda(1690)$	X
	2051 ± 20	269 ± 35	1985	447					$\Lambda(2050)$	
	$2133 \pm 120^{\ddagger}$	1110 ± 280							$\Lambda(2325)$	
$0^{-} \frac{5}{2}^{-} D$	1821.4 ± 4.3	102.3 ± 8.6	1809	109	1766	212			$\Lambda(1830)$	X
			1970	350	1899	80	1924	90		
	2199 ± 52	570 ± 180								
$0^+ \frac{5}{2}^+ F$	1817 ± 57	85 ± 54	1814	85	1824	78	1821	64	$\Lambda(1820)$	X
	1931 ± 25	189 ± 36	1970	350					$\Lambda(2110)$	
$0^{-} \frac{7}{2}^{+} F$					1757	146				
	2012 ± 81	210 ± 120	1999	146			2041	238	$\Lambda(2020)$	
$0^+ \frac{7}{2}^- G$	2079.9 ± 8.3	216.7 ± 6.8	2023	239					$\Lambda(2100)$	×

TABLE III. Summary of Σ^* pole masses $(M_p = \text{Re }\sqrt{s_p})$ and widths $(\Gamma_p = -2 \text{ Im }\sqrt{s_p})$ in MeV. Our poles are depicted in Fig. 5 unless they have a very large imaginary part. Notation is the same as in Table II. Resonances marked with \dagger are unreliable themselves due to systematics and lack of good-quality χ^2/dof .

		This work		KSU from [3]		KA from $[5]$		KB from $[5]$		PDG [1]	
	$I^\eta \; J^P \; \ell$	M_p	Γ_p	M_p	Γ_p	M_p	Γ_p	M_p	Γ_p	Name	Status
*	$1^{-} \frac{1}{2}^{-} S$			1501	171			1551	376	$\Sigma(1620)$	*
				1708	158	1704	86			$\Sigma(1750)$	***
		$1813\pm32^\dagger$	227 ± 43								
				1887	187					$\Sigma(1900)$	*
		$1990.8\pm4.3^{\dagger}$	173.1 ± 5.4					1940	172	$\Sigma(2000)$	*
				2040	295						
	$1^+ \frac{1}{2}^+ P$	1567.3 ± 5.7	88.4 ± 7.0			1547	184	1457	78	$\Sigma(1560)$	**
										$\Sigma(1660)$	***
		1707.7 ± 6.6	122.1 ± 8.5	1693	163	1706	102			$\Sigma(1770)$	*
				1776	270					$\Sigma(1880)$	**
								2014	140		
	$1^{-} \frac{3}{2}^{+} P$	1574.1 ± 7.2	99 ± 19								
				1683	243						
				1874	349						
		1980 ± 26	429 ± 18								
	$1^+ \frac{3}{2}^- D$					1607	252	1492	138	$\Sigma(1580)$	*
		1666.3 ± 7.0	26 ± 19	1674	54	1669	64	1672	66	$\Sigma(1670)$	****
										$\Sigma(1940)$	***
	$1^{-} \frac{5}{2}^{-} D$	1744 ± 11	165.7 ± 9.0	1759	118	1767	128	1765	128	$\Sigma(1775)$	****
		1952 ± 21	88 ± 28	2183	296						
	$1^{+} \frac{5}{2}^{+} F$							1695	194		
		1893.9 ± 7.2	59 ± 42	1897	133	1890	99			$\Sigma(1915)$	****
		2098.2 ± 5.8	474 ± 10	2084	319					$\Sigma(2070)$	*
	$1^{-} \frac{7}{2}^{+} F$	2024 ± 11	189.5 ± 8.1	1993	176	2025	130	2014	206	$\Sigma(2030)$	****
	$1^+ \frac{7}{2}^- G$	2177 ± 12	156 ± 19	2252	290					$\Sigma(2100)$	*