Reducing ambiguity of antikaon-nucleon amplitude using modern experimental data

Maxim Mai, Ulf-G. Meißner

What is $\Lambda(1405)$ made of?

• Quark model

- \rightarrow genuine qqq state
- $\rightarrow\,$ or even more exotic: hybrids, active glue, ...

• Dynamically generated from coupled-channel effects

- → K-matrix Dalitz, Tuan
- $\rightarrow~$ unitarized coupled-channel amplitude from ChPT
 - \Rightarrow two pole solution
 - \Rightarrow many (confirming) works followed
 - \Rightarrow accepted by PDG in 2015!
- Lattice QCD
 - $\rightarrow 32^2 \times 64$ full-QCD ensembles
 - $\rightarrow~$ Magnetic form factor of s-quark vanishes
 - $\Rightarrow \Lambda(1405)$ is dominated by a molecular $\bar{K}N$ state

Hall et al. (2014)

((state|E))² 0.8 0.6-0.4

0.2

Capstick, Isgur (1986)

Dalitz, Tuan (1960!) Kaiser, Siegel, Weise (1995) Oller, Meißner (2001)

Experimental situation

- Total cross sections on $K^-p \to K^-p, \bar{K}^0n, \dots$
 - \rightarrow various bubble chamber experiments

LNL Berkeley (1960s), Rutherford Laboratory (1981s), ...

- \rightarrow huge error bars
- \rightarrow large deviations btw. experiments
 - \Rightarrow weak constraints on $\bar{K}N$ amplitude

• $\pi\Sigma$ mass distribution

- \rightarrow 2m bubble chamber @ CERN
- \rightarrow multistep production
- \rightarrow low energy resolution \Rightarrow not very restictive

@ Lawrence Radiation Laboratory ber

MM, Meißner (2012), Guo, Oller (2013)

Hemingway (1985)

Experimental situation

• Threshold amplitudes

- → $\bar{K}H$ strong energy shift and width in the SIDDHARTA exp. Bazzi et al. (2011) ⇒ a_{K^-p} from the Deser-type formula Meißner, Raha, Rusetsky (2004)
- \rightarrow plans for an upgrade to $\bar{K}D$
 - $\Rightarrow A_{Kd}$ from the Deser-type formula
 - \Rightarrow a_1, a_0 from Faddeev equations/ (Static Approximation + Recoil Corrections)

Shevchenko (2014), .../ Kamalov et al. (2001) MM et al. (2014)

• pp collisions

- \rightarrow high quality data
- \rightarrow theoretical analysis very intricate
- $\pi\Sigma$ mass distribution
 - \rightarrow electro- and photoproduction: $\gamma p \rightarrow (K^+) \Lambda(1405) \rightarrow \pi \Sigma$
 - $\rightarrow J^P = \frac{1}{2}^{-}$ "confirmed" experimentally
 - $\rightarrow\,$ high statistics and good angular resolution
 - \Rightarrow new contraints on $\bar{K}N$ amplitude (?)

DAΦNE (????), J-PARC (????)

COSY (2008) HADES (2013)

I. Meson-baryon scattering

General framework

• ChPT is an appropriate tool to study low-energy hadronic interactions.

Weinberg (1979) Gasser, Leutwyler (1981)

Here it has to fail! Because:

- 1. Kaon mass is large
- 2. Relevant thresholds are widely separated
- 3. Resonance just below $\bar{K}N$ threshold
- Non-perturbative methods:
 - \rightarrow Dispersion relations, N/D, Roy-Steiner equations
 - $\rightarrow\,$ K-Matrix, JÜLICH-BONN model, ...
 - \rightarrow IAM, Chiral Unitary Models, ...
- Chiral Unitary Models driving term

 $V(q_2, q_1; p) = A_{WT}(q_1 + q_2) + Born(s) + Born(u)$

$$+A_{14}(q_1 \cdot q_2) + A_{57}[q_1, q_2] + A_M + A_{811} \Big(q_2(q_1 \cdot p) + q_1(q_2 \cdot p) \Big)$$

 \Rightarrow A. depend on low energy constants \Rightarrow free parameters

 \rightarrow convergence

 \rightarrow convergence

 \rightarrow non-perturbative effect

Resummation

• Bethe-Salpeter equation

Salpeter et al.(1951)

- \rightarrow Intermediate particles are *off-shell*
 - \Rightarrow exactly corresponding to a series of Feynman loop diagrams

 \Rightarrow BSE can be solved analytically, if(f) $V\sim$ local terms $_{\rm Bruns,\ MM,\ Meißner\ (2011)}$ \Rightarrow drop the Born graphs

- \rightarrow Loop integrals \rightarrow Passarino-Veltman reduction \rightarrow dim. reg.
- $\rightarrow Bubble \ chain \ in \ s \ direction \ \rightarrow \ topologies \ are \ missing \\ \Rightarrow \ scale \ dependence \ does \ not \ cancel \ out \\ \Rightarrow \ additional \ model \ parameters$

Fits and results

 $\chi^2_{\rm d.o.f.}$

1.35

1.14

0.99

0.96

1.06

1.02

1.15

0.90

• Results: 8 best fits obtained

Fit $\#$	1	2	3	4	5	6	7	8
$\chi^2_{\rm d.o.f.}$	1.35	1.14	0.99	0.96	1.06	1.02	1.15	0.90

 $\rightarrow\,$ similar threshold ratios

- $\rightarrow~{\rm error}$ bars are twofold
 - 1. parameter: variation of best fit parameters, such that $\Delta \chi^2_{\rm d.o.f.} < 1.15$
 - 2. systematic: spread of solutions

Results

\rightarrow similar cross sections

• Analytic continuation to the complex energy plane

- $\rightarrow~$ two poles in all solutions on II. RS
- $\rightarrow~$ stable position of the narrow pole
- $\rightarrow~$ position of the second pole is rather unstable

II. CLAS data on $\gamma p \to K^+ \pi \Sigma$

Framework

Data

• $\Lambda(1405)$ lineshape from double meson photoproduction JLAB

CLAS (2012)

- $\rightarrow~9$ energy bins
- $\rightarrow 60$ values of $M_{\pi\Sigma}$ 5 MeV resolution
- $\rightarrow\,$ three channels: $\pi^+\Sigma^-,\,\pi^-\Sigma^+,\,\pi^0\Sigma^0$

Photoproduction amplitude

- I Gauge invariant approaches
 - 1. Turtle approximation
 - attach photon everywhere to $\mathit{off}\text{-}\mathit{shell}$ hadronic amplitude

Gross, Riska (1987), Kvinikhidze, Blankleider (1999) and Borasoy et al. (2005)

- single meson case is done for the NLO-kernel MM et al.(2012)
- double meson case is tidious ... work in progress
- 2. Gauged vertices
 - photon attached to meson production amplitude at the tree level
 - unitary meson-baryon amplitude as a FSI
 - done for LO driving term:
 - \Rightarrow no good fit to CLAS data
 - \Rightarrow good fit with additional vector meson d.o.f. 15 per energy bin!

Nakamura, Jido (2014)

Framework

II Test model

- most simple ansatz to test the hadronic solution:

 $\mathcal{M}_j(W, M_{\pi\Sigma}) = C_i(W) \cdot G_i(M_{\pi\Sigma}) \cdot T_{i \to j}^{on}(M_{\pi\Sigma})$

- flexible enough for the CLAS data

 \Rightarrow less free parameters (15 \mapsto 10)

- no gauge invariance, parameters are not physical
 - \Rightarrow global fit is meaningless
 - \Rightarrow no access to microscopic features of the spectrum
 - \Rightarrow conservative test of the hadronic solutions

Oset, Roca (2013)

Results

• Test of hadronic solutions

Fit #	1	2	3	4	5	6	7	8
$\chi^2_{\rm d.o.f.}$ (hadr.)	1.35	1.14	0.99	0.96	1.06	1.02	1.15	0.90
$\chi^2_{\rm p.p.}$ (CLAS)	3.18	1.94	2.56	1.77	1.90	6.11	2.93	3.14

• Hadronic fits #2, #4 and #5 lead to good fits

• Hadronic fits #1, #3, #6, #7 and #8 do not!!!

 \Rightarrow after comparison with Hemingway data $(K^-p\to\Sigma^+\pi^-\pi^+\pi^-)$ two solutions remain: #2 and #4

 \Rightarrow both solutions have similar pole positions

... also similar to the estimation by Oset and Roca (2013)

 \Rightarrow universal feature demanded by CLAS data!

III. New scattering data???

Pseudo scattering data

- What is the desired accuracy on $\sigma_{\bar{K}N\to\dots}$ measurement?
- Generate pseudodata: benchmark fit #4
 - \rightarrow Assume uniformly distributed data for $p_{lab} = 100...300$ MeV
 - ... with energy bins of the size of $\Delta E = 5, 10, 20 \text{ MeV}$
 - \rightarrow Assume error bars of $\Delta \sigma = 2.5, 5, 10$ mb for charged

... and $\Delta \sigma = 5, 10, 20$ mb for neutral channels

Pseudo scattering data

- Compare $\chi^2_{\rm d.o.f.}/\chi^2_{\rm d.o.f.}(\#4)$
- $\rightarrow~$ threshold ratios, SIDDHARTA
- $\rightarrow~$ pseudo and real scattering data

⇒ $\Delta \sigma < 5(10)$ mb and $\Delta E < 10$ MeV desired

 $\rightarrow~$ threshold ratios, SIDDHARTA

\rightarrow pseudo scattering data

 $\Rightarrow \text{ much larger values of } \Delta\sigma \text{ and } \Delta E$ are sufficient

- The <u>NLO</u> chiral unitary $\bar{K}N$ amplitude used to analyze hadronic data
- 8 solutions are found in the *on-shell* approximation
 - \rightarrow the position of the narrow pole is quite certain
 - \rightarrow broad pole has large systematic uncertainty
- Photoproduction amplitude constructed from the hadronic part
 → simple, but very flexible ansatz ... conservative test
 → 5 solutions disagree with the CLAS data, 2 remain after all tests
- New data can actually reduce the ambiguity of the $\bar{K}N$ amplitude \rightarrow desired accuracy is not a part of science-fiction

- Qualitative comparison with Hemingway data $(K^- p \rightarrow \Sigma^+ \pi^- \pi^+ \pi^-)$
 - $\rightarrow~$ Fit #2 and #4 are fine

 $\rightarrow~$ Fit #5 is completely off

