Reducing ambiguity of antikaon-nucleon amplitude using modern experimental data

Maxim Mai, Ulf-G. Meißen
What is $\Lambda(1405)$ made of?

- **Quark model**
 - genuine qqq state
 - or even more exotic: hybrids, active glue, ...

 Capstick, Isgur (1986)

- **Dynamically generated from coupled-channel effects**
 - K-matrix
 - unitarized coupled-channel amplitude from ChPT
 - two pole solution
 - many (confirming) works followed
 - accepted by PDG in 2015!

 Dalitz, Tuan (1960!)

 Kaiser, Siegel, Weise (1995)

 Oller, Meißner (2001)

- **Lattice QCD**
 - $32^2 \times 64$ full-QCD ensembles
 - Magnetic form factor of s-quark vanishes
 - $\Lambda(1405)$ is dominated by a molecular $\bar{K}N$ state

 Hall et al. (2014)
Experimental situation

- **Total cross sections on** $K^- p \rightarrow K^- p, \bar{K}^0 n, ...$
 - various bubble chamber experiments
 - LNL Berkeley (1960s), Rutherford Laboratory (1981s), ...
 - huge error bars
 - large deviations btw. experiments
 - weak constraints on $\bar{K}N$ amplitude

- **$\pi \Sigma$ mass distribution**
 - 2m bubble chamber @ CERN
 - multistep production
 - low energy resolution
 - not very restictive

![Bubble chamber @ Lawrence Radiation Laboratory](image)

![Hemingway (1985)](image)
Experimental situation

- **Threshold amplitudes**
 - $\bar{K}H$ strong energy shift and width in the SIDDHARTA exp.
 $\Rightarrow a_{\bar{K}-p}$ from the Deser-type formula
 $\Rightarrow A_{\bar{K}d}$ from the Deser-type formula
 $\Rightarrow a_1, a_0$ from Faddeev equations/ (Static Approximation + Recoil Corrections)
 DAΦNE (????), J-PARC (????)

- **pp collisions**
 - high quality data
 - theoretical analysis very intricate

- **$\pi\Sigma$ mass distribution**
 - electro- and photoproduction: $\gamma p \rightarrow (K^+)\Lambda(1405) \rightarrow \pi\Sigma$
 - $J^P = \frac{1}{2}^-$ “confirmed” experimentally
 - high statistics and good angular resolution
 \Rightarrow new contraints on $\bar{K}N$ amplitude (?)
I. Meson-baryon scattering
General framework

- ChPT is an appropriate tool to study low-energy hadronic interactions.

 Here it has to fail! Because:

 1. Kaon mass is large → convergence
 2. Relevant thresholds are widely separated → convergence
 3. Resonance just below $\bar{K}N$ threshold → non-perturbative effect

- Non-perturbative methods:

 → Dispersion relations, N/D, Roy-Steiner equations
 → K-Matrix, JÜLICH-BONN model, ...
 → IAM, *Chiral Unitary Models*, ...

- **Chiral Unitary Models** - driving term

 \[
 V(q_2, q_1; p) = A_{WT}(q_1 + q_2) + \text{Born}(s) + \text{Born}(u) \\
 + A_{14}(q_1 \cdot q_2) + A_{57}[q_1, q_2] + A_M + A_{811}\left(q_2(q_1 \cdot p) + q_1(q_2 \cdot p)\right)
 \]

 ⇒ \(A_{\cdot}\) depend on low energy constants ⇒ free parameters
Resummation

- Bethe-Salpeter equation

\[T(\not{q}_2, \not{q}_1; p) = V(\not{q}_2, \not{q}_1; p) + i \int \frac{d^d l}{(2\pi)^d} \frac{V(\not{q}_2, l; p) T(l, \not{q}_1; p)}{((\not{q} - l) - m + i\epsilon)(l^2 - M^2 + i\epsilon)} \]

→ Intermediate particles are off-shell
 ⇒ exactly corresponding to a series of Feynman loop diagrams

⇒ BSE can be solved analytically, if \(V \sim \) local terms
 ⇒ drop the Born graphs

→ Loop integrals → Passarino-Veltman reduction → dim. reg.

→ Bubble chain in \(s \) direction → topologies are missing
 ⇒ scale dependence does not cancel out
 ⇒ additional model parameters
Fits and results

- Off-shell effects are moderate
 ⇒ for an efficient scan of parameter space (20 dim.!) use on-shell approximation → performance × 30
 ⇒ later gradually turn on the off-shell effects

- Fit strategy
 → Data: threshold amplitudes, cross sections - 155 data points
 → Randomly chosen sets of starting values (# ≈ 10000)
 → Solutions having poles on I. RS sorted out

- Results: 8 best fits obtained
 → similar \(\chi^2_{d.o.f.} \)

<table>
<thead>
<tr>
<th>Fit #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi^2_{d.o.f.})</td>
<td>1.35</td>
<td>1.14</td>
<td>0.99</td>
<td>0.96</td>
<td>1.06</td>
<td>1.02</td>
<td>1.15</td>
<td>0.90</td>
</tr>
</tbody>
</table>

MM, Meißner (2013)
Fits and results

- Results: 8 best fits obtained

<table>
<thead>
<tr>
<th>Fit #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi^2_{d.o.f.}$</td>
<td>1.35</td>
<td>1.14</td>
<td>0.99</td>
<td>0.96</td>
<td>1.06</td>
<td>1.02</td>
<td>1.15</td>
<td>0.90</td>
</tr>
</tbody>
</table>

→ similar threshold ratios

→ error bars are twofold
 1. parameter: variation of best fit parameters, such that $\Delta \chi^2_{d.o.f.} < 1.15$
 2. systematic: spread of solutions
Results

→ similar cross sections
Results - complex plane

- Analytic continuation to the complex energy plane

→ two poles in all solutions on II. RS
→ stable position of the narrow pole
→ position of the second pole is rather unstable
II. CLAS data on $\gamma p \rightarrow K^{+}\pi\Sigma$
Framework

Data

- $\Lambda(1405)$ lineshape from double meson photoproduction JLAB
 - 9 energy bins
 - 60 values of $M_{\pi\Sigma}$ - 5 MeV resolution
 - three channels: $\pi^+\Sigma^-$, $\pi^-\Sigma^+$, $\pi^0\Sigma^0$

Photoproduction amplitude

I. Gauge invariant approaches

1. Turtle approximation
 - attach photon everywhere to off-shell hadronic amplitude
 Gross, Riska (1987), Kvinikhidze, Blankleider (1999) and Borasoy et al. (2005)
 - single meson case is done for the NLO-kernel
 - double meson case is tedious ... work in progress

2. Gauged vertices
 - photon attached to meson production amplitude at the tree level
 - unitary meson-baryon amplitude as a FSI
 - done for LO driving term: Nakamura, Jido (2014)
 ⇒ no good fit to CLAS data
 ⇒ good fit with additional vector meson d.o.f. - 15 per energy bin!
II Test model

- most simple ansatz to test the hadronic solution:

\[M_j(W, M_{\pi \Sigma}) = C_i(W) \cdot G_i(M_{\pi \Sigma}) \cdot T_{i \rightarrow j}^{on}(M_{\pi \Sigma}) \]

- flexible enough for the CLAS data
 \(\Rightarrow \) less free parameters (15 \(\mapsto \) 10)
- no gauge invariance, parameters are not physical
 \(\Rightarrow \) global fit is meaningless
 \(\Rightarrow \) *no access* to microscopic features of the spectrum
 \(\Rightarrow \) **conservative** test of the hadronic solutions

Oset, Roca (2013)
Results

- Test of hadronic solutions

<table>
<thead>
<tr>
<th>Fit #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi^2_{d.o.f.}$ (hadr.)</td>
<td>1.35</td>
<td>1.14</td>
<td>0.99</td>
<td>0.96</td>
<td>1.06</td>
<td>1.02</td>
<td>1.15</td>
<td>0.90</td>
</tr>
<tr>
<td>$\chi^2_{p.p.}$ (CLAS)</td>
<td>3.18</td>
<td>1.94</td>
<td>2.56</td>
<td>1.77</td>
<td>1.90</td>
<td>6.11</td>
<td>2.93</td>
<td>3.14</td>
</tr>
</tbody>
</table>

- Hadronic fits #2, #4 and #5 lead to *good* fits

- Hadronic fits #1, #3, #6, #7 and #8 do not!!!
⇒ after comparison with Hemingway data \((K^- p \rightarrow \Sigma^+ \pi^- \pi^+ \pi^-)\) two solutions remain: #2 and #4

⇒ both solutions have similar pole positions

... also similar to the estimation by Oset and Roca (2013)

⇒ universal feature demanded by CLAS data!
III. New scattering data???
Pseudo scattering data

- What is the desired accuracy on $\sigma_{KN\rightarrow \cdots}$ measurement?
- Generate pseudodata: benchmark - fit #4
 - Assume uniformly distributed data for $p_{lab} = 100\ldots300$ MeV
 ... with energy bins of the size of $\Delta E = 5, 10, 20$ MeV
 - Assume error bars of $\Delta \sigma = 2.5, 5, 10$ mb for charged
 ... and $\Delta \sigma = 5, 10, 20$ mb for neutral channels
Pseudo scattering data

- **Compare** $\chi^2_{\text{d.o.f.}} / \chi^2_{\text{d.o.f.}}$ (#4)
 - threshold ratios, SIDDHARTA
 - pseudo and real scattering data
 ⇒ $\Delta \sigma < 5(10)$ mb and $\Delta E < 10$ MeV desired

→ threshold ratios, SIDDHARTA
→ pseudo scattering data
 ⇒ much larger values of $\Delta \sigma$ and ΔE are sufficient
Summary

- The NLO chiral unitary $\bar{K}N$ amplitude used to analyze hadronic data

- 8 solutions are found in the on-shell approximation
 - the position of the narrow pole is quite certain
 - broad pole has large systematic uncertainty

- Photoproduction amplitude constructed from the hadronic part
 - simple, but very flexible ansatz ... conservative test
 - 5 solutions disagree with the CLAS data, 2 remain after all tests

- New data can actually reduce the ambiguity of the $\bar{K}N$ amplitude
 - desired accuracy is not a part of science-fiction
THANK YOU
● Qualitative comparison with Hemingway data \((K^- p \rightarrow \Sigma^+ \pi^- \pi^+ \pi^-)\)

→ Fit #2 and #4 are fine

→ Fit #5 is completely off