Excited Hyperons and their Decays ¹

F. Myhrer

University of South Carolina

¹Talk at the KL-Workshop, JLab Febr. 2, 2016

Quark models have been extended to include exotic mesons and baryons

$$\mathbf{Q}\mathbf{Q}\bar{Q}\bar{Q}$$
, $\mathbf{Q}\mathbf{Q}\mathbf{Q}\mathbf{Q}\bar{Q}$, $\mathbf{Q}\bar{Q}$ glue, glueballs \cdots

Do these states exist?

What can the simple quark model teach us about the ordinary baryon structure?

The hyperons Λ^* and Σ^* have one "heavy" and two very light quarks.

Will this feature tell us something extra?

This baryon spectroscopy talk presents a few general quark-model arguments.

The focus will be on the <u>first</u> excited Λ^* and Σ^* states.

These observations and arguments can be transferred to Ξ^* and Ω^* and higher excited states.

Strange-baryon spectroscopy has made slow experimental progress during the last decades.

Much of the talk is based on the extensive work of Nathan Isgur and Gabriel Karl and coworkers.

³H and ³He have wave functions which are a linear combination of spatial S, S' and D states.

The baryons have three valence quarks.

Baryon states are mixtures of states.

These admixtures affects strongly some hyperon decays

The hadronic wave function is

$$\Psi = \Psi_{color} \ \Psi_{flavor} \ \Psi_{spin} \ \Psi_{space}$$

In this talk we assume that isospin is a good symmetry.

The masses $m_u = m_d = m_q$.

The s quark has mass $m_s > m_q$.

[In the (cloudy or MIT) bag model the u and d quarks are massless.]

The $SU_F(3)$ is a broken symmetry.

Other assumptions:

- (1) All hadrons are SU(3)-color singlets, i.e. Ψ_{color} is antisymmetric.
- (2) Confinement between quarks is universal. It is the same for all quark flavors.
- (3) Pauli says: Two identical quarks must have an anti-symmetric wave function.
- (4) The non-relativistic quarks interact via gluon exchange, a la DeRujula et al. (1975). This spin-spin interaction makes the decuplet baryons heavier than the octet baryons.

We adopt the one-gluon exchange (OGE) between quarks i and j:

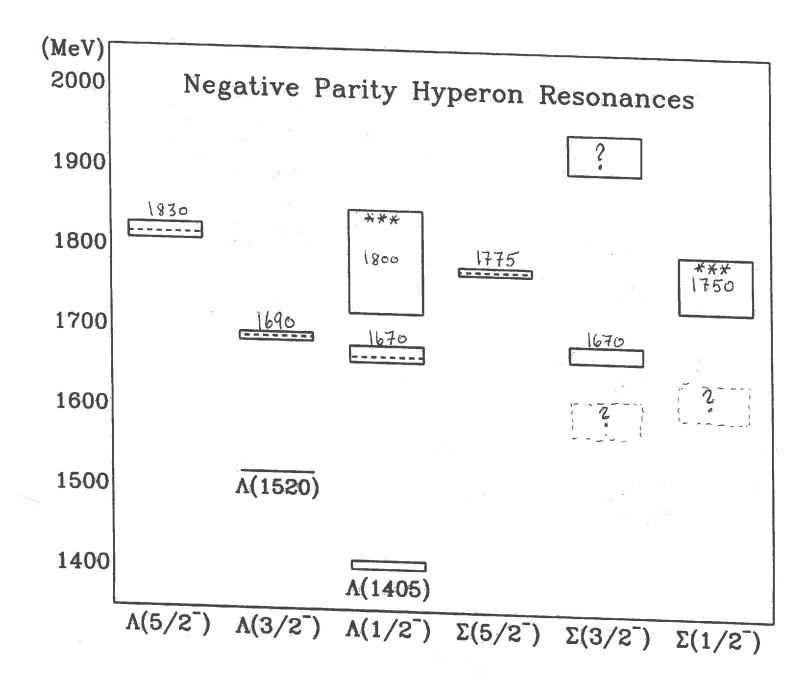
$$H_{hyp}^{ij} = A_{ij} \left\{ \frac{8\pi}{3} \vec{S}_i \cdot \vec{S}_j \delta^3(\vec{r}_{ij}) + \frac{1}{r_{ij}^3} \left(\frac{3(\vec{S}_i \cdot \vec{r}_{ij})(\vec{S}_j \cdot \vec{r}_{ij})}{r_{ij}^2} - \vec{S}_i \cdot \vec{S}_j \right) \right\}$$

The spin-spin and the tensor interaction are closely related.

The spin-orbit force is left out.

Isgur and Karl argued it should.

Bag models, where a j-j coupling is natural, show that spin-orbit from scalar confinement and OGE cancel (roughly).



We define the spatial wave function with two relative coordinates

$$\vec{\rho} = (\vec{r}_1 - \vec{r}_2) / \sqrt{2}$$

$$\vec{\lambda} = (\vec{r}_1 + \vec{r}_2 - 2\vec{r}_3) / \sqrt{6}$$

(quarks 1 and 2 are the u and d quarks, quark 3 is the s-quark).

The corresponding masses are $m_{\rho} = m_q$ and $m_{\lambda} = 3m_q m_s/(2m_q + m_s)$.

We adopt the uds basis not the $SU_F(3)$ basis.

In an NRQM the harmonic oscillator confinement potential gives a difference in ρ and λ oscillating frequencies:

$$\omega_{\rho} - \omega_{\lambda} = \omega_{\rho} \left[1 - \left(\frac{2(m_q/m_s) + 1}{3} \right)^{1/2} \right] > 0$$

The frequency ω_{ρ} is the one adopted for the nucleon ground state.

The masses of the two $J^P = 5/2^-$ states are split mainly due to confinement and a broken $SU_F(3)$ $m_q < m_s$.

This mass splitting is due to the following:

Both $J^P = 5/2^-$ states have symmetric spin wave functions S = 3/2.

 $\Lambda^*(1830)$, an iso-singlet, has a $\vec{\rho}$ -dependent spatial wave function $(\vec{\rho} \text{ is anti-symmetric under } 1 \leftrightarrow 2)$.

 $\Sigma^*(1775)$, an iso-triplet, has a $\vec{\lambda}$ -dependent spatial wave function ($\vec{\lambda}$ is symmetric under $1 \leftrightarrow 2$).

The mass difference due to $\hbar\omega_{\rho} - \hbar\omega_{\lambda} \approx 75$ MeV.

Decay ratio consequences:

 $\Lambda^*(1830)$ couples weakly to $\bar{K}N$ since the nucleon wave function is symmetric $1 \leftrightarrow 2$, whereas $\Sigma^*(1775)$ couples easily to $\bar{K}N$.

These findings are modified by H_{hyp} .

As emphasized by Isgur and Karl even the ground state baryons have a complicated spatial wave function (a la ${}^{3}\text{He}$?) due to H_{hyp} .

For example, the nucleon state is evaluated to be:

$$|N\rangle \simeq 0.90|^2 S_S\rangle - 0.34|^2 S_S'\rangle - 0.27|^2 S_M\rangle - 0.06|^2 D_M\rangle$$

Isgur and Karl find the $\Lambda(1116)$ to be:

$$|\Lambda\rangle \simeq 0.93|^2 S_S\rangle - 0.30|^2 S_S'\rangle - 0.20|^2 S_M\rangle - 0.03|^4 D_M\rangle - 0.05|\mathbf{1},^2 S_M\rangle$$

(Isgur and Karl argue that the D-states can be ignored.)

These expressions indicates that the ground state baryons are not pure $|{}^2S_S\rangle$ states.

The other components will modify (sometimes strongly) the excited baryon to ground states decay widths.

Adding the mixed symmetric component $|{}^2S_M\rangle$ of the nucleon state gives the ratio of decay amplitudes (PRL 41, 1271):

$$\frac{A(\Lambda(1830) \to KN)}{A(\Sigma(1775) \to \bar{K}N)} \simeq -0.28$$

The excited Λ^* and Σ^* states have similar mixed states.

Assume: one quark is in a *P*-state. The two others are in *S*-states.

For a decay to the ground state it is the P-state quark which couples to the photon or the outgoing meson $(\pi, \bar{K} \text{ or } \eta)$.

For example, the $\Lambda(1520)$ state is well established and is found to be:

$$|\Lambda(1520)\rangle \simeq a|^2\mathbf{1}\rangle + b|^4\mathbf{8}\rangle + c|^2\mathbf{8}\rangle$$

Different models give different a, b and c coefficients: The harmonic oscillator NRQM of Isgur and Karl:

$$a = 0.92, b = -0.04 \text{ and } c = 0.39.$$

A cloudy bag model gives:

$$a = 0.95, b = -0.09 \text{ and } c = 0.30.$$

The decay widths of the two models are:

NRQM:
$$\Gamma[\Lambda(1520) \to \Lambda \gamma] = 96 \text{ keV}, \Gamma[\Lambda(1520) \to \Sigma^0 \gamma] = 74 \text{ keV}$$

Cloudy bag:
$$\Gamma[\Lambda(1520) \to \Lambda \gamma] = 32 \text{ keV}, \Gamma[\Lambda(1520) \to \Sigma^0 \gamma] = 49 \text{ keV}$$

Comparing several different model calculations of the decay rate Γ_{γ} :

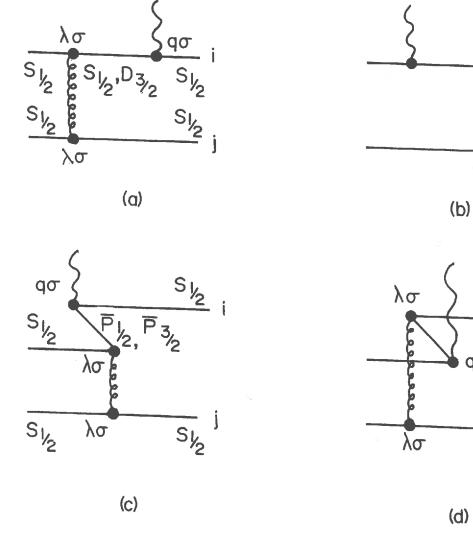
$$\Lambda(1520) \rightarrow \Lambda(1116) + \gamma$$

The configuration mixing in $\Lambda(1116)$ may change the rate by 50% or more.

A more precise determination of this decay rate is desirable.

Table 1 : The values of Γ_{γ} from various models.

Models	a	b	c	$\Lambda(1116)$	$\Gamma_{\gamma}(\text{keV})$
NRQM	0.91	0.01	0.40	$^2S_S angle$	96
NRQM $(SU(6)$ —basis)	0.91	0.01	0.40		98
χQM	0.91	0.01	-0.40	$^2S_S angle$	85
χQM	0.91	0.01	-0.40	mixed	134
NRQM (uds-basis)		_		mixed	154
MIT bag	0.86	0.34	-0.37	_	46
Chiral/Cloudy bag	0.95	0.09	-0.29	$^2S_S angle$	32
RCQM	0.91	0.01	0.40	mixed	215
Bonn — CQM	_	_		_	258



In the cloudy bag model $(m_q = 0 \text{ MeV})$

the quark P-state with j=3/2 has a lower energy than j=1/2.

The bag confinement condition introduces a spin-orbit splitting of the quark states.

Fortunately, the relativistic OGE introduces a spin-orbit force of opposite sign.

In cloudy bag model calculations the two spin-orbit contributions basically cancel.

Effectively what remains are the spin-spin and tensor interactions due to OGE and the pseudo-meson cloud.

These interactions strongly affects the decay rates of Λ^* and Σ^* states to $\bar{K}N$ and $\pi\Sigma$.

We need <u>new</u> data to test the various quark models.

Why is $\Lambda(1405)$ about 100 MeV below $\Lambda(1520)$? Assuming the Λ^* states are mainly three-quark states, quark models have serious problems generating this large spin-orbit-like mass splitting.

Dalitz and Tuan proposed in 1960 that $\Lambda(1405)$ is a K^-p bound state (a quark molecule?).

Is it a multi-quark state?

A recent very readable arXiv paper by Molina and Döring discusses the pole structure of $\Lambda(1405)$.

This paper refers to many publications (including lattice evaluations). Apart from recent measurements of the K^-p atom, most data are old.

We urgently need better data to settle this and the other issues,

SUMMARY

The lowest excited $J^- \Lambda^*$ and Σ^* mass spectrum should be completed.

A K_L^0 beam on a hydrogen target can access the Σ^* states.

 Σ^* decays to $\bar{K}N$ or $\pi\Sigma$ or both, or $\pi\Lambda$ according to theory estimates.

The reaction $\gamma + p \to K^+\Lambda^*$ can explore better the Λ^* states.

Theory needs Λ^* and Σ^* partial decay widths to make progress.