On the importance of Kpi scattering for Phenomenology

Emilie Passemar
Indiana University/Jefferson Lab.

Physics with Neutral Kaon Beam at JLab Workshop
Thomas Jefferson National Accelerator Facility
Newport News, VA, February 2, 2016

1. Introduction and Motivation
2. Test of ChPT
3. Hadron spectroscopy
4. Test of the SM and new physics
5. Conclusion and outlook
6. Introduction and Motivation

1.1 Why $\mathrm{K} \pi$ scattering is important?

- Hadron spectroscopy: determine resonances and their nature
- P-wave: $K^{*}(892), K^{*}(1410), K^{*}(1680), \ldots$
- S-wave: "K(~800)", ...
- Exotics,...
- $\pi \pi$ and $K \pi$ building blocks for hadronic physics:
- Test of Chiral Dynamics
- Extraction of fundamental parameters of the Standard Model
- Look for physics beyond the Standard Model: High precision at low energy as a key to new physics?
\square Very important when Final State Interactions at play!

1.2 Ex: $\mathrm{K} \pi$ scattering: P-wave

2. Using $\mathrm{K} \pi$ scattering to test ChPT

$K \pi$ scattering: P-wave

2.1 Chiral Symmetry

- Limit $\boldsymbol{m}_{\boldsymbol{k}} \boldsymbol{\rightarrow} \mathbf{0}$

$$
\mathcal{L}_{Q C D} \rightarrow \mathcal{L}_{Q C D}^{0}=-\frac{1}{4} G_{\mu \nu} G^{\mu \nu}+\bar{q}_{L} i \gamma^{\mu} D_{\mu} q_{L}+\bar{q}_{R} i \gamma^{\mu} D_{\mu} q_{R}, q=\left(\begin{array}{l}
u \\
d \\
s
\end{array}\right)
$$

with $\quad q_{L / R} \equiv \frac{\mathbf{1}}{\mathbf{2}}\left(\mathbf{1} \mp \gamma_{5}\right) q$
Symmetry: $\quad G \equiv \operatorname{SU}(\mathbf{3})_{L} \otimes \operatorname{SU}(\mathbf{3})_{R} \rightarrow \operatorname{SU}(\mathbf{3})_{V}$

- Chiral Perturbation Theory: dynamics of the Goldstone bosons (kaons, pions, eta)
- Goldstone bosons interact weakly at low energy and $\boldsymbol{m}_{u}, \boldsymbol{m}_{d} \ll \boldsymbol{m}_{s}<\Lambda_{Q C D}$ Expansion organized in external momenta and quark masses

Weinberg's power counting rule

$$
\mathcal{L}_{e f f}=\sum_{d \geq 2} \mathcal{L}_{d}, \mathcal{L}_{d}=\mathcal{O}\left(p^{d}\right), p \equiv\left\{q, m_{q}\right\}
$$

$$
\mathrm{p} \ll \Lambda_{H}=4 \pi F_{\pi} \sim 1 \mathrm{GeV}
$$

2.2 Chiral expansion

$\cdot \mathcal{L}_{C h P T}=\underbrace{\mathcal{L}_{2}}_{\text {LO }: \mathcal{O}\left(p^{2}\right)}+\underbrace{\mathcal{N L O}_{4}: \mathcal{O}\left(p^{4}\right)}+\underbrace{\mathcal{L}_{6}}_{\text {NNLO }}+\ldots\left(p^{\mathcal{L}_{6}}\right)$

- The structure of the lagrangian is fixed by chiral symmetry but not the coupling constants \rightarrow LECs appearing at each order
- The method has been rigorously established and can be formulated as a set of calculational rules:
LO: tree level diagrams with $\mathcal{L}_{2} \quad \mathcal{L}_{2}: \boldsymbol{F}_{0}, \boldsymbol{B}_{0}$
NLO: tree level diagrams with \mathcal{L}_{4} 1-loop diagrams with \mathcal{L}_{2}

NNLO: tree level diagrams with \mathcal{L}_{6} 2-loop diagrams with \mathcal{L}_{2}

$$
\mathcal{L}_{4}=\sum_{i=1}^{10} L_{i} O_{4}^{i}
$$

1-loop diagrams with one vertex from \mathcal{L}_{4}

- Renormalizable and unitary order by order in the expansion

2.3 ChPT in the meson sector: precision calculations

- Today's standard in the meson sector: 2-loop calculations
- Main obstacle to reaching high precision: determination of the LECs: $\mathcal{O}\left(\mathrm{p}^{6}\right)$ LECs proliferation makes the program to pin down/ estimate all of them prohibitive
- In a specific process, only a limited number of LECs appear
- The LECs calculable if QCD solvable, instead
- Determined from experimental measurement
- Estimated with models: Resonances, large N_{C}
- Computed on the lattice

2.4 Test of SU(3) ChPT

- Interesting framework to test ChPT is offered by the kaons: $\mathrm{K}_{13}, \mathrm{~K}_{14}$, $K \rightarrow 3 \pi$, etc
- A very interesting quantity is the scattering length: first term in the expansion:

$$
\left.\frac{2}{\sqrt{s}} \operatorname{Re} t_{l}^{I}(s)=\frac{1}{2 q} \sin 2 \delta_{l}^{I}(q)=q^{2 l} \underline{\left[a_{l}^{I}\right.}+b_{l}^{I} q^{2}+c_{l}^{I} q^{4}+\mathcal{O}\left(q^{6}\right)\right]
$$

- For $\pi \pi: ~ S U(2)$ ChPT very successful!

$\pi \pi$ scattering lengths

H. Leutwyler

2.4 Test of SU(3) ChPT

- Interesting framework to test ChPT is offered by the kaons: $\mathrm{K}_{13}, \mathrm{~K}_{14}$, $K \rightarrow 3 \pi$, etc
- A very interesting quantity is the scattering length: first term in the expansion:

$$
\left.\frac{2}{\sqrt{s}} \operatorname{Re} t_{l}^{I}(s)=\frac{1}{2 q} \sin 2 \delta_{l}^{I}(q)=q^{2 l} \underline{\left[a_{l}^{I}\right.}+b_{l}^{I} q^{2}+c_{l}^{I} q^{4}+\mathcal{O}\left(q^{6}\right)\right]
$$

- For $\pi \pi: ~ S U(2)$ ChPT very successful!
- What about SU(3) ChPT?

In principle slower convergence if convergence at all!

$\mathrm{K} \pi$ scattering lengths: S-wave

S-wave scattering lengths
Buettiker, Descotes-Genon, Moussallam'04

Roy-Steiner equations for $\mathrm{K} \pi$

- Unitarity effects can be calculated exactly using dispersive methods
- Unitarity, analyticity and crossing symmetry \equiv Roy-Steiner equations
- Input: Data on $\mathrm{K} \pi \rightarrow \mathrm{K} \pi$ and $\pi \pi \rightarrow \mathrm{KK}$ for $\mathrm{E} \geq 1 \mathrm{GeV}$ two subtraction constants, e.g. \boldsymbol{a}_{0}^{0} and \boldsymbol{a}_{2}^{0}
- Output: the full $\mathrm{K} \pi$ scattering amplitude below 1 GeV \Rightarrow In poor agreement with the experimental data
- Numerical solutions of the Roy-(Steiner) equations:
- $\pi \pi$: Pennington-Protopopescu, Basdevant-Froggatt-Petersen (70s)

Bern group: Ananthanarayan et al. '00, Caprini et al.'11
Orsay group: Descotes-Genon, Fuchs, Girlanda and Stern'01
Madrid-Cracow group: Garcia-Martin,et al.'11

- K π : Buettiker, Descotes-Genon, Moussallam'04
- K N: Ruiz de Elvira et al'15

$\mathrm{K} \pi$ scattering lengths: P -wave

$K \pi$ scattering lengths: \mathbf{P}-wave

Boito, Escribano \& Jamin'10

$$
\frac{2}{\sqrt{s}} \operatorname{Re} t_{l}^{I}(s)=\frac{1}{2 q} \sin 2 \delta_{l}^{I}(q)=q^{2 l}\left[a_{l}^{I}+b_{l}^{I} q^{2}+c_{l}^{I} q^{4}+\mathcal{O}\left(q^{6}\right)\right]
$$

	Tau data	ChPT $\mathcal{O}\left(p^{4}\right)$	RChPT $\mathcal{O}\left(p^{4}\right)$	ChPT $\mathcal{O}\left(p^{6}\right)$	Roy-Steiner
$m_{\pi}^{3} a_{1}^{1 / 2} \times 10$	$0.166(4)$	$0.16(3)$	$0.18(3)$	0.18	$0.19(1)$
$m_{\pi}^{5} b_{1}^{1 / 2} \times 10^{2}$	$0.258(9)$	-	-		$0.18(2)$
$m_{\pi}^{7} c_{1}^{1 / 2} \times 10^{3}$	$0.90(3)$	-	-	$0.71(11)$	

\Rightarrow Recent analysis combining K_{13}, tau and D data : $0.249 \pm 0.011 \quad$ Bernard'14
Bernard, Kaiser, Meissner'91
Bernard, Kaiser, Meissner'91
Bijnens, Dhonte, Talavera'04
Buettiker, Descotes-Genon, Moussallam'04

- Poor agreement \square need more data

3. Hadron spectroscopy

3.1 Determining of pole and width

- Once one gets Kpi scattering amplitude
\Rightarrow analytical continuation into the complex plane

Poles on the second sheet correspond to zeros on the first sheet!

Plot from M. Pennington

Dispersive analytic continuation

$\mathrm{K} \pi$ scattering lengths: P -wave

3.2 $\mathrm{K}^{*}(892)$ mass and width

$K^{*}(892)$ MASS

CHARGED ONLY, HADROPRODUCED

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	$\underline{\text { CHG }}$	COMMENT
891.66 ± 0.26 OUR AVERAGE						
892.6 ± 0.5	5840	BAUBILLIER	84B	HBC	-	$8.25 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$
888 ± 3		NAPIER	84	SPEC	+	$200 \pi^{-} p \rightarrow 2 K_{S}^{0} \mathrm{X}$
891 ± 1		NAPIER	84	SPEC	-	$200 \pi^{-} p \rightarrow 2 K_{S}^{0} \mathrm{X}$
891.7 ± 2.1	3700	BARTH	83	HBC	+	$70 K^{+} p \rightarrow K^{0} \pi^{+} \mathrm{X}$
891 ± 1	4100	TOAFF	81	HBC	-	$6.5 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$
892.8 ± 1.6		AJINENKO	80	HBC	$+$	$32 K^{+} p \rightarrow K^{0} \pi^{+} \mathrm{X}$
890.7 ± 0.9	1800	AGUILAR-.	78B	HBC	\pm	$0.76 \bar{p} p \rightarrow K^{\mp} K_{S}^{0} \pi^{ \pm}$
886.6 ± 2.4	1225	BALAND	78	HBC	\pm	$12 \bar{p} p \rightarrow(K \pi)^{ \pm} \times$
891.7 ± 0.6	6706	COOPER	78	HBC	\pm	$0.76 \bar{p} p \rightarrow(K \pi)^{ \pm} \mathrm{X}$
891.9 ± 0.7	9000	${ }^{1}$ PALER	75	HBC	-	$14.3 K^{-} p \rightarrow(K \pi)^{-}$
892.2 ± 1.5	4404	AGUILAR-..		HBC	-	$\begin{gathered} 3.9,4.6 K^{-} p \\ (K \pi)^{-} p \end{gathered}$
891 ± 2	1000	CRENNELL	69D	DBC	-	$3.9 K^{-} N \rightarrow K^{0} \pi^{-} \mathrm{X}$
890 ± 3.0	720	BARLOW	67	HBC	\pm	$1.2 \bar{p} p \rightarrow\left(K^{0} \pi\right)^{ \pm} K^{\mp}$
889 ± 3.0	600	BaRLow	67	HBC	\pm	$1.2 \bar{p} p \rightarrow\left(K^{0} \pi\right)^{ \pm} K \pi$
891 ± 2.3	620	${ }^{2}$ debaere	67B	HBC	+	$3.5 K^{+}{ }_{p} \rightarrow K^{0} \pi^{+}{ }_{p}$
891.0 ± 1.2	1700	${ }^{3}$ WOJCICKI	64	HBC	-	$1.7 \mathrm{~K}^{-} p \rightarrow \bar{K}^{0} \pi^{-}$

- - We do not use the following data for averages, fits, limits, etc. - . -

893.5 ± 1.1	27k	${ }^{4}$ ABELE	99D	CBAR \pm	$0.0 \bar{p} p \rightarrow K^{+} K^{-} \pi^{0}$
$890.4 \pm 0.2 \pm 0.5$	$80 \pm 0.8 \mathrm{k}$	${ }^{5}$ BIRD	89	LASS -	$11 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$
890.0 ± 2.3	800	2,3 CLELAND	82	SPEC +	$30 K^{+} p \rightarrow K_{S}^{0} \pi^{+} p$
896.0 ± 1.1	3200	2,3 CLELAND	82	SPEC +	$50 K^{+} p \rightarrow K_{S}^{0} \pi^{+} p$
893 ± 1	3600	2,3 CLELAND	82	SPEC	$50 K^{+} p \rightarrow K_{S}^{0} \pi^{-} p$
896.0 ± 1.9	380	DELFOSSE	81	SPEC +	$50 K^{ \pm} p \rightarrow K^{ \pm} \pi^{0} p$
886.0 ± 2.3	187	DELFOSSE	81	SPEC	$50 K^{ \pm} p \rightarrow K^{ \pm} \pi^{0} p$
894.2 ± 2.0	765	${ }^{2}$ CLARK	73	HBC	$3.13 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$
894.3 ± 1.5	1150	2,3 CLARK	73	HBC	$3.3 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$
892.0 ± 2.6	341	${ }^{2}$ SCHWEING.		HBC	$5.5 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$

CHARGED ONLY, PRODUCED IN τ LEPTON DECAYS

$\frac{\operatorname{VALUE}(\mathrm{MeV})}{895.47 \pm \mathbf{0 . 2 0} \pm \mathbf{0 . 7 4}} \frac{\text { EVTS }}{53 \mathrm{k}} \quad 6 \frac{\text { DOCUMENT ID }}{{ }^{\text {EPIFANOV }} 07} \frac{\text { TECN }}{\text { BELL }} \frac{\text { COMMENT }}{\tau^{-} \rightarrow K_{S}^{0} \pi^{-} \nu_{\tau}}$

- - We do not use the following data for averages, fits, limits, etc.
892.0 ± 0.5
892.0 ± 0.9
895.3 ± 0.2
896.4 ± 0.9
895 ± 2

	${ }^{7}$ BOITO	10	RVUE		$K_{S}^{0} \pi^{-} \nu_{\tau}$
	8,9 BOITO	09	RVUE		$K_{S}^{0} \pi^{-} \nu_{\tau}$
	8,10 JAMIN	08	RVUE		$K_{S}^{0} \pi^{-} \nu_{\tau}$
11970	BONVICINI	02	CLEO		$K^{-} \pi^{0} \nu_{\tau}$
	12 barate	99R	ALEP		$K^{-} \pi^{0} \nu^{\prime}$

NEUTRAL ONLY

VALUE (MeV)	EVTS	DOCUMENT ID	TECN COMMENT

$895.7 \pm 0.2 \pm 0.3 \quad 141 \mathrm{k} \quad 14$ BONVICINI 08 A CLEO $\mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \pi^{+} \pi^{+}$
$895.41 \pm 0.322_{-0.43}^{+0.35} \quad 18 \mathrm{k} \quad{ }^{15}$ LINK $\quad 05 \mathrm{~F}$ FOCS $D^{+} \rightarrow K^{-} \pi^{+} \mu^{+} \nu_{\mu}$
$896 \pm 2 \quad$ BARBERIS 98E OMEG $450 \mathrm{pp} \rightarrow p_{f} p_{s} K^{*} \bar{K}^{*}$
$895.9 \pm 0.5 \pm 0.2 \quad$ ASTON $\quad 88$ LASS $11 K^{-} p \rightarrow K^{-} \pi^{+} n$

3.2 $\mathrm{K}^{*}(892)$ mass and width

$K^{*}(892)$ MASS

CHARGED ONLY, HADROPRODUCED

$\frac{\text { VALC }}{}$

892.0 ± 0.5	5040	BAUBILLIER 84B		HBC	-	$8.25 K^{-} p \rightarrow \bar{K}^{0} \sim p$
888 ± 3		NAPIER	84	SPEC	$+$	$200 \pi^{-} p \rightarrow 2 K_{S}^{0}$
891 ± 1		NAPIER	84	SPEC	-	$200 \pi^{-} p \rightarrow 2 K_{S}^{0} \mathrm{X}$
891.7 ± 2.1	3700	BARTH	83	HBC	+	$70 K^{+} p \rightarrow K^{0} \pi^{+} \mathrm{X}$
891 ± 1	4100	TOAFF	81	HBC	-	$6.5 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$
892.8 ± 1.6		AJINENKO	80	HBC	+	$32 K^{+} p \rightarrow K^{0} \pi^{+} \mathrm{X}$
890.7 ± 0.9	1800	AGUILAR-...	78B	HBC	\pm	$0.76 \bar{p} p \rightarrow K^{\mp} K_{S}^{0} \pi^{ \pm}$
886.6 ± 2.4	1225	BALAND	78	HBC	\pm	$12 \bar{p} p \rightarrow(K \pi)^{ \pm} \mathrm{X}$
891.7 ± 0.6	6706	COOPER	78	HBC	\pm	$0.76 \bar{p} p \rightarrow(K \pi)^{ \pm} \mathrm{X}$
891.9 ± 0.7	9000	1 PALER	75	HBC	-	$\underset{X}{14.3 K^{-} p \rightarrow(K \pi)^{-}}$
892.2 ± 1.5	4404	AGUILAR-.	71B	HBC	-	$\begin{gathered} \text { 3.9,4.6 K- } p \rightarrow \\ (K \pi)^{-} p \end{gathered}$
891 ± 2	1000	CRENNELL	69D	DBC	-	$3.9 K^{-} N \rightarrow K^{0} \pi^{-} \mathrm{X}$
890 ± 3.0	720	BARLOW	67	HBC	\pm	$1.2 \bar{p} p \rightarrow\left(K^{0} \pi\right)^{ \pm} K^{\mp}$
889 ± 3.0	600	BARLOW	67	HBC	\pm	$1.2 \bar{p} p \rightarrow\left(K^{0} \pi\right)^{ \pm}$
891 ± 2.3	620	2 DEBAERE	67B	HBC	+	$3.5 K^{+} p \rightarrow K^{0} \pi^{+} p$
891.0 ± 1.2	1700	3 WOJCICKI	64	HBC	-	$1.7 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$

- - We do not use the following data for averages, fits, limits, etc

893.5 ± 1.1	27k	${ }^{4}$ ABELE	99D	CBAR \pm	$0.0 \bar{p} p \rightarrow K^{+} K^{-} \pi^{0}$
$890.4 \pm 0.2 \pm 0.5$	$80 \pm 0.8 \mathrm{k}$	${ }^{5}$ BIRD	89	LASS	$11 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$
890.0 ± 2.3	800	2,3 CLELAND	82	SPEC	$30 K^{+} p \rightarrow K_{S}^{0} \pi^{+} p$
896.0 ± 1.1	3200	2,3 CLELAND	82	SPEC +	$50 K^{+}{ }_{p} \rightarrow K_{S}^{0} \pi^{+}{ }_{p}$
893 ± 1	3600	2,3 CLELAND	82	SPEC	$50 K^{+} p \rightarrow K_{S}^{0} \pi^{-} p$
896.0 ± 1.9	380	DELFOSSE	81	SPEC	$50 K^{ \pm} p \rightarrow K^{ \pm} \pi^{0} p$
886.0 ± 2.3	187	DELFOSSE	81	SPEC	$50 K^{ \pm} p \rightarrow K^{ \pm} \pi^{0}{ }_{p}$
894.2 ± 2.0	765	${ }^{2}$ CLARK	73	HBC	$3.13 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$
894.3 ± 1.5	1150	2,3 CLARK	73	HBC	$3.3 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$
892.0 ± 2.6	341	${ }^{2}$ SCHWEIN		HBC	$5.5 K^{-} p \rightarrow \bar{K}^{0} \pi^{-} p$

CHARGED ONLY, PRODUCED IN τ LEPTON DECAYS

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT
$895.47 \pm 0.20 \pm 0.74$ 53k 6^{6} EPIFANOV 07 BELL $\tau^{-} \rightarrow K_{S}^{0} \pi^{-} \nu_{\tau}$

- - We do not use the following data for averages, fits, limits, etc.
$892.0 \pm 0.5 \quad 7$ BOITO
$892.0 \pm 0.9 \quad 8,9$ BOITO
$895.3 \pm 0.2 \quad 8,10$ JAMIN
$896.4 \pm 0.9 \quad 11970$
895 ± 2

NEUTRAL ONLY

895.81 ± 0.19 OUR AVERAGE \quad tror includes scale factor of 1.4. See the ideogram below.
$895.7 \pm 0.2 \pm 0.3 \quad 141 \mathrm{k} \quad{ }^{14}$ BONVICINI 08 A CLEO $\quad D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$
$895.41 \pm 0.322_{-0.43}^{+0.35} \quad 18 \mathrm{k} \quad{ }^{15}$ LINK $\quad 051$ FOCS $D^{+} \rightarrow K^{-} \pi^{+} \mu^{+} \nu_{\mu}$
$896 \pm 2 \quad$ BARBERIS 98E OMEG $450 \mathrm{pp} \rightarrow p_{f} p_{s} K^{*} \bar{K}^{*}$
$895.9 \pm 0.5 \pm 0.2 \quad$ ASTON $\quad 88$ LASS $11 K^{-} p \rightarrow K^{-} \pi^{+} n$

3.2 K*(892) mass and width

Mass of K* (892) [MeV]

3.2 K*(892) mass and width

Decay width of K^{*} (892) [MeV]

3.3 Карра(800)

- The results coming from Roy-Steiner and data at higher energy not in agreement with low energy experimental data \square need improvement! Problem: no other precise data

3.3 Карра(800)

- Inputs for S wave in Roy-Steiner analysis from LASS

Buettiker, Descotes-Genon, Moussallam’04

3.3 Карра(800)

- The results coming from Roy-Steiner and data at higher energy not in agreement with low energy experimental data \square need improvement!

4. Test sof the SM and new physics

$\mathrm{K} \pi$ scattering lengths: P -wave

4.1 Determination of fundamental parameters: $\mathrm{V}_{\text {us }}$

- Master formula for $\mathrm{K} \rightarrow \pi / \mathrm{V}_{\mathrm{i}}$:

$$
\Gamma(K \rightarrow \pi l \nu[\gamma])=\frac{G_{F}^{2} m_{K}^{5}}{192 \pi^{3}} C_{K}^{2} S_{E W}^{K}\left|V_{u s}\right|^{2}\left|f_{+}^{K^{0} \pi^{-}}(0)\right|^{2} I_{K}^{l}\left(1+\delta_{\mathrm{EM}}^{K l}+\delta_{\mathrm{SU}(2)}^{K \pi}\right)^{2}
$$

4.1 Determination of fundamental parameters: $\mathrm{V}_{\text {us }}$

- Master formula for $\mathrm{K} \rightarrow \pi / \mathrm{V}_{\mathrm{i}}$:

$$
\Gamma(K \rightarrow \pi l v[\gamma])=\frac{G_{F}^{2} \boldsymbol{m}_{K}^{5}}{192 \pi^{3}} C_{K}^{2} S_{E}^{K}\left|V_{u s}\right|^{2}\left|f_{+}^{K^{0} \pi^{-}}(0)\right|^{2} I_{K}^{l}\left(1+\delta_{\mathrm{EM}}^{K l}+\delta_{\mathrm{SU}(2)}^{K \pi}\right)^{2}
$$

$$
\left.\left\langle\pi\left(p_{\pi}\right)\right| \overline{\mathbf{s}} \gamma_{\mu} \mathbf{u}\left|\mathbf{K}\left(\mathbf{p}_{\mathrm{K}}\right)\right\rangle=\left[\left(p_{K}+p_{\pi}\right)_{\mu}-\frac{\Delta_{K \pi}}{t}\left(p_{K}-p_{\pi}\right)_{\mu}\right] f_{+}(t)+\frac{\Delta_{K \pi}}{t}\left(p_{K}-p_{\pi}\right)_{\mu} f_{0}(t)\right]
$$

Dispersive representation for the form factors

Bernard, Oertel, E.P., Stern’06, ‘09

- Omnès representation:

$$
\square \bar{f}_{+, 0}(s)=\exp \left[\frac{s}{\pi} \int_{s_{t h}}^{\infty} \frac{d s^{\prime}}{s^{\prime}} \frac{\phi_{+, 0}\left(s^{\prime}\right)}{s^{\prime}-s-i \varepsilon}\right]
$$

$\phi_{+, 0}(\mathrm{~s})$: phase of the form factor

$$
\begin{aligned}
& s<s_{\text {in }}: \phi_{+, 0}(s)=\delta_{K \pi}(s) \\
& \\
& K \Pi \text { KT scattering phase } \\
& s \geq s_{\text {in }}: \phi_{+, 0}(s) \\
& \square \phi_{+, 0}(s)=\phi_{+, \text {as }}(s)=\pi \pm \pi\left(\bar{f}_{+, 0}(s) \rightarrow 1 / s\right)
\end{aligned}
$$

[Brodsky\&Lepage]

- Subtract dispersion relation to weaken the high energy contribution of the phase. Improve the convergence but sum rules to be satisfied.

Global fit to $\mathrm{V}_{\mathrm{us}} \& \mathrm{~V}_{\mathrm{ud}}$

Updated by Moulson@CKM2014

$$
\begin{gathered}
V_{u d}=0.97416(21) \\
V_{u s}=0.2248(7) \\
\chi^{2} / \mathrm{ndf}=1.16 / 1(28.1 \%) \\
\Delta_{\text {CKM }}=-0.0005(5) \\
-1.0 \sigma
\end{gathered}
$$

4.2 FSI in the quest for New Physics

- Ex: CP violating asymmetries: $\mathrm{B} \rightarrow K^{*} \|$

Matthias et al'12
Camalich\&Jaeger'11
Doering, Meissner, Wang'13 etc..

LHCb at EPS 13 : 2.9σ discrepancy in $P_{2}, 4.0 \sigma$ in P_{5}^{\prime} !
[blue: SM unbinned, purple: SM binned, crosses: LHCb]

4.2 FSI in the quest for New Physics

- Ex: CP violation in D $\rightarrow \mathrm{K} \pi \pi$

4.2 FSI in the quest for New Physics

- Ex: CP violation in D \rightarrow Kாт

Full set of equations

$$
\begin{aligned}
& S_{\pi \pi}^{2}(u)=\Omega_{0}^{2}(u)\left\{u^{2} \int_{4 M_{\pi}^{2}}^{\infty} \frac{\hat{s}_{\pi \pi}^{2}\left(u^{\prime}\right)}{u^{\prime 2}\left(u^{\prime}-u\right)} d \mu_{0}^{2}\right\} \\
& P_{\pi \pi}^{1}(u)=\Omega_{1}^{1}(u)\left\{c_{0}+c_{1} u+u^{2} \int_{4 M_{\pi}^{2}}^{\infty} \frac{\hat{P}_{\pi \pi}^{1}\left(u^{\prime}\right)}{u^{\prime 2}\left(u^{\prime}-u\right)} d \mu_{1}^{1}\right\} \\
& s_{\pi K}^{1 / 2}(s)=\Omega_{0}^{1 / 2}(s)\left\{c_{2}+c_{3} s+c_{4} s^{2}+c_{5} s^{3}+s^{4} \int_{\left(M_{K}+M_{\pi}\right)^{2}}^{\infty} \frac{\hat{s}_{\pi K}^{1 / 2}\left(s^{\prime}\right)}{s^{\prime 4}\left(s^{\prime}-s\right)} d \mu_{0}^{1 / 2}\right\} \\
& s_{\pi K}^{3 / 2}(s)=\Omega_{0}^{3 / 2}(s)\left\{s^{2} \int_{\left(M_{K}+M_{\pi}\right)^{2}}^{\infty} \frac{\hat{s}_{\pi K}^{3 / 2}\left(s^{\prime}\right)}{s^{\prime 2}\left(s^{\prime}-s\right)} d \mu_{0}^{3 / 2}\right\} \\
& P_{\pi K}^{1 / 2}(s)=\Omega_{1}^{1 / 2}(s)\left\{c_{6}+s \int_{\left(M_{K}+M_{\pi}\right)^{2}}^{\infty} \frac{\hat{P}_{\pi K}^{1 / 2}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)} d \mu_{1}^{1 / 2}\right\} \\
& D_{\pi K}^{1 / 2}(s)=\Omega_{2}^{1 / 2}(s)\left\{\int_{\left(M_{K}+M_{\pi}\right)^{2}}^{\infty} \frac{\hat{D}_{\pi K}^{1 / 2}\left(s^{\prime}\right)}{\left(s^{\prime}-s\right)} d \mu_{2}^{1 / 2}\right\}
\end{aligned}
$$

4.2 FSI in the quest for New Physics

- Ex: CP violation in $\mathrm{D} \rightarrow \mathrm{K} \pi \pi$

Dalitz plot

CLEO'08

- full fit: $\quad \chi^{2} /$ ndof ≈ 1.1

4.2 FSI in the quest for New Physics

- Ex: CP violation in D \rightarrow Kாт
fit fractions

	Full fit
$S_{\pi \pi}^{2}$	$(8 \pm 3) \%$
$S_{\pi K}^{1 / 2}$	$(72 \pm 12) \%$
$P_{\pi K}^{1 / 2}$	$(10 \pm 2) \%$
$S_{\pi K}^{3 / 2}$	$(16 \pm 3) \%$
$D_{\pi K}^{1 / 2}$	$(0.15 \pm 0.1) \%$
Σ	$(106 \pm 20) \%$

- full fit: $\quad \chi^{2} /$ ndof ≈ 1.1
- fit fractions: hierachy of partial-wave amplitudes compare to previous analyses

5. Conclusion and Outlook

Conclusion and Outlook

- Determining $\mathrm{K} \pi$ scattering reliably very important:
- Low energy: test of Chiral Dynamics
- Intermediate energy: Determination of Resonance parameters
- Very important to help taking into account final state interactions and hunting for new physics $\Rightarrow \mathrm{CP}$ violation in heavy meson decays
- Hadronic data on which most of the analyses rely not in good agreement with more recent data coming mainly from tau decays
\Rightarrow worth remeasuring it.
- Possibility at Jlab with KL?
\Rightarrow Major advantage: pure $\mathrm{I}=1 / 2$ measurement

6. Back-up

2.5 Determination of some low energy constants

	πK Roy-Steiner	πK sum-rules	$K l_{4}, O\left(p^{4}\right)$	$K l_{4}, O\left(p^{6}\right)$
$10^{3} L_{1}$	1.05 ± 0.12	0.84 ± 0.15	0.46 ± 0.24	0.53 ± 0.25
$10^{3} L_{2}$	1.32 ± 0.03	1.36 ± 0.13	1.49 ± 0.23	0.71 ± 0.27
$10^{3} L_{3}$	-4.53 ± 0.14	-3.65 ± 0.45	-3.18 ± 0.85	-2.72 ± 1.12
$10^{3} L_{4}$	0.53 ± 0.39	0.22 ± 0.30		-0.2 ± 0.9

- Significant violation of OZI rule in the scalar sector
\Rightarrow Large values for the condensates!

3.2 Карра(800)

- Inputs for S wave in Roy-Steiner analysis from LASS

Buettiker, Descotes-Genon, Moussallam’04

3.2 Карра(800)

- The results coming from Roy-Steiner and data at higher energy not in agreement with low energy experimental data \square need improvement!

P wave

Inputs:
Buettiker, Descotes-Genon, Moussallam'04

Buettiker, Descotes-Genon, Moussallam'04

P wave

Buettiker, Descotes-Genon, Moussallam'04
P-wave

