

On the importance of Kpi scattering for Phenomenology

Emilie Passemar Indiana University/Jefferson Lab.

Physics with Neutral Kaon Beam at JLab Workshop Thomas Jefferson National Accelerator Facility Newport News, VA, February 2, 2016

- 1. Introduction and Motivation
- 2. Test of ChPT
- 3. Hadron spectroscopy
- 4. Test of the SM and new physics
- 5. Conclusion and outlook

1. Introduction and Motivation

1.1 Why $K\pi$ scattering is important?

- Hadron spectroscopy: determine resonances and their nature
 - P-wave: K*(892), K*(1410), K*(1680), ...
 - S-wave: "K(~800)", ...
 - Exotics,...
- $\pi\pi$ and $K\pi$ building blocks for hadronic physics:
 - Test of Chiral Dynamics
 - Extraction of fundamental parameters of the Standard Model
 - Look for physics beyond the Standard Model: High precision at low energy as a key to new physics?

Very important when *Final State Interactions* at play!

1.2 Ex: $K\pi$ scattering: P-wave

2. Using $K\pi$ scattering to test ChPT

$K\pi$ scattering: P-wave

• Limit $m_k \rightarrow 0$

$$\mathcal{L}_{QCD} \rightarrow \left[\mathcal{L}_{QCD}^{0} = -\frac{1}{4} G_{\mu\nu} G^{\mu\nu} + \overline{q}_{L} i \gamma^{\mu} D_{\mu} q_{L} + \overline{q}_{R} i \gamma^{\mu} D_{\mu} q_{R} \right], q = \begin{pmatrix} u \\ d \\ s \end{pmatrix}$$
with $q_{L/R} \equiv \frac{1}{2} (1 \mp \gamma_{5}) q$

Symmetry:
$$G \equiv SU(3)_L \otimes SU(3)_R \rightarrow SU(3)_V$$

- Chiral Perturbation Theory: dynamics of the Goldstone bosons (kaons, pions, eta)
- Goldstone bosons interact weakly at low energy and $m_u, m_d \ll m_s < \Lambda_{QCD}$ Expansion organized in external momenta and quark masses

Weinberg's power counting rule

$$\mathcal{L}_{eff} = \sum_{d \ge 2} \mathcal{L}_{d} , \mathcal{L}_{d} = \mathcal{O}(p^{d}), p \equiv \{q, m_{q}\}$$

$$p \ll \Lambda_H = 4\pi F_\pi \sim 1 \text{ GeV}$$

2.2 Chiral expansion

•
$$\mathcal{L}_{ChPT} = \underbrace{\mathcal{L}_{2}}_{\mathsf{C}} + \underbrace{\mathcal{L}_{4}}_{\mathsf{T}} + \underbrace{\mathcal{L}_{6}}_{\mathsf{T}} + \ldots$$

LO: $\mathcal{O}(p^{2})$ NLO: $\mathcal{O}(p^{4})$ NNLO: $\mathcal{O}(p^{6})$

- The structure of the lagrangian is fixed by chiral symmetry but not the coupling constants → LECs appearing at each order
- The method has been rigorously established and can be formulated as a set of calculational rules:

 $\mathcal{L}_4 = \sum_{i=1}^{10} \underline{L}_i O_4^i,$

 $\mathcal{L}_6 = \sum_{i=1}^{90} \frac{C_i}{C_i} O_6^i$

- LO: tree level diagrams with \mathcal{L}_2 $\mathcal{L}_2: F_0, B_0$
- NLO: tree level diagrams with \mathcal{L}_4 1-loop diagrams with \mathcal{L}_2
- NNLO: tree level diagrams with \mathcal{L}_{6} $\mathcal{L}_{6} =$ 2-loop diagrams with \mathcal{L}_{2} 1-loop diagrams with one vertex from \mathcal{L}_{4}
- Renormalizable and unitary order by order in the expansion

2.3 ChPT in the meson sector: precision calculations

- Today's standard in the meson sector: 2-loop calculations
- Main obstacle to reaching high precision: determination of the LECs: O(p⁶) LECs proliferation makes the program to pin down/ estimate all of them prohibitive
- In a specific process, only a limited number of LECs appear
- The LECs calculable if QCD solvable, instead
 - Determined from experimental measurement
 - Estimated with models: Resonances, large N_C
 - Computed on the lattice

2.4 Test of SU(3) ChPT

- Interesting framework to test ChPT is offered by the kaons: $K_{I3},\,K_{I4},\,K\to 3\pi,\,etc$
- A very interesting quantity is the scattering length: first term in the expansion:

$$\frac{2}{\sqrt{s}} \operatorname{Re} t_l^I(s) = \frac{1}{2q} \sin 2\delta_l^I(q) = q^{2l} \left[a_l^I + b_l^I q^2 + c_l^I q^4 + \mathcal{O}(q^6) \right]$$

• For $\pi\pi$: SU(2) ChPT very successful!

$\pi\pi$ scattering lengths

H. Leutwyler

Emilie Passemar

2.4 Test of SU(3) ChPT

- Interesting framework to test ChPT is offered by the kaons: $K_{I3},\,K_{I4},\,K\to 3\pi,\,etc$
- A very interesting quantity is the scattering length: first term in the expansion:

$$\frac{2}{\sqrt{s}} \operatorname{Re} t_l^I(s) = \frac{1}{2q} \sin 2\delta_l^I(q) = q^{2l} \left[a_l^I + b_l^I q^2 + c_l^I q^4 + \mathcal{O}(q^6) \right]$$

- For $\pi\pi$: SU(2) ChPT very successful!
- What about SU(3) ChPT? In principle slower convergence if convergence at all!

$K\pi$ scattering lengths: S-wave

Emilie Passemar

Roy-Steiner equations for $K\pi$

- Unitarity effects can be calculated *exactly* using dispersive methods
- Unitarity, analyticity and crossing symmetry = *Roy-Steiner equations*
- Input: Data on $K\pi \rightarrow K\pi$ and $\pi\pi \rightarrow KK$ for $E \ge 1$ GeV two subtraction constants, e.g. a_0^0 and a_2^0
- Output: the full Kπ scattering amplitude below 1 GeV
 In *poor* agreement with the experimental data
- Numerical solutions of the Roy-(Steiner) equations:
 - ππ: Pennington-Protopopescu, Basdevant-Froggatt-Petersen (70s) Bern group: Ananthanarayan et al.'00, Caprini et al.'11 Orsay group: Descotes-Genon, Fuchs, Girlanda and Stern'01 Madrid-Cracow group: Garcia-Martin, et al.'11
 - Kπ: Buettiker, Descotes-Genon, Moussallam'04
 - KN: Ruiz de Elvira et al'15

$K\pi$ scattering lengths: P-wave

Boito, Escribano & Jamin'10

$$\frac{2}{\sqrt{s}} \operatorname{Re} t_l^I(s) = \frac{1}{2q} \sin 2\delta_l^I(q) = q^{2l} \left[a_l^I + b_l^I q^2 + c_l^I q^4 + \mathcal{O}(q^6) \right]$$

	Tau data	ChPT $\mathcal{O}(p^4)$	RChPT $\mathcal{O}(p^4)$	ChPT $\mathcal{O}(p^6)$	Roy-Steiner
$m_{\pi}^3 a_1^{1/2} \times 10$		0.16(3)	0.18(3)	0.18	0.19(1)
$m_\pi^5 b_1^{1/2} imes 10^2$	0.258(9)	-	-		0.18(2)
$m_\pi^7 c_1^{1/2} imes 10^3$	0.90(3)	-	-		0.71(11)
					· /

·

Recent analysis combining K_{I3} , tau and D data : 0.249 ± 0.011 Bernard'14

Bernard, Kaiser, Meissner'91

Bernard, Kaiser, Meissner'91

Bijnens, Dhonte, Talavera'04

Buettiker, Descotes-Genon, Moussallam'04

3. Hadron spectroscopy

3.1 Determining of pole and width

• Once one gets Kpi scattering amplitude

→ analytical continuation into the complex plane

Poles on the second sheet correspond to zeros on the first sheet!

Plot from M. Pennington

Dispersive analytic continuation

$K\pi$ scattering lengths: P-wave

K*(892) MASS

CHARGED ONLY, HADROPRODUCED

VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT							
EVTS		1	TECN	CHG	COMMENT		
AVERAGE							
5840	BAUBILLIER	8 4B	HBC	_	8.25 $K^- p \rightarrow \overline{K}^0 \pi^- p$		
	NAPIER	84	SPEC	+	$200 \ \pi^- p \rightarrow 2K_S^0 X$		
	NAPIER	84	SPEC	_	$200 \ \pi^- p \rightarrow 2K_S^{\bar{0}} X$		
3700	BARTH	83	HBC	+	70 $K^+ p \rightarrow K^0 \pi^+ X$		
4100	TOAFF	81	HBC	_	$6.5 \ K^- p \rightarrow \ \overline{K}^0 \pi^- p$		
	AJINENKO	80	HBC	+	$32 \ K^+ p \rightarrow \ K^0 \pi^+ X$		
1800	AGUILAR	78 B	HBC	±	$0.76 \ \overline{p} p \rightarrow \ K^{\mp} K^{0}_{S} \pi^{\pm}$		
1225	BALAND	78	HBC	±	$12 \overline{p} p \rightarrow (K\pi)^{\pm} X$		
6706	COOPER	78	HBC	±	0.76 $\overline{p}p \rightarrow (K\pi)^{\pm} X$		
9000	¹ PALER	75	HBC	_	$\begin{array}{ccc} 14.3 \ {\sf K}^{-} \ {\sf p} \rightarrow \ ({\sf K} \pi)^{-} \\ {\sf X} \end{array}$		
4404	AGUILAR	71B	HBC	_	3.9,4.6 $K^- p \rightarrow$		
					$(K\pi)^- p$		
1000	CRENNELL	69 D	DBC	_	$3.9 \ K^- N \rightarrow \ K^0 \pi^- X$		
720	BARLOW	67	HBC	±	$1.2 \ \overline{p} p \rightarrow (K^0 \pi)^{\pm} K^{\mp}$		
600	BARLOW	67	HBC	±	$1.2 \ \overline{p} p \rightarrow (K^0 \pi)^{\pm} K \pi$		
620	² DEBAERE	67 B	HBC	+	$3.5 \ K^+ p \rightarrow \ K^0 \pi^+ p$		
1700	³ WOJCICKI	64	HBC	-	1.7 $K^- p \rightarrow \overline{K}^0 \pi^- p$		
se the follo	wing data for av	erage	s, fits, l	imits,	etc. • • •		
27k	⁴ ABELE	99 D	CBAR	±	$0.0 \ \overline{p} p \rightarrow \ K^+ K^- \pi^0$		
$80\!\pm\!0.8k$	⁵ BIRD	89	LASS	_	$11 \ K^{-} p \rightarrow \overline{K}^{0} \pi^{-} p$		
800 2	^{2,3} CLELAND	82	SPEC	+	$30 \ K^+ p \rightarrow \ K^0_S \pi^+ p$		
3200 2	^{2,3} CLELAND	82	SPEC	+	50 $K^+ p \rightarrow K_S^{0} \pi^+ p$		
3600 ²	^{2,3} CLELAND	82	SPEC	_	$50 \ K^+ p \rightarrow \ K^{\bar{0}}_S \pi^- p$		
380	DELFOSSE	81			$50 \ K^{\pm} p \rightarrow \ K^{\pm} \pi^0 p$		
187	DELFOSSE	81	SPEC	_	$50 \ K^{\pm} p \rightarrow \ K^{\pm} \pi^{0} p$		
765		73	HBC	_	$3.13 \ K^- p \rightarrow \ \overline{K}^0 \pi^- p$		
1150 ²		73	HBC	_	3.3 $K^- p \rightarrow \overline{K}^0 \pi^- p$		
341	² SCHWEING	.68	HBC	_	5.5 $K^- p \rightarrow \overline{K}^0 \pi^- p$		
	EVTS AVERAGE 5840 3700 4100 1800 1225 6706 9000 4404 1000 720 600 620 1700 use the follo 27k 80±0.8k 800 2 3200 2 3600 2 380 187 765 1150 2	EVTSDOCUMENT ID $aVERAGE$ BAUBILLIER NAPIER 5840 BAUBILLIER NAPIER 3700 BARTH 4100 TOAFF AJINENKO 4100 TOAFF AJINENKO 1800 AGUILAR 1225 BALAND 6706 COOPER 9000 9000 PALER 4404 AGUILAR 1000 CRENNELL PALER 4404 AGUILAR 1000 CRENNELL PALER 1000 CRENNELL PALER 1000 BARLOW 600 BARLOW 620 2DEBAERE 17003WOJCICKI use the following data for av $27k$ $27k$ 4ABELE 800 2,3 $2,3$ CLELAND 3600 2,3 $2,3$ CLELAND 3600 2,3CLELAND380 380 DELFOSSE 187 DELFOSSE 765 2 $2,3$ CLARK 1150 2,3CLARK	EVTS DOCUMENT ID 5840 BAUBILLIER 84B 5840 BAUBILLIER 84 NAPIER 84 3700 BARTH 83 4100 TOAFF 81 AJINENKO 80 1800 AGUILAR 78B 1225 BALAND 78 6706 COOPER 78 9000 1 PALER 75 4404 AGUILAR 71B 1000 CRENNELL 69D 720 BARLOW 67 600 2 DEBAERE 67B 1700 3 WOJCICKI 64 Ise the following data for average 27k 4 ABELE 99D 80±0.2.3 CLELAND 82 3600 2.3 CLELAND 82	EVTS DOCUMENT ID TECN 5840 BAUBILLIER 84B HBC 5840 BAUBILLIER 84B SPEC NAPIER 84 SPEC 3700 BARTH 83 HBC 4100 TOAFF 81 HBC 4100 TOAFF 81 HBC 1800 AGUILAR 78B HBC 1225 BALAND 78 HBC 6706 COOPER 78 HBC 9000 PALER 75 HBC 1000 CRENNELL 69D DBC 720 BARLOW 67 HBC 600 BARLOW 67 HBC 1700 WOJCICKI 64 HBC 1700 WOJCICKI 64 HBC 127k 4 ABELE 99D CBAR 80±0.8k 5 BIRD 89 LASS 800 2,3 CLELAND 82 SPEC	EVTS DOCUMENT ID TECN CHG 5840 BAUBILLIER 84B HBC - NAPIER 84 SPEC + NAPIER 84 SPEC - 3700 BARTH 83 HBC + 4100 TOAFF 81 HBC - AJINENKO 80 HBC + 1800 AGUILAR 78B HBC ± 6706 COOPER 78 HBC ± 9000 1 PALER 75 HBC - 4404 AGUILAR 71B HBC - 4404 AGUILAR 71B HBC - 1000 CRENNELL 69D DEC - 720 BARLOW 67 HBC ± 620 2 DEBAERE 67B HBC + 1700 3 WOJCICKI 64 HBC - ise the follow		

PDG'15

CHARGED ONLY, PRODUCED IN τ LEPTON DECAYS VALUE (MeV) TECN COMMENT EVTS DOCUMENT ID ⁶ EPIFANOV 07 BELL $\tau^- \rightarrow K^0_S \pi^- \nu_{\tau}$ 53k $895.47 \pm 0.20 \pm 0.74$ • • • We do not use the following data for averages, fits, limits, etc. • • • ⁷ BOITO 10 RVUE $\tau^- \rightarrow \kappa^0_S \pi^- \nu_{\tau}$ 892.0 ± 0.5 ^{8,9} BOITO ^{8,10} JAMIN ^{8,10} JAMIN ¹⁰ RVUE $\tau^- \rightarrow K_S^0 \pi^- \nu_{\tau}$ 892.0 ±0.9 ^{8,10} JAMIN 895.3 ±0.2 11970 ¹¹BONVICINI 02 CLEO $\tau^- \rightarrow \kappa^- \pi^0 \nu_{\tau}$ 896.4 ±0.9 ¹² BARATE 99R ALEP $\tau^- \rightarrow K^- \pi^0 \nu_{\tau}$ 895 ±2

NEUTRAL ONLY

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
895.81±0.19 OUR A	WERAGE	Error includes so	cale fa	octor of 1	.4. See the ideogram below.
895.4 $\pm 0.2 \pm 0.2$	243k	¹³ DEL-AMO-SA.	.11	BABR	$D^+ \rightarrow K^- \pi^+ e^+ \nu_e$
$895.7\ \pm 0.2\ \pm 0.3$	141k	¹⁴ BONVICINI	08A	CLEO	$D^+ \rightarrow K^- \pi^+ \pi^+$
$895.41 {\pm} 0.32 {+} 0.35 {-} 0.43$	18k	¹⁵ LINK	051	FOCS	$D^+ \rightarrow K^- \pi^+ \mu^+ \nu_\mu$
896 ±2		BARBERIS	98E	OMEG	450 $pp \rightarrow p_f p_s K^* \overline{K}^*$
$895.9\ \pm 0.5\ \pm 0.2$		ASTON	88	LASS	$11 \ K^- p \rightarrow \ K^- \pi^+ n$

Emilie Passemar

3.2 K*(892) mass and width

K*(892) MASS

PDG'15

WALUE (Mov) EVTS DOCUMENT 891.66±0.26 OUR AVERAGE	<u>T ID TECN CHG</u> COMMENT	CHARGED ONLY, PRODUCED IN τ LEPTON DECAYS VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT				
892.0 ±0.5 5840 BAUBILLII	IER 84B HBC – 8.25 $K^- p \rightarrow \overline{K}^0$					
888 ±3 NAPIER	84 SPEC + 200 $\pi^- p \rightarrow 2K_S^0$	$\chi \qquad \text{O95.47 \pm 0.20 \pm 0.74} \qquad \text{Solv} \qquad \text{epifanov} \qquad \text{07 Bell} \tau \rightarrow \kappa_S^* \pi \nu_\tau$				
891 ±1 NAPIER	84 SPEC – 200 $\pi^- p \rightarrow 2K_S^{0}$	• • • We do not use the following data for averages, fits, limits, etc. • • •				
891.7 ±2.1 3700 BARTH	83 HBC + 70 $K^+ p \rightarrow K^0 \pi^-$					
891 ± 1 4100 TOAFF	81 HBC – 6.5 $K^- p \rightarrow \overline{K}^0 \pi$	$p_{p} = \frac{3}{2} p_{0} $				
892.8 ±1.6 AJINENKO		^				
890.7 ±0.9 1800 AGUILAR-	$P-\dots 78B \text{ HBC } \pm 0.76 \ \overline{p} p \rightarrow K^{\mp} K$	$k_s^{\pi\pm}$ 895.3 ±0.2 k_s^{10} JAMIN 08 RVUE $\tau^- \rightarrow \kappa_s^{\bar{0}} \pi^- \nu_{\tau}$				
886.6 ±2.4 1225 BALAND						
891.7 ±0.6 6706 COOPER		12 papate on the $(-0)'$				
891.9 \pm 0.7 9000 ¹ PALER	75 HBC – 14.3 $K^- p \rightarrow (K \eta X)$) ⁻ 895 ±2 ¹² BARATE 99R ALEP $\tau^- \rightarrow K^- \pi^0 \nu_{\tau}$				
892.2 ±1.5 4404 AGUILAR-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
891 ±2 1000 CRENNEL						
890 ±3.0 720 BARLOW						
$889 \pm 3.0 600$ BARLOW						
891 ± 2.3 620 $\frac{2}{2}$ DEBAERE		$\gamma = 0.93.4 \pm 0.7 \pm 0.7$				
891.0 ±1.2 1700 ³ WOJCICK	,	P 895.7 ±0.2 ±0.3 141k ¹⁴ BONVICINI 08A CLEO $D^+ \rightarrow K^- \pi^+ \pi^+$				
• • • We do not use the following data for	r averages, fits, limits, etc. • • •					
893.5 ± 1.1 27k ⁴ ABELE	99D CBAR \pm 0.0 $\overline{p}p \rightarrow K^+K^-$					
890.4 $\pm 0.2 \pm 0.5 80 \pm 0.8 \text{k}^{-5} \text{BIRD}$	89 LASS – 11 $K^- p \rightarrow \overline{K}^0 \pi^-$					
890.0 ±2.3 800 ^{2,3} CLELAND		⁺ p 895.9 ±0.5 ±0.2 ASTON 88 LASS 11 $K^- p \rightarrow K^- \pi^+ n$				
896.0 ±1.1 3200 ^{2,3} CLELAND	D 82 SPEC + 50 $K^+ p \rightarrow K^0_S \pi^+$	- p				
893 ±1 3600 ^{2,3} CLELAND	D 82 SPEC – 50 $K^+ p \rightarrow K_S^{0} \pi^{+}$	⁻ p				
896.0 ±1.9 380 DELFOSSI	SE 81 SPEC + 50 $K^{\pm} p \rightarrow K^{\pm} \pi$) p				
886.0 ±2.3 187 DELFOSSI	SE 81 SPEC – 50 $K^{\pm} p \rightarrow K^{\pm} \pi$	p				
894.2 ±2.0 765 ² CLARK	73 HBC – 3.13 $K^- p \rightarrow \overline{K}^0$	т [—] р				
894.3 \pm 1.5 1150 ^{2,3} CLARK	73 HBC – 3.3 $K^- p \rightarrow \overline{K}^0 \pi$					
892.0 ±2.6 341 ² SCHWEIN	NG68 HBC – 5.5 $K^- p \rightarrow \overline{K}^0 \pi$	⁻ p				

Emilie Passemar

3.3 Kappa(800)

 The results coming from Roy-Steiner and data at higher energy not in agreement with low energy experimental data in need improvement!
 Problem: no other precise data

Descotes-Genon, Moussallam'06

3.3 Kappa(800)

• Inputs for S wave in Roy-Steiner analysis from LASS

Buettiker, Descotes-Genon, Moussallam'04

3.3 Kappa(800)

 The results coming from Roy-Steiner and data at higher energy not in agreement with low energy experimental data
 need improvement!

4. Test sof the SM and new physics

$K\pi$ scattering lengths: P-wave

4.1 Determination of fundamental parameters: V_{us}

• Master formula for $K \rightarrow \pi Iv_I$:

$$\Gamma\left(K \to \pi l \nu\left[\gamma\right]\right) = \frac{G_F^2 m_K^5}{192\pi^3} C_K^2 S_{EW}^K \left|V_{us}\right|^2 \left|f_+^{K^0 \pi^-}(0)\right|^2 I_K^l \left(1 + \delta_{EM}^{Kl} + \delta_{SU(2)}^{K\pi}\right)^2$$

4.1 Determination of fundamental parameters: V_{us}

• Master formula for $K \rightarrow \pi Iv_I$:

$$\Gamma\left(K \to \pi l \nu \left[\gamma\right]\right) = \frac{G_F^2 m_K^5}{192\pi^3} C_K^2 S_{EV}^K \left[V_{us}\right]^2 \left[f_+^{K^0 \pi^-}(0)\right]^2 I_K^{\prime} \left(1 + \delta_{EM}^{K\prime} + \delta_{SU(2)}^{K\pi}\right)^2$$

$$\left[\langle \pi(p_\pi) | \ \overline{s} \gamma_\mu u \ | K(\mathbf{p}_K) \rangle = \left[\left(p_K + p_\pi\right)_\mu - \frac{\Delta_{K\pi}}{t} \left(p_K - p_\pi\right)_\mu\right] f_+(t) + \frac{\Delta_{K\pi}}{t} \left(p_K - p_\pi\right)_\mu f_0(t)$$
vector scalar

Dispersive representation for the form factors

• Omnès representation:

• Subtract dispersion relation to weaken the high energy contribution of the phase. Improve the convergence but sum rules to be satisfied.

Bernard, Oertel, E.P., Stern'06, '09

Global fit to $V_{us} \& V_{ud}$

FlaviaNet KaonWG'10 Updated by Moulson@CKM2014

$$V_{ud} = 0.97416(21)$$

 $V_{us} = 0.2248(7)$
 $\chi^2/ndf = 1.16/1 (28.1\%)$
 $\Delta_{CKM} = -0.0005(5)$
 -1.0σ

• Ex: CP violating asymmetries: $B \rightarrow K^*II$

Matthias et al'12 Camalich&Jaeger'11 Doering, Meissner, Wang'13 etc..

[blue: SM unbinned, purple: SM binned, crosses: LHCb]

• Ex: CP violation in D \rightarrow K $\pi\pi$

• Ex: CP violation in D \rightarrow K $\pi\pi$

Niecknig & Kubis'15

Full set of equations

$$\begin{split} S_{\pi\pi}^{2}(u) &= \Omega_{0}^{2}(u) \left\{ u^{2} \int_{4M_{\pi}^{2}}^{\infty} \frac{\hat{S}_{\pi\pi}^{2}(u')}{u'^{2}(u'-u)} d\mu_{0}^{2} \right\} \\ P_{\pi\pi}^{1}(u) &= \Omega_{1}^{1}(u) \left\{ c_{0} + c_{1}u + u^{2} \int_{4M_{\pi}^{2}}^{\infty} \frac{\hat{P}_{\pi\pi}^{1}(u')}{u'^{2}(u'-u)} d\mu_{1}^{1} \right\} \\ S_{\piK}^{1/2}(s) &= \Omega_{0}^{1/2}(s) \left\{ c_{2} + c_{3}s + c_{4}s^{2} + c_{5}s^{3} + s^{4} \int_{(M_{K}+M_{\pi})^{2}}^{\infty} \frac{\hat{S}_{\piK}^{1/2}(s')}{s'^{4}(s'-s)} d\mu_{0}^{1/2} \right\} \\ S_{\piK}^{3/2}(s) &= \Omega_{0}^{3/2}(s) \left\{ s^{2} \int_{(M_{K}+M_{\pi})^{2}}^{\infty} \frac{\hat{S}_{\piK}^{3/2}(s')}{s'^{2}(s'-s)} d\mu_{0}^{3/2} \right\} \\ P_{\piK}^{1/2}(s) &= \Omega_{1}^{1/2}(s) \left\{ c_{6} + s \int_{(M_{K}+M_{\pi})^{2}}^{\infty} \frac{\hat{P}_{\piK}^{1/2}(s')}{s'(s'-s)} d\mu_{1}^{1/2} \right\} \\ D_{\piK}^{1/2}(s) &= \Omega_{2}^{1/2}(s) \left\{ \int_{(M_{K}+M_{\pi})^{2}}^{\infty} \frac{\hat{D}_{\piK}^{1/2}(s')}{(s'-s)} d\mu_{2}^{1/2} \right\} \end{split}$$

Emilie Passemar

• Ex: CP violation in D \rightarrow K $\pi\pi$

Niecknig & Kubis'15

Dalitz plot

slices

• Ex: CP violation in D \rightarrow K $\pi\pi$

Niecknig & Kubis'15

fit fractions

slices

- full fit: $\chi^2/\text{ndof} \approx 1.1$
- fit fractions: hierachy of partial-wave amplitudes compare to previous analyses

5. Conclusion and Outlook

Conclusion and Outlook

- Determining $K\pi$ scattering reliably very important:
 - Low energy: test of Chiral Dynamics
 - Intermediate energy: Determination of Resonance parameters
 - Very important to help taking into account final state interactions and hunting for new physics
 CP violation in heavy meson decays
- Hadronic data on which most of the analyses rely not in good agreement with more recent data coming mainly from tau decays
 worth remeasuring it.
- Possibility at Jlab with KL?
 Major advantage: pure I=1/2 measurement

6. Back-up

2.5 Determination of some low energy constants

	πK Roy-Steiner	πK sum-rules	$Kl_4, O(p^4)$	$Kl_4, O(p^6)$
$10^3 L_1$	1.05 ± 0.12	0.84 ± 0.15	0.46 ± 0.24	0.53 ± 0.25
$10^3 L_2$	1.32 ± 0.03	1.36 ± 0.13	1.49 ± 0.23	0.71 ± 0.27
$10^3 L_3$	-4.53 ± 0.14	-3.65 ± 0.45	-3.18 ± 0.85	-2.72 ± 1.12
$10^3 L_4$	0.53 ± 0.39	0.22 ± 0.30		-0.2 ± 0.9

• Significant violation of OZI rule in the scalar sector

 \rightarrow Large values for the condensates!

3.2 Kappa(800)

• Inputs for S wave in Roy-Steiner analysis from LASS

Buettiker, Descotes-Genon, Moussallam'04

3.2 Kappa(800)

 The results coming from Roy-Steiner and data at higher energy not in agreement with low energy experimental data
 need improvement!

Inputs:

Buettiker, Descotes-Genon, Moussallam'04

Buettiker, Descotes-Genon, Moussallam'04

P-wave

Buettiker, Descotes-Genon, Moussallam'04

P-wave

