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1.   Introduction and Motivation 



1.1  Why Kπ scattering is important?  

•  Hadron spectroscopy: determine resonances and their nature 
–  P-wave: K*(892), K*(1410), K*(1680), … 

–  S-wave: “κ(~800)”, … 
–  Exotics,… 
 
 
 
 

•  ππ and Kπ   building blocks for hadronic physics: 
-  Test of Chiral Dynamics 

-  Extraction of fundamental parameters of the Standard Model 

-  Look for physics beyond the Standard Model: High precision at low 
energy as a key to new physics? 
 
 
         Very important when Final State Interactions at play! 

 
 
 
 
 

 
•  BSM effects :  
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Kπ I=1/2 P-wave scattering phase

● Fit to τ→Kπντ with restrictions from Kl3 
K*π threshold

threshold
parameters

1.2   Ex: Kπ scattering: P-wave 
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Tau data 

τ → Kπντ  

   Boito, Escribano & Jamin’10 

See also  
lattice QCD 
Dudek et al. 
Wilson et al.’14 



2.   Using Kπ scattering to test ChPT  



Kπ I=1/2 P-wave scattering phase

● Fit to τ→Kπντ with restrictions from Kl3 
K*π threshold

threshold
parameters

Kπ scattering: P-wave 
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Tau data 

τ → Kπντ  

   Boito, Escribano & Jamin’10 

 ChPT



2.1   Chiral Symmetry 

•  Limit 
 
 
 
 
 
 
 
Symmetry: 

 

•  Chiral Perturbation Theory: dynamics of the Goldstone bosons (kaons, 
pions, eta) 

•  Goldstone bosons interact weakly at low energy and 
Expansion organized in external momenta and quark masses    
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0km →

   
LQCD

0 = − 1
4

GµνG
µν + qLiγ µ DµqL + qRiγ µ DµqR ,  

u
q d

s

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎝ ⎠

   
qL/ R ≡ 1

2
1 ∓ γ 5( )qwith 

(3) (3) (3)L R VG SU SU SU≡ ⊗ →

→  LQCD

   mu , md ≪ ms < ΛQCD

 Weinberg’s power counting rule 

p << 4 ~ 1 GeVH FππΛ =
   
Leff =  Ld

d≥2
∑  , Ld =  O pd( )  , p ≡ q, mq{ }



2.2   Chiral expansion 

•    

 
 
 
 

•  The structure of the lagrangian is fixed by chiral symmetry but not the 
coupling constants à LECs appearing at each order 

•  The method has been rigorously established and can be formulated as a 
set of calculational rules:  
 

LO :     tree level diagrams with 
 
 

NLO:   tree level diagrams with  
           1-loop diagrams with 
 
 

NNLO: tree level diagrams with  
                 2-loop diagrams with  
                 1-loop diagrams with one vertex from 
 

•  Renormalizable and unitary order by order in the expansion 
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LO : 
   O p2( ) NLO : 

   O p6( )NNLO :    O p4( )
  L2   LChPT =   +    L4  ....+  +    L6

  L2

  L4

  L2

  L6

  L2

  L4

   L2 :  F0 , B0

   
L4 = Li  

i=1

10

∑ O4
i ,

   
L6 = Ci  

i=1

90

∑ O6
i



•  Today’s standard in the meson sector: 2-loop calculations 
 

•  Main obstacle to reaching high precision: determination of the 
LECs: O(p6) LECs proliferation makes the program to pin down/
estimate all of them prohibitive 
 

•  In a specific process, only a limited number of LECs appear 
 
•  The LECs calculable if QCD solvable, instead 

–  Determined from experimental measurement 
–  Estimated with models: Resonances, large NC 

–  Computed on the lattice 
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2.3   ChPT in the meson sector: precision calculations 
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•  Interesting framework to test ChPT is offered by the kaons: Kl3, Kl4,  
K → 3π, etc 
 

•  A very interesting quantity is the scattering length: first term in the 
expansion: 

 
 
 
 

 
•  For ππ: SU(2) ChPT very successful!  

 

 
 
 
 

 

2.4  Test of SU(3) ChPT 
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Kπ I=1/2 P-wave threshold parameters

● Fit to τ→Kπντ with restrictions from Kl3 

[60] V. Bernard, N. Kaiser and U. G. Meißner, NPB 357 (1991) 129 

[48] P. Büttiker, S. Descotes-Genon and B. Moussallam, EPJC 33 (2004) 209 

[61] J. Bijnens, P. Dhonte and P. Talavera, JHEP 05 (2004) 036

[62] V. Bernard, N. Kaiser and U. G. Meißner, NPB 364 (1991) 283 



ππ scattering lengths 
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 H. Leutwyler 



•  Interesting framework to test ChPT is offered by the kaons: Kl3, Kl4,  
K → 3π, etc 
 

•  A very interesting quantity is the scattering length: first term in the 
expansion: 

 
 
 
 

 
•  For ππ: SU(2) ChPT very successful!  

•  What about SU(3) ChPT?  
In principle slower convergence if convergence at all!  

 

 
 
 
 

 

2.4  Test of SU(3) ChPT 
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Kπ I=1/2 P-wave threshold parameters

● Fit to τ→Kπντ with restrictions from Kl3 

[60] V. Bernard, N. Kaiser and U. G. Meißner, NPB 357 (1991) 129 

[48] P. Büttiker, S. Descotes-Genon and B. Moussallam, EPJC 33 (2004) 209 

[61] J. Bijnens, P. Dhonte and P. Talavera, JHEP 05 (2004) 036

[62] V. Bernard, N. Kaiser and U. G. Meißner, NPB 364 (1991) 283 



Kπ scattering lengths: S-wave 
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Figure 14: Standard error ellipse for the S-wave scattering lengths obtained from solving the
RS equations with boundary conditions. The corresponding ellipse in the ChPT calculation at
O(p4) and the current-algebra result are also plotted.

above. A rather small error is found, but one must keep in mind that the dependence on the
asymptotic region is significant here and it is difficult to evaluate the error from this region in a
very reliable way. The central value arising from the sum rule is smaller than what is obtained
from the RS solution, but the two results are compatible within their errors. We also note that
the output of the sum rule is significantly influenced by the values of the scattering lengths used
as input in the integrand. For this reason, the result obtained here differs from the one quoted
in ref. [15].

Before we present the results for the amplitudes in the threshold region, a few remarks are
in order concerning the intermediate energy region, that ranges from the threshold up to the
matching point. Experimental data from production experiments exist below 1 GeV, but one
has to keep in mind the possibility that systematic errors may have been underestimated in this
energy region in such experiments (a discussion of the ππ case can be found in ref. [67]). Fig. 15
shows the I = 1

2 P -wave phase shift from the RS equations compared to experiment. The central

curve correspond to solving with a1/2
0 , a3/2

0 taken at the center of the ellipse fig.14 while the
upper and lower curves are obtained by using the points on the ellipse with the maximal and

the minimal values for a1/2
0 respectively. The experimental results are seen to deviate from the

solutions as the energy decreases from the matching point. In particular, the mass of the K∗

which is predicted from the RS equations is

mK∗ = (905 ± 2) MeV (93)

32

Results so far
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Plot courtesy of G. Colangelo.

T. Janowski Determination of K⇡ scattering lengths at physical kinematics

Buettiker, Descotes-Genon, Moussallam’04 

Janowski’14 



Roy-Steiner equations for Kπ 
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•  Unitarity effects can be calculated exactly using dispersive methods 
 
•  Unitarity, analyticity and crossing symmetry ≡ Roy-Steiner equations 
 
•  Input: Data on Kπ → Kπ  and π π → KK  for E ≥ 1 GeV 

           two subtraction constants, e.g.      and 
 

•  Output: the full Kπ scattering amplitude below 1 GeV  
                      In poor agreement with the experimental data 
 

•  Numerical solutions of the Roy-(Steiner) equations: 
–  π π: Pennington-Protopopescu, Basdevant-Froggatt-Petersen (70s)  

Bern group: Ananthanarayan et al.’00, Caprini et al.’11 
Orsay group: Descotes-Genon, Fuchs, Girlanda and Stern’01 
Madrid-Cracow group: Garcia-Martin,et al.’11 

–  K π: Buettiker, Descotes-Genon, Moussallam’04 

–  K N:  Ruiz de Elvira et al’15 

  a0
0

  a2
0



Kπ I=1/2 P-wave scattering phase

● Fit to τ→Kπντ with restrictions from Kl3 
K*π threshold

threshold
parameters

Kπ scattering lengths: P-wave 
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Tau data 

τ → Kπντ  

   Boito, Escribano & Jamin’10 

 ChPT



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

•  Poor agreement         need more data  
 
 

 

 
 
 
 

 

Kπ scattering lengths: P-wave 
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Kπ I=1/2 P-wave threshold parameters

● Fit to τ→Kπντ with restrictions from Kl3 

[60] V. Bernard, N. Kaiser and U. G. Meißner, NPB 357 (1991) 129 

[48] P. Büttiker, S. Descotes-Genon and B. Moussallam, EPJC 33 (2004) 209 

[61] J. Bijnens, P. Dhonte and P. Talavera, JHEP 05 (2004) 036

[62] V. Bernard, N. Kaiser and U. G. Meißner, NPB 364 (1991) 283 

Diogo Boito
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P-wave I=1/2 threshold parameters

Bernard, Kaiser, and Meissner, NP B357 (1991).

Bernard, Kaiser, and Meissner, NP B364 (1991).

Bijnens, Dhonte, and Talavera, JHEP 0405 (2004).

Buettiker, Descotes-Genon, and Moussallam, EPJC 33 (2004).
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Our results ChPT O(p4) [?] RChPT O(p4) [?] ChPT O(p6) [?] Roy-Steiner [?]
m3

� a1/2
1 � 10 0.166(5) 0.16(3) 0.18(3) 0.18 0.19(1)

m5
� b1/2

1 � 102 0.258(11) - - 0.18(2)
m7

� c1/2
1 � 103 0.90(4) - - 0.71(11)

EuroFlavour10 Munich 09.09.10
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3

iii. fits to tau data + constraints from Kl3

Tau data 

   Boito, Escribano & Jamin’10 

Recent analysis combining Kl3, tau and D data :  Bernard’14 
a1/21 0.249 ± 0.011 0.247 ± 0.001 0.16(3) 0.18 , 0.18(3) , 0.19(1) , 0.17×10m3

π

λ′
+ 20.64(1.75) , 25.6(1.8) , 24.86(1.88) , 24.80(1.56)

25.56 ± 0.40 25.58 ± 0.09
×103 26.05+0.21

−0.58 , 25.20(33) , 24.66(77) , 25.49(36)

λ′′
+ 3.20(69) , 1.5(8) , 1.11(74) , 1.94(88)

1.11± 0.08 1.22 ± 0.02
×103 1.29+0.01

−0.04 , 1.29(3) , 1.20(2) , 1.22(2)

BKπ[%] 0.414 ± 0.008 0.414 ± 0.005 0.404 ± 0.02 ± 0.013 , 0.416 ± 0.01 ± 0.008

R× 103 0.70± 0.43 1.23 ± 0.05 1.4+1.3
−0.9

Table 2. Prediction for the Kπ scattering length a1/21 , the slope and curvature of the vector form
factor, the branching ratio and the integrated rate R(τ → K∗(1410)ντ → Kππντ ). The second and
third column give respectively the results of the fit without and with the constraint on the curvature
of the vector form factor. The last column summarizes also various theoretical predictions for a1/21 ,
λ′

+ and λ′′

+ as well as experimental results for the two latter quantities and the integrated rate.

From left to right the numbers for a1/21 correspond to χPT at O(p4) [68] and at O(p6) [69], RχPT
at O(p4) [70], a Roy-Steiner dispersive analysis of πK scattering [56] and a τ decay analysis [18].
The experimental numbers from Kℓ3 data (first line) for λ′

+ and λ′′

+ are from left to right from
KTeV [71] , KLOE [8, 72], NA48 [7, 73] and ISTRA+ [74]. The theoretical numbers (second line)
are from earlier works on τ → Kπντ without constraints from Kℓ3 [15]-[17] and with constraints
[18]. The experimental results for BKπ are from [13, 33] respectively.

where Gas corresponds to the integral from Λ to infinity with the phase equal to π. The

sum rule is satisfied for ns = 0.696. We have allowed for some violation of the sum rule

since Gas is not known, our fit leading to a 5% discrepancy. As discussed previously for

the vector form factor the second sum rule, Eq. (3.41) has a much smaller uncertainty from

the high energy region, one gets from the RHS of this equation, 0.152 + 0.018ns. Thus

with ns as given from the fit the slope of the scalar form factor is λ0 = 0.0144 ± 0.0007.

The modulus of the normalized scalar form factor is depicted in Fig.6 for three different

values of the parameter ns keeping the value at the CT point fixed. These values gives a

violation of the sum rules by 15% for ns = 0.4 and 30% for ns = 1.25. The uncertainty due

to the high energy phase is much larger than in the vector form factor case, fortunately

the sum rules help reducing it sizeably. The form factor has a first small bump around the

K∗(890) resonance and a second one around the K∗(1410) one, the latter being more or less

pronounced depending on the value of ns. This behaviour agrees with older calculations of

the πK scalar form factor, see [27] as well as the recent work [29]. The τ data combined with

πK scattering plus constraints from the sum rules demand a somewhat stronger second

bump compared to the first one which compares also very well with [57]. The behaviour

of our form factor above ∼ 1.25 GeV is sensitive to the value of the parameter Λ as shown

– 22 –

Diogo Boito
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P-wave I=1/2 threshold parameters
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3.   Hadron spectroscopy 



 
•  Once one gets Kpi scattering amplitude  

 

       analytical continuation into the complex plane  

    Poles on the second sheet correspond to zeros on the first sheet!  
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

 

 

3.1  Determining of pole and width 
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resonance pole 

E

Dispersive analytic continuation 

   Plot from M. Pennington 



Kπ I=1/2 P-wave scattering phase

● Fit to τ→Kπντ with restrictions from Kl3 
K*π threshold

threshold
parameters

Kπ scattering lengths: P-wave 
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Tau data 

τ → Kπντ  

   Boito, Escribano & Jamin’10 



 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

 

 

3.2  K*(892) mass and width 
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Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) and 2015 update

K ∗(892) I (JP ) = 1
2 (1−)

K∗(892) MASSK∗(892) MASSK∗(892) MASSK∗(892) MASS

CHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCED
VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

891.66±0.26 OUR AVERAGE891.66±0.26 OUR AVERAGE891.66±0.26 OUR AVERAGE891.66±0.26 OUR AVERAGE

892.6 ±0.5 5840 BAUBILLIER 84B HBC − 8.25 K− p → K0π−p

888 ±3 NAPIER 84 SPEC + 200 π− p → 2K0
S

X

891 ±1 NAPIER 84 SPEC − 200 π− p → 2K0
S

X

891.7 ±2.1 3700 BARTH 83 HBC + 70 K+ p → K0π+X

891 ±1 4100 TOAFF 81 HBC − 6.5 K− p → K0π− p

892.8 ±1.6 AJINENKO 80 HBC + 32 K+ p → K0π+X

890.7 ±0.9 1800 AGUILAR-... 78B HBC ± 0.76 pp → K∓K0
S

π±

886.6 ±2.4 1225 BALAND 78 HBC ± 12 pp → (K π)± X
891.7 ±0.6 6706 COOPER 78 HBC ± 0.76 pp → (K π)± X

891.9 ±0.7 9000 1 PALER 75 HBC − 14.3 K− p → (K π)−
X

892.2 ±1.5 4404 AGUILAR-... 71B HBC − 3.9,4.6 K− p →
(K π)−p

891 ±2 1000 CRENNELL 69D DBC − 3.9 K−N → K0 π−X

890 ±3.0 720 BARLOW 67 HBC ± 1.2 pp → (K0π)±K∓

889 ±3.0 600 BARLOW 67 HBC ± 1.2 pp → (K0π)±K π

891 ±2.3 620 2 DEBAERE 67B HBC + 3.5 K+ p → K0π+ p

891.0 ±1.2 1700 3 WOJCICKI 64 HBC − 1.7 K− p → K0π− p

• • • We do not use the following data for averages, fits, limits, etc. • • •

893.5 ±1.1 27k 4 ABELE 99D CBAR ± 0.0 pp → K+ K−π0

890.4 ±0.2 ±0.5 80±0.8k 5 BIRD 89 LASS − 11 K− p → K0π− p

890.0 ±2.3 800 2,3 CLELAND 82 SPEC + 30 K+ p → K0
S

π+p

896.0 ±1.1 3200 2,3 CLELAND 82 SPEC + 50 K+ p → K0
S

π+p

893 ±1 3600 2,3 CLELAND 82 SPEC − 50 K+ p → K0
S

π−p

896.0 ±1.9 380 DELFOSSE 81 SPEC + 50 K± p → K±π0 p

886.0 ±2.3 187 DELFOSSE 81 SPEC − 50 K± p → K±π0 p

894.2 ±2.0 765 2 CLARK 73 HBC − 3.13 K− p → K0π−p

894.3 ±1.5 1150 2,3 CLARK 73 HBC − 3.3 K− p → K0π− p

892.0 ±2.6 341 2 SCHWEING...68 HBC − 5.5 K− p → K0π− p

CHARGED ONLY, PRODUCED IN τ LEPTON DECAYSCHARGED ONLY, PRODUCED IN τ LEPTON DECAYSCHARGED ONLY, PRODUCED IN τ LEPTON DECAYSCHARGED ONLY, PRODUCED IN τ LEPTON DECAYS
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

895.47±0.20±0.74895.47±0.20±0.74895.47±0.20±0.74895.47±0.20±0.74 53k 6 EPIFANOV 07 BELL τ− → K0
S

π− ντ
• • • We do not use the following data for averages, fits, limits, etc. • • •

892.0 ±0.5 7 BOITO 10 RVUE τ− → K0
S

π− ντ

892.0 ±0.9 8,9 BOITO 09 RVUE τ− → K0
S

π− ντ

895.3 ±0.2 8,10 JAMIN 08 RVUE τ− → K0
S

π− ντ
896.4 ±0.9 11970 11 BONVICINI 02 CLEO τ− → K−π0 ντ
895 ±2 12 BARATE 99R ALEP τ− → K−π0 ντ
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VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

895.47±0.20±0.74895.47±0.20±0.74895.47±0.20±0.74895.47±0.20±0.74 53k 6 EPIFANOV 07 BELL τ− → K0
S

π− ντ
• • • We do not use the following data for averages, fits, limits, etc. • • •

892.0 ±0.5 7 BOITO 10 RVUE τ− → K0
S

π− ντ

892.0 ±0.9 8,9 BOITO 09 RVUE τ− → K0
S

π− ντ

895.3 ±0.2 8,10 JAMIN 08 RVUE τ− → K0
S

π− ντ
896.4 ±0.9 11970 11 BONVICINI 02 CLEO τ− → K−π0 ντ
895 ±2 12 BARATE 99R ALEP τ− → K−π0 ντ
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NEUTRAL ONLYNEUTRAL ONLYNEUTRAL ONLYNEUTRAL ONLY
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

895.81±0.19 OUR AVERAGE895.81±0.19 OUR AVERAGE895.81±0.19 OUR AVERAGE895.81±0.19 OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below.

895.4 ±0.2 ±0.2 243k 13 DEL-AMO-SA...11I BABR D+ → K−π+ e+ νe
895.7 ±0.2 ±0.3 141k 14 BONVICINI 08A CLEO D+ → K−π+π+

895.41±0.32+0.35
−0.43 18k 15 LINK 05I FOCS D+ → K−π+µ+ νµ

896 ±2 BARBERIS 98E OMEG 450 pp → pf ps K∗K∗

895.9 ±0.5 ±0.2 ASTON 88 LASS 11 K− p → K−π+ n

894.52±0.63 25k 1 ATKINSON 86 OMEG 20–70 γp

894.63±0.76 20k 1 ATKINSON 86 OMEG 20–70 γp

897 ±1 28k EVANGELIS... 80 OMEG 10 π− p → K+π− (Λ ,Σ)

898.4 ±1.4 1180 AGUILAR-... 78B HBC 0.76 pp → K∓K0
S

π±

894.9 ±1.6 WICKLUND 78 ASPK 3,4,6 K±N → (K π)0N

897.6 ±0.9 BOWLER 77 DBC 5.4 K+ d → K+ π− pp

895.5 ±1.0 3600 MCCUBBIN 75 HBC 3.6 K− p → K−π+n

897.1 ±0.7 22k 1 PALER 75 HBC 14.3 K− p → (K π)0 X

896.0 ±0.6 10k FOX 74 RVUE 2 K− p → K−π+ n

896.0 ±0.6 FOX 74 RVUE 2 K+ n → K+ π− p

896 ±2 16 MATISON 74 HBC 12 K+ p → K+π−∆

896 ±1 3186 LEWIS 73 HBC 2.1–2.7 K+ p → K ππp

894.0 ±1.3 16 LINGLIN 73 HBC 2–13 K+ p →
K+π−π+ p

898.4 ±1.3 1700 2 BUCHNER 72 DBC 4.6 K+ n → K+ π− p

897.9 ±1.1 2934 2 AGUILAR-... 71B HBC 3.9,4.6 K− p → K−π+ n

898.0 ±0.7 5362 2 AGUILAR-... 71B HBC 3.9,4.6 K− p →
K−π+π− p

895 ±1 4300 3 HABER 70 DBC 3 K−N → K−π+X

893.7 ±2.0 10k DAVIS 69 HBC 12 K+ p → K+π−π+ p

894.7 ±1.4 1040 2 DAUBER 67B HBC 2.0 K− p → K−π+π− p

• • • We do not use the following data for averages, fits, limits, etc. • • •

895.53±0.17 LEES 13F BABR D+ → K+ K−π+

894.9 ±0.5 ±0.7 14.4k 17 MITCHELL 09A CLEO D+
s

→ K+ K−π+

896.2 ±0.3 20k 8 AUBERT 07AK BABR 10.6 e+ e− →
K∗0K±π∓ γ

900.7 ±1.1 5900 BARTH 83 HBC 70 K+ p → K+π−X
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K ∗(892) I (JP ) = 1
2 (1−)

K∗(892) MASSK∗(892) MASSK∗(892) MASSK∗(892) MASS

CHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCEDCHARGED ONLY, HADROPRODUCED
VALUE (MeV) EVTS DOCUMENT ID TECN CHG COMMENT

891.66±0.26 OUR AVERAGE891.66±0.26 OUR AVERAGE891.66±0.26 OUR AVERAGE891.66±0.26 OUR AVERAGE

892.6 ±0.5 5840 BAUBILLIER 84B HBC − 8.25 K− p → K0π−p

888 ±3 NAPIER 84 SPEC + 200 π− p → 2K0
S

X

891 ±1 NAPIER 84 SPEC − 200 π− p → 2K0
S

X

891.7 ±2.1 3700 BARTH 83 HBC + 70 K+ p → K0π+X

891 ±1 4100 TOAFF 81 HBC − 6.5 K− p → K0π− p

892.8 ±1.6 AJINENKO 80 HBC + 32 K+ p → K0π+X

890.7 ±0.9 1800 AGUILAR-... 78B HBC ± 0.76 pp → K∓K0
S

π±

886.6 ±2.4 1225 BALAND 78 HBC ± 12 pp → (K π)± X
891.7 ±0.6 6706 COOPER 78 HBC ± 0.76 pp → (K π)± X

891.9 ±0.7 9000 1 PALER 75 HBC − 14.3 K− p → (K π)−
X

892.2 ±1.5 4404 AGUILAR-... 71B HBC − 3.9,4.6 K− p →
(K π)−p

891 ±2 1000 CRENNELL 69D DBC − 3.9 K−N → K0 π−X

890 ±3.0 720 BARLOW 67 HBC ± 1.2 pp → (K0π)±K∓

889 ±3.0 600 BARLOW 67 HBC ± 1.2 pp → (K0π)±K π

891 ±2.3 620 2 DEBAERE 67B HBC + 3.5 K+ p → K0π+ p

891.0 ±1.2 1700 3 WOJCICKI 64 HBC − 1.7 K− p → K0π− p

• • • We do not use the following data for averages, fits, limits, etc. • • •

893.5 ±1.1 27k 4 ABELE 99D CBAR ± 0.0 pp → K+ K−π0

890.4 ±0.2 ±0.5 80±0.8k 5 BIRD 89 LASS − 11 K− p → K0π− p

890.0 ±2.3 800 2,3 CLELAND 82 SPEC + 30 K+ p → K0
S

π+p

896.0 ±1.1 3200 2,3 CLELAND 82 SPEC + 50 K+ p → K0
S

π+p

893 ±1 3600 2,3 CLELAND 82 SPEC − 50 K+ p → K0
S

π−p

896.0 ±1.9 380 DELFOSSE 81 SPEC + 50 K± p → K±π0 p

886.0 ±2.3 187 DELFOSSE 81 SPEC − 50 K± p → K±π0 p

894.2 ±2.0 765 2 CLARK 73 HBC − 3.13 K− p → K0π−p

894.3 ±1.5 1150 2,3 CLARK 73 HBC − 3.3 K− p → K0π− p

892.0 ±2.6 341 2 SCHWEING...68 HBC − 5.5 K− p → K0π− p

CHARGED ONLY, PRODUCED IN τ LEPTON DECAYSCHARGED ONLY, PRODUCED IN τ LEPTON DECAYSCHARGED ONLY, PRODUCED IN τ LEPTON DECAYSCHARGED ONLY, PRODUCED IN τ LEPTON DECAYS
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

895.47±0.20±0.74895.47±0.20±0.74895.47±0.20±0.74895.47±0.20±0.74 53k 6 EPIFANOV 07 BELL τ− → K0
S

π− ντ
• • • We do not use the following data for averages, fits, limits, etc. • • •

892.0 ±0.5 7 BOITO 10 RVUE τ− → K0
S

π− ντ

892.0 ±0.9 8,9 BOITO 09 RVUE τ− → K0
S

π− ντ

895.3 ±0.2 8,10 JAMIN 08 RVUE τ− → K0
S

π− ντ
896.4 ±0.9 11970 11 BONVICINI 02 CLEO τ− → K−π0 ντ
895 ±2 12 BARATE 99R ALEP τ− → K−π0 ντ
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895.47±0.20±0.74895.47±0.20±0.74895.47±0.20±0.74895.47±0.20±0.74 53k 6 EPIFANOV 07 BELL τ− → K0
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NEUTRAL ONLYNEUTRAL ONLYNEUTRAL ONLYNEUTRAL ONLY
VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

895.81±0.19 OUR AVERAGE895.81±0.19 OUR AVERAGE895.81±0.19 OUR AVERAGE895.81±0.19 OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below.

895.4 ±0.2 ±0.2 243k 13 DEL-AMO-SA...11I BABR D+ → K−π+ e+ νe
895.7 ±0.2 ±0.3 141k 14 BONVICINI 08A CLEO D+ → K−π+π+

895.41±0.32+0.35
−0.43 18k 15 LINK 05I FOCS D+ → K−π+µ+ νµ

896 ±2 BARBERIS 98E OMEG 450 pp → pf ps K∗K∗

895.9 ±0.5 ±0.2 ASTON 88 LASS 11 K− p → K−π+ n

894.52±0.63 25k 1 ATKINSON 86 OMEG 20–70 γp

894.63±0.76 20k 1 ATKINSON 86 OMEG 20–70 γp

897 ±1 28k EVANGELIS... 80 OMEG 10 π− p → K+π− (Λ ,Σ)

898.4 ±1.4 1180 AGUILAR-... 78B HBC 0.76 pp → K∓K0
S

π±

894.9 ±1.6 WICKLUND 78 ASPK 3,4,6 K±N → (K π)0N

897.6 ±0.9 BOWLER 77 DBC 5.4 K+ d → K+ π− pp

895.5 ±1.0 3600 MCCUBBIN 75 HBC 3.6 K− p → K−π+n

897.1 ±0.7 22k 1 PALER 75 HBC 14.3 K− p → (K π)0 X

896.0 ±0.6 10k FOX 74 RVUE 2 K− p → K−π+ n

896.0 ±0.6 FOX 74 RVUE 2 K+ n → K+ π− p

896 ±2 16 MATISON 74 HBC 12 K+ p → K+π−∆

896 ±1 3186 LEWIS 73 HBC 2.1–2.7 K+ p → K ππp

894.0 ±1.3 16 LINGLIN 73 HBC 2–13 K+ p →
K+π−π+ p

898.4 ±1.3 1700 2 BUCHNER 72 DBC 4.6 K+ n → K+ π− p

897.9 ±1.1 2934 2 AGUILAR-... 71B HBC 3.9,4.6 K− p → K−π+ n

898.0 ±0.7 5362 2 AGUILAR-... 71B HBC 3.9,4.6 K− p →
K−π+π− p

895 ±1 4300 3 HABER 70 DBC 3 K−N → K−π+X

893.7 ±2.0 10k DAVIS 69 HBC 12 K+ p → K+π−π+ p

894.7 ±1.4 1040 2 DAUBER 67B HBC 2.0 K− p → K−π+π− p

• • • We do not use the following data for averages, fits, limits, etc. • • •

895.53±0.17 LEES 13F BABR D+ → K+ K−π+

894.9 ±0.5 ±0.7 14.4k 17 MITCHELL 09A CLEO D+
s

→ K+ K−π+

896.2 ±0.3 20k 8 AUBERT 07AK BABR 10.6 e+ e− →
K∗0K±π∓ γ

900.7 ±1.1 5900 BARTH 83 HBC 70 K+ p → K+π−X
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•  The results coming from Roy-Steiner and data at higher energy not in 
agreement with low energy experimental data           need improvement!  
Problem: no other precise data  

 
•  Existence would suggest  
κ not a glueball  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

 

 

3.3   Kappa(800) 

25 Emilie Passemar 

Descotes-Genon, Moussallam’06 
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Figure 5: Plot of |S
1
2

0 (s)|2 for complex values of s (in units of GeV2), computed from the
RSb representation (14).
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Figure 6: Same as fig. 5 showing |S
1
2

1 |2.

10

significantly outside of its strict domain of validity, we have found a difference of only
0.5 % in the pole position in comparison with the result from the RSb representation.

In table 1 we summarise the results of a few other determinations of the K∗
0 (800)

resonance parameters in the recent literature. These are derived from input experimental
data on πK scattering, except for the result of Aitala et al. [7] which is based on D → Kππ
decays and the one from Bugg [10] who uses the same data combined with BESS II data
on J/ψ → K∗(890)Kπ. Our results are compatible with those of [15, 16] who have
also employed dispersive methods. The mass which we find is lighter than in previous
calculations. A similar effect was observed in ref. [11] in the case of the σ and it was
traced to a more complete treatment of the left-hand cuts in Roy-type representations.

Mκ (MeV) Γκ (MeV)
This work 658 ± 13 557 ± 24
Zhou, Zheng [16] 694 ± 53 606 ± 89
Jamin et al. [18] 708 610
Aitala et al. [7] 721 ± 19 ± 43 584 ± 43 ± 87
Pelaez [19] 750 ± 18 452 ± 22
Bugg [9] 750+30

−55 684 ± 120
Ablikim et al. [20] 841 ± 23+64

−55 618 ± 52+55
−87

Ishida et al. [14] 877+65
−30 668+235

−110

Table 1: The mass and width of the K∗
0 (800) from our work and some other recent

determinations. Refs. [7, 20, 14] quote Breit-Wigner parameters from which we have
computed the corresponding pole positions.

3 Summary and outlook

It is quite likely that many exotic mesons (or baryons) exist in QCD which are not seen
simply because they have a very large width. In the case of the κ meson, we have demon-
strated that it is perfectly possible to prove the existence of such particles by combining
experimental data with some general theoretical constraints. Previously, the same conclu-
sion was derived in the case of the σ meson [11]. A major advantage of the methods used
here and in ref. [11] lies in the control of their range of validity as one moves away from the
physical energy region into the complex plane. No such control exists for naive parametri-
sations of the Breit-Wigner type or even for more sophisticated ones like chiral-unitarised
approaches.

The πK-scattering matrix in the S wave has been computed in the complex energy
plane using a Roy-Steiner dispersive representation. It is worth noting that in such a
representation, one must inject much more experimental information than just the S-wave
phase shifts (such as data on other πK and crossed-channel partial waves and the high
energy behaviour). Moreover, the available S-wave data does not cover the lower energy
range. In this region, unitarity provides extra information which can be combined with

13



•  Inputs for S wave in Roy-Steiner analysis from LASS 
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Buettiker, Descotes-Genon, Moussallam’04 
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Figure 4: Experimental values for the S-wave phases of the amplitude for charged πK
scattering measured in ref. [25].

exhibits a resonance as a zero on the first sheet as well as as a pole on the second sheet.
This fortunate property stems from the unitarity relation which can be recast, using the
analyticity properties, as an equation between the values of the amplitude on both sides
of the cut

f
1
2

l
(s − iϵ) − f

1
2

l
(s + iϵ) = 2i

√
(s − m2

+)(s − m2
−)

s
f

1
2

l
(s + iϵ)f

1
2

l
(s − iϵ) . (23)

This relation holds for real values of s along the elastic cut below the first inelastic thresh-
old. It can be translated into a relation for the S matrix

S
1
2

l
(s + iϵ)S

1
2

l
(s − iϵ) = 1 . (24)

Introducing a variable z = −
√

m2
+ − s which maps the first sheet of the s plane onto the

upper part of the z plane, we can rewrite eq. (24) as

S
1
2

l
(z)S

1
2

l
(−z) = 1 . (25)

The relation (25) holds on a finite portion of the positive real axis. By analytic contin-
uation, it must also hold everywhere in the complex z plane. This relation immediately
shows that a resonance pole z0 on the second Riemann sheet [Im (z0) < 0] is automatically

associated to a zero at −z0, which lies on the first sheet. Computing S
1
2

0 (s) from the RSb

representation described above for the central values of our experimental input, we find

that it does have a zero, S
1
2

0 (s0) = 0 with

s0 = 0.356 + i · 0.366 GeV2 . (26)

9



•  The results coming from Roy-Steiner and data at higher energy not in 
agreement with low energy experimental data           need improvement!   
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Figure 16: Same as fig. 15 for the I = 1
2 S-wave phase shift (curves in the upper half of the

figure) and the I = 3
2 S-wave phase shift (curves in lower half).

6.3 Results for threshold and sub-threshold expansion parameters

The behaviour of amplitudes at very small energies is conveniently characterized by sets of
expansion parameters, which are particularly useful for making comparisons with chiral expan-
sions. We consider first the set obtained by performing an expansion around the πK threshold.
These parameters are conventionally defined from the partial-wave amplitudes as follows

2√
s
Ref I

l (s) = q2l
(

aI
l + bI

l q
2 + cI

l q
4 + . . .

)

(94)

with

s = m2
+ +

m2
+q2

mπmK
−

m2
+m2

−q4

4m3
πm3

K

+ . . . (95)

Once a solution of the RS equations is obtained, all the threshold parameters are predicted. The
two S-wave scattering lengths are determined from the matching conditions, as explained above.
The other threshold parameters may be obtained from the dispersive representation eq. (20) in
the form of sum rules. These are obtained by projecting the DR’s over the relevant partial wave
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4.   Test sof the SM and new physics 



Kπ I=1/2 P-wave scattering phase

● Fit to τ→Kπντ with restrictions from Kl3 
K*π threshold

threshold
parameters

Kπ scattering lengths: P-wave 
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Tau data 

τ → Kπντ  

   Boito, Escribano & Jamin’10 



•  Master formula for K → πlνl: 
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•  Master formula for K → πlνl: 
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Dispersive representation for the form factors 

•  Omnès representation:  

 

 
 
 
•  Subtract dispersion relation to weaken the high energy contribution of the 

phase. Improve the convergence but sum rules to be satisfied.   
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Global fit to Vus & Vud 
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Experimental determination of Vus from kaon decays – M. Moulson (Frascati) – CKM 2014, Vienna, 8 September 2014"

Vus and CKM unitarity: All data"

39!

Nf = 2+1: Fit to results for |Vud|, |Vus|, |Vus|/|Vud|"
 f+(0) = 0.9661(32),  fK/fπ = 1.192(5) "

Fit results, no constraint!
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−1.0σ!
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•  Ex: CP violating asymmetries: B → K* ll 
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Up: B ! K ⇤`` (2)

Theoretical control on the 7 B ! K ⇤ form factors
Light-cone sum rules and lattice QCD estimates
Effective theories: at low and large K ⇤ recoil

FF = soft form factors + O(↵s) + O(⇤QCD/mB)
with only 2 or 3 soft form factors and O(↵s) computable

Observables with limited sensitivity to form factor uncertainties
thanks to effective field theory relations (at large K ⇤ recoil, 6 Pi )
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•  Ex: CP violation in D à Kππ 
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Heavy-meson Dalitz plots: hunting for CP violation

CP violation in partial widths Γ(P → f ) ̸= Γ(P̄ → f̄ )
• at least two interfering decay amplitudes
• different weak (CKM) phases
• different strong (final-state-interaction) phases

two-body decays: D → ππ, KK̄
• decay at fixed total energy −→ fixed
strong phase

three-body decays: D → 3π, ππK
• Dalitz plot =̂ density distribution in
two kinematical variables

• resonances −→ rapid phase
variation enhances CP violation in
parts of the decay region

F. Niecknig Dispersive analysis of D → Kππ 3 / 17

Ex: Dalitz plot 



•  Ex: CP violation in D à Kππ 
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Two-particle rescattering
Full set of equations

S2ππ(u) = Ω20(u)
{

u2
∫

∞

4M2π

Ŝ2ππ (u′)
u′2(u′ − u)

dµ20

}

P1ππ(u) = Ω11(u)
{

c0 + c1u + u2
∫

∞

4M2π

P̂1ππ (u′)
u′2(u′ − u)

dµ11

}

S1/2πK (s) = Ω
1/2
0 (s)

⎧

⎨

⎩

c2 + c3s + c4s
2 + c5s

3 + s4
∫

∞

(MK+Mπ )2

Ŝ1/2πK (s′)

s′4(s′ − s)
dµ1/20

⎫

⎬

⎭

S3/2πK (s) = Ω
3/2
0 (s)

⎧

⎨

⎩

s2
∫

∞

(MK+Mπ )2

Ŝ3/2πK (s′)

s′2(s′ − s)
dµ3/20

⎫

⎬

⎭

P1/2πK (s) = Ω
1/2
1 (s)

⎧

⎨

⎩

c6 + s
∫

∞

(MK +Mπ )2

P̂1/2πK (s′)

s′(s′ − s)
dµ1/21

⎫

⎬

⎭

D1/2
πK (s) = Ω

1/2
2 (s)

⎧

⎨

⎩

∫

∞

(MK+Mπ )2

D̂1/2
πK (s′)

(s′ − s)
dµ1/22

⎫

⎬

⎭

inhomogeneities build up crossed-channel rescattering

⇒ remove dispersive integrals over inhomogeneities

F. Niecknig Dispersive analysis of D → Kππ 15 / 17

Niecknig & Kubis’15 



•  Ex: CP violation in D à Kππ 
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Experimental comparison I

Dalitz plot slices
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• full fit: χ2/ndof ≈ 1.1

F. Niecknig Dispersive analysis of D → Kππ 14 / 17
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•  Ex: CP violation in D à Kππ 
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Experimental comparison I

fit fractions slices

Full fit
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• full fit: χ2/ndof ≈ 1.1

• fit fractions: hierachy of partial-wave amplitudes compare to previous
analyses

F. Niecknig Dispersive analysis of D → Kππ 14 / 17

Niecknig & Kubis’15 



5.   Conclusion and Outlook 



Conclusion and Outlook 

Emilie Passemar 

•  Determining Kπ scattering reliably very important: 
–  Low energy: test of Chiral Dynamics 

–  Intermediate energy: Determination of Resonance parameters 

–  Very important to help taking into account final state interactions and 
hunting for new physics          CP violation in heavy meson decays 
 
 

•  Hadronic data on which most of the analyses rely not in good agreement 
with more recent data coming mainly from tau decays 
        worth remeasuring it.  

 
•  Possibility at Jlab with KL?  

        Major advantage: pure I=1/2 measurement 
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6.   Back-up 



2.5  Determination of some low energy constants 
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•  Significant violation of OZI rule in the scalar sector 
 

        Large values for the condensates!  

results for L1, ..., L4 are collected in table 5. The errors are obtained, as before, by varying all
the parameters of the fits to the input data and taking into account the correlations. These
errors appear to be rather small but they only reflect the uncertainty coming from the input
data. The dominant source of uncertainty in the determination of the Li’s comes from the
unknown higher-order terms in the chiral expansion, this uncertainty is expected to be of the
order of 30-40% . This can be seen from the table which shows the results of some alternative
determinations based on the Kl4 form factors [72, 73, 16] and on πK sum rules [15]11. We also
quote the results that we get for L5 and for L8 + 2L6 which have rather large errors

103L5 = 3.19 ± 2.40 103(L8 + 2L6) = 3.66 ± 1.52 . (104)

The coupling L5 is determined, in principle, from C−
00 but its contribution turns out to be

suppressed, as it appears multiplied by a factor m2
π. In order to determine L8 + 2L6 we used

C+
00 and the value L5 ≃ 1.4 · 10−3 derived from FK/Fπ. The large uncertainty for L8 + 2L6

reflects that affecting the coefficient C+
00 or, alternatively, the uncertainty in the combination of

scattering lengths a1/2
0 + 2a3/2

0 . This could improve considerably once experimental results from
πK atoms are available. Our result for L4, though affected by a sizeable error, agrees with the
evaluations [74, 75] based on a dispersive method for constructing scalar form factors [76] and
is suggestive of a significant violation of the OZI rule in the scalar sector.

πK Roy-Steiner πK sum-rules Kl4, O(p4) Kl4, O(p6)
103 L1 1.05 ± 0.12 0.84 ± 0.15 0.46 ± 0.24 0.53 ± 0.25
103 L2 1.32 ± 0.03 1.36 ± 0.13 1.49 ± 0.23 0.71 ± 0.27
103 L3 −4.53 ± 0.14 −3.65 ± 0.45 −3.18 ± 0.85 −2.72 ± 1.12
103 L4 0.53 ± 0.39 0.22 ± 0.30 −0.2 ± 0.9

Table 5: Chiral couplings Lr
i (µ), µ = 0.77 GeV obtained by matching the dispersive results for

the subthreshold expansion parameters (see table 4) with their chiral expansion at order p4.
Also shown are the results from ref. [15] (col. 3) as well as those from ref. [16] in which fits to
the Kl4 form factors were perfomed using chiral expansions at order p4 (col. 4) as well as p6

(col. 5).

7 Conclusions

In this paper, we have set up and then solved a system of equations à la Roy and Steiner for
the S- and P -partial waves of the πK → πK and the ππ → KK amplitudes. These equations
are necessary consequences of analyticity and crossing, together with plausible assumptions
concerning the range of effective applicability of elastic unitarity. In treating these equations,
the approach advocated recently in ref. [6] was followed, which consists in choosing a matching
point around 1 GeV and enforcing a set of boundary conditions at this point. As input for this

11In that paper, terms of order p6 were dropped in the dispersive representations and the phase shifts used
below 1 GeV in the sum rules were not constrained to obey the RS equations.
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•  Inputs for S wave in Roy-Steiner analysis from LASS 
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Figure 4: Experimental values for the S-wave phases of the amplitude for charged πK
scattering measured in ref. [25].

exhibits a resonance as a zero on the first sheet as well as as a pole on the second sheet.
This fortunate property stems from the unitarity relation which can be recast, using the
analyticity properties, as an equation between the values of the amplitude on both sides
of the cut

f
1
2

l
(s − iϵ) − f

1
2

l
(s + iϵ) = 2i

√
(s − m2

+)(s − m2
−)

s
f

1
2

l
(s + iϵ)f

1
2

l
(s − iϵ) . (23)

This relation holds for real values of s along the elastic cut below the first inelastic thresh-
old. It can be translated into a relation for the S matrix

S
1
2

l
(s + iϵ)S

1
2

l
(s − iϵ) = 1 . (24)

Introducing a variable z = −
√

m2
+ − s which maps the first sheet of the s plane onto the

upper part of the z plane, we can rewrite eq. (24) as

S
1
2

l
(z)S

1
2

l
(−z) = 1 . (25)

The relation (25) holds on a finite portion of the positive real axis. By analytic contin-
uation, it must also hold everywhere in the complex z plane. This relation immediately
shows that a resonance pole z0 on the second Riemann sheet [Im (z0) < 0] is automatically

associated to a zero at −z0, which lies on the first sheet. Computing S
1
2

0 (s) from the RSb

representation described above for the central values of our experimental input, we find

that it does have a zero, S
1
2

0 (s0) = 0 with

s0 = 0.356 + i · 0.366 GeV2 . (26)
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•  The results coming from Roy-Steiner and data at higher energy not in 
agreement with low energy experimental data           need improvement!   
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Figure 16: Same as fig. 15 for the I = 1
2 S-wave phase shift (curves in the upper half of the

figure) and the I = 3
2 S-wave phase shift (curves in lower half).

6.3 Results for threshold and sub-threshold expansion parameters

The behaviour of amplitudes at very small energies is conveniently characterized by sets of
expansion parameters, which are particularly useful for making comparisons with chiral expan-
sions. We consider first the set obtained by performing an expansion around the πK threshold.
These parameters are conventionally defined from the partial-wave amplitudes as follows

2√
s
Ref I

l (s) = q2l
(

aI
l + bI

l q
2 + cI

l q
4 + . . .

)

(94)

with

s = m2
+ +

m2
+q2

mπmK
−

m2
+m2

−q4

4m3
πm3

K

+ . . . (95)

Once a solution of the RS equations is obtained, all the threshold parameters are predicted. The
two S-wave scattering lengths are determined from the matching conditions, as explained above.
The other threshold parameters may be obtained from the dispersive representation eq. (20) in
the form of sum rules. These are obtained by projecting the DR’s over the relevant partial wave
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Figure 4: Experimental data from ref. [27] for the phase Φ1 and the fit used in the calculations.

The data of Aston et al. and the fits for both al and Φl for l = 0 to l = 5 and energy up
to E = 2.5 GeV are shown in figs. 5, 6 and 7. At energies E ≥ 1.8 GeV, ref. [27] found two
different solutions A and B for the phase shifts, between which we choose sol A (it was pointed
out in ref. [19] that solution B violates the unitarity bound). These fits allow us to compute the
relevant integrals up to E = 2.5 GeV. Above that point, we use a Regge-model parametrization
discussed in sec. 4.3.

4.2 ππ → KK input

For our purposes, a key role is played by the l = 0 and l = 1 ππ → KK amplitudes, which
can be determined from πN → KKN production experiments in the range t ≥ 4m2

K . We
will make use of the two high-statistics experiments described in Cohen et al. [28] and Etkin
et al. [29, 47]. The experiment of Cohen et al. [28] determines the charged amplitude π+π− →
K+K−, thereby providing results for both g0

0 and g1
1 . There are several possible solutions but

physical requirements select a single one, called solution II b in ref. [28]. Close to the KK
threshold, the presence of the l = 1 phase allows the authors to accurately determine the l = 0
phase. The experiment of Etkin et al. concerns the amplitude π+π− → KSKS which is purely
I = 0. Because of the absence of the P -wave in this channel, their determination of the phase of
g0
0 close to the threshold (where the D-wave phase is very small) is likely to be less reliable than

that of ref. [28]. Their determination of the magnitude of g0
0 close to the threshold disagrees

with that of Cohen et al. and also with earlier experiments [48]. Consequently, we make the
choice to use the results of Etkin et al. only in the range

√
t ≥ 1.2 GeV.
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Figure 15: The I = 1
2 P -wave phase shift obtained from solving the RS equations. The central

curve corresponds to solving with a1/2
0 , a3/2

0 taken at the center of the ellipse fig. 14. The upper

(lower) curves are obtained by using the points with the maximal (minimal) values for a1/2
0 on

this ellipse.

(where mK∗ is defined such that δ1/2
1 (mK∗) = π/2) is nearly 10 MeV larger than the mass quoted

in ref. [27] (mK∗0 = 896 ± 0.7 MeV). This discrepancy may appear worrying at first sight. It is
caused, in part, by isospin breaking which is not taken into account by the RS equations. This
could generate an uncertainty of a few MeV as to the value of the K∗ mass that should come
out from solving the equations10. Besides, it cannot be excluded that the mass of the K∗ may
not be as accurately known as one might believe. The determinations of the K∗+, K∗0 masses
used by the PDG are all based on hadronic production experiments. Recently, a measurement
of the K∗+ mass based on the τ decay mode τ → KSπντ indicated of shift by 4 − 5 MeV as
compared to the PDG value [68]. In principle, this method is more reliable because it is free of
any final state interaction problem, but better statistics are needed to clarify this issue.

The two S-wave phase shifts predicted by the RS equations are shown in fig. 16. For the
isospin I = 1

2 the RS solution does not exhibit any of the oscillations appearing in the data
of ref. [26]. For the isospin I = 3

2 phase shift, the experimental data for E < 0.9 GeV lie
systematically below the RS curve, by 2-3 standard deviations. The RS equations also predict
the I = 3

2 P -wave phase shift, the result is shown in fig.17. This phase shift displays the unusual
feature that it is positive at very low energy and changes sign as the energy increases. In the
region around 1 GeV the results are in qualitative agreement with the experimental data of

10For instance, the result depends on the input values for mπ and mK for which we used mπ = 0.13957 GeV,
mK = 0.4957 GeV.
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Figure 17: Same as fig. 15 for the I = 3
2 P -wave phase shift.

and then expanding the variable s in powers of q2. Divergences may appear in this process
because derivatives are discontinuous at threshold and it must be specified that the limit is to
be taken from above. This problem is easily handled by computing some pieces of the integrals
analytically as explained in ref. [6]. The sum rules are evaluated by using RS solutions below the
matching points and the fits to the experimental data above. For l = 0, 1 we have computed
the parameters al, bl and cl in an alternative manner by using our solution for Re f I

l (s) for
three values of s and solving a linear system of equations. The two methods were in very good
agreement and the results for the threshold parameters are summarized in table 3. The values
of the P -waves scattering lengths in ChPT at NLO was given in ref.[18]

m3
πa1/2

1 = 0.016 ± 0.003 m3
πa3/2

1 = (1.13 ± 0.57) 10−3 (ref. [18]) . (96)

Within the errors, these values are compatible with our corresponding results displayed in table 3.

ChPT expansions of the amplitude are expected to have best convergence properties in
unphysical regions away from any threshold singularity. The dispersive representations derived
in sec. 2 allow us to evaluate the amplitude in such regions. A first domain considered in the
literature is the neighbourhood of the point s = u, t = 0. The following set of expansion
parameters are conventionally introduced

F+(s, t) =
∑

C̃+
ij tiν2j

F−(s, t) = ν
{

∑

C̃−
ij tiν2j

}

(97)
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