

K_L studies with the GlueX detector

Simon Taylor / JLab

- Event generation
 - GlueX detector
 - $K_{L}p \rightarrow K_{S}p$
 - $K_{L}^{}p \rightarrow \Lambda \pi^{+}$
 - $K_{L}p \rightarrow K^{+}\Xi^{0}$

Event generation

- Generated K, beam using momentum distribution provided by I. Larin
 - Assume K_L beam originates from 40 cm-long Be target 16m upstream from LH2 target (inside GlueX detector)
- ${\scriptstyle \bullet} \, {\rm pK}_{\rm s}$ cross section model
 - Developed parametrization of fits to $d\sigma/d\Omega$ data for low W
 - Power law fall-off for higher W ($\sigma = Ap_{KI}^{-n}$)
- $\Lambda \pi^+$ cross section model
 - Based on "A Study of the reactions K0bar p->Lambda pi+ and K0bar p->Sigma0 pi+ from 1GeV/c to 12GeV/c", Robert J. Yamartino, Jr., SLAC-177 report Sep. 1974, PhD disser. May 1974
- K⁺Ξ⁰ cross section model
 - Parametrization of functions from "K + N -> K + Xi reaction and S=-1 hyperon resonances", B. C. Jackson, et al arXiv:1503.00845v1 [nucl-th] 3 Mar 2015.

Parametrization of pK_s cross section

- W<2.17 GeV:
 - Expansion in Legendre polynomials:
 - $d\sigma/d\Omega = f_0(W)P_0(\cos\theta) + f_1(W)P_1(\cos\theta) + f_2(W)P_2(\cos\theta)$
 - f_0, f_1, f_2 from fits to data (next slide)
- W≥2.17 GeV:
 - Total cross section: $\sigma_{tot} = Ap_{K}^{-2.1}$
 - $p_{\kappa} = K_{L}$ momentum in lab
 - Forward angle: $d\sigma/dt = Bp_{\kappa}^{-1.33}e^{(3.1+2.8 \ln(s)) t}$
 - Backward angle: $d\sigma/du' = Cp_{\kappa}^{-5.24}e^{5.4u'}$, $u' = u-u_{max}$

• A,B,C = scale factors matching low W parametrization at W=2.17 GeV Ref: Brandenburg, et al., Phys.Rev.D9.7(1974)

Jefferson Lab

K studies with the GlueX detector

JA

The GlueX detector

Jefferson Lab

Reconstruction of pK_s events

- Generated 100,000 events
 - Allowed GEANT to decay K_s
- Require detection of recoil proton \rightarrow primary "vertex"
- K_L momentum reconstructed from time-of-flight between proton time at "vertex" and time at Be target
- Particle identification: dE/dx in drift chambers, time-of-flight

Particle identification

 \bullet We can do better if we also reconstruct $K_{_S} {\rightarrow} \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -},$ at the expense of statistics...

- Each track fitted using several mass hypotheses: $\{p, K^+, \pi^+\}$ for +, $\{K^-, \pi^-\}$ for -
- Measure dE/dx, compute Δt at vertex for each hypothesis \rightarrow convert to probability

Requiring $\pi^+\pi^-$ BR($K_s \rightarrow \pi^-\pi^+$)=69.20±0.05%

W resolution

Invariant mass technique K, momentum (time-of-flight) technique

Kinematic fit for pK_c channel

Confidence level for kinematic fit

10

Jefferson Lab

Reconstruction of $\Lambda\pi^+$ **events**

- Generated 100,000 events
 - Allowed GEANT to decay Λ
- Require detection of recoil $\pi^+ \rightarrow$ primary "vertex"
- K momentum reconstructed from time-of-flight between $\pi^{\!\!+}$ time at "vertex" and time at Be target

BR(*Λ*→*pπ*⁻)=63.9±0.5%

K studies with the GlueX detector

W resolution

Invariant mass technique K, momentum (time-of-flight) technique

K₁ studies with the GlueX detector

Kinematic fit for $\Lambda \pi^+$ channel

Confidence level for kinematic fit

14

Jefferson Lab

Reconstruction of K⁺ Ξ^{0} events

- Generated 100,000 events
 - Allowed GEANT to decay Ξ^0
- Require detection of recoil $K^+ \rightarrow$ primary "vertex"
- K_L momentum reconstructed from time-of-flight using K⁺ time at "vertex" and time at Be target

- Look for decay particles...
 - Ξ^{o} decays to $\Lambda\pi^{o}$ almost 100% of the time...

Requiring p, π^- , 2γ

K studies with the GlueX detector

Reconstruction of Ξ^0 **invariant mass**

17

-JSA

W resolution

K, momentum (time-of-flight) technique

SISA

Kinematic fit for K⁺ Ξ^{0} channel

Confidence level for kinematic fit

More kinematic fit results

Acceptance×efficiency for W reconstruction

Average "efficiency" ~ 0.5%

Summary

- Simulations were performed using a GEANT-based Monte Carlo for $K_{\mu}p \rightarrow pK_{s}$, $\Lambda \pi^{+}$, and $K^{+}\Xi^{0}$
 - W resolution for time-of-flight technique rises with W
 - W resolution using invariant mass technique better for high W
 - Kinematic fitting looks promising
 - Additional constraints on $\pi^+\pi^-$ mass for K_s channel and $p\pi^-$ mass for $\pi^+\Lambda$ channel will help improve W resolution for invariant mass technique

Backup slides

Kinematic distributions for pK

Thrown distributions

Protons with p<0.25 GeV/c do not make it to CDC layers

Kinematic distributions for $\Lambda\pi^+$

Thrown distributions

Kinematic distributions for K⁺ Ξ^{0}

Jefferson Lab

