Evidence for Some New Hyperon Resonances - to be Checked by K_L Beam

Bing-Song Zou Institute of Theoretical Physics, CAS

- 1) P.Gao, J.Shi, B.S.Zou, PRC86 (2012) 025201
- 2) J.Shi, B.S.Zou, PRC91(2015) 035202
- 3) J.J.Xie, J.J.Wu, B.S.Zou, PRC90 (2014) 055204
- 4) J.J.Wu, B.S.Zou, Few Body System 56 (2015) 165

Outline :

- **1. Why hyperon resonances ?**
- 2. New results on $\Sigma^* \& \Lambda^*$ from CB data
- 3. Possible new sources for $\Sigma^* \& \Lambda^*$
- 4. Conclusions and Prospects

1. Why hyperon resonances ? Unquenched dynamics: gluons $\rightarrow q\bar{q}$ crucial for quark confinement & hadron structure

quenched or unquenched quark models give very different predictions of hyperon spectrum

1/2⁻ baryon nonet with strangeness

- Mass pattern : quenched or unquenched ?
 - uds (L=1) $1/2^- \sim \Lambda^*(1670) \sim [us][ds] s$
 - uud (L=1) $1/2^- \sim N^*(1535) \sim [ud][us] \overline{s}$
 - uds (L=1) $1/2^- \sim \Lambda^*(1405) \sim [ud][su] \overline{u}$
 - uus (L=1) $1/2^- \sim \Sigma^*(1390) \sim [us][ud] d$

Zou et al, NPA835 (2010) 199 ; CLAS, PRC87(2013)035206

• Strange decays of N*(1535) and Λ *(1670): N*(1535) large couplings $g_{N^*N\eta}$, $g_{N^*K\Lambda}$, $g_{N^*N\eta}$, $g_{N^*N\eta}$, $g_{N^*N\eta}$, $g_{N^*N\eta}$

Distinctive

Predictions by quenched - & unquenched - quark models

Quenched quark model: Capstick-Roberts, Prog.Part.Nucl.Phys. 45 (2000) S241-S331 Unquenched model: Helminen-Riska, Nucl. Phys. A 699 (2002) 624 A.Zhang, S.L.Zhu et al., HEPNP 29 (2005) 250 **Alternative pictures :**

Hadronic molecules

N*(1535) ~ KΣ-KΛ

 $\Lambda^*(1405) \sim \text{KN}-\Sigma\pi$

N*(1440) ~ Nσ

Penta-quark states

 $N^{*}(1440) \sim [ud][ud] q$

 $N*(1535) \sim [ud][us] \underline{s}$

 $\Lambda^*(1405) \sim [ud][sq] q$

Kaiser, Weise, Oset, Ramos, Oller, Meissner, Hyodo, Jido, Hosaka, Oh, ...

Distinguishable model predictions for Σ^* of $3/2^-$ and $1/2^+$

	qqq	$\overline{\mathbf{q}}\mathbf{q}^6$ or $\overline{\mathbf{K}}\pi\mathbf{N}$ - $\pi\pi\mathbf{Y}$	Y
3/2-	Σ*(1650)	Σ*(1570)	Gal 2011
1/2+	Σ*(1720)	Σ*(1630-1656)	Oset 2008

Experiment knowledge on hyperon states still very poor !

Ω^* in PDG:

- **** Ω(1672) 3/2⁺,
 - *** Ω (2250)
 - ** Ω (2380), Ω (2470)

Ξ^* in PDG:

- **** $\Xi(1320) 1/2^+$, $\Xi(1530) 3/2^+$
 - *** $\Xi(1690)$, $\Xi(1820)$ $3/2^{-}$, $\Xi(1950)$, $\Xi(2030)$
 - ** $\Xi(2250)$, $\Xi(2370)$
 - * $\Xi(1620)$, $\Xi(2120)$, $\Xi(2500)$

Σ* in PDG2012

****	$\begin{array}{llllllllllllllllllllllllllllllllllll$
***	$\Sigma^*(1660)1/2^+$ $\Sigma^*(1750)1/2^ \Sigma^*(1940)3/2^-$ $\Sigma^*(2250)??$
**	$\Sigma^*(1620)1/2^- \Sigma^*(1690)?? \Sigma^*(1880)1/2^+ \Sigma^*(2080)3/2^+ \Sigma^*(2455)?? \Sigma^*(2620)??$
*	$\Sigma^{*}(1480)??$ $\Sigma^{*}(1560)??$ $\Sigma^{*}(1580)3/2^{-}$ $\Sigma^{*}(1770)1/2^{+}$ $\Sigma^{*}(1840)3/2^{+}$ $\Sigma^{*}(2000)3/2^{-}$ $\Sigma^{*}(2070)5/2^{+}$ $\Sigma^{*}(2100)7/2^{-}$ $\Sigma^{*}(3000)??$ $\Sigma^{*}(3170)??$
All fro	om old experiments of 1970-1985!

No established $1/2^- \Sigma^*$, Ξ^* , Ω^* !

2. New results on Σ^* & Λ^* from CB data

Crystal Ball: Prakhov et al., PRC 80(2009) 025204 $K^- + p \rightarrow \pi^0 + \Lambda$ & $K^- + p \rightarrow \pi^0 + \Sigma^0$ p_K=514-750 MeV, $\sqrt{s} = 1569 - 1676$ MeV

The high precision new data can give valuable information on $\Sigma^* \& \Lambda^*$

 $\Sigma^*(1620)1/2^- \rightarrow$ supporting evidence for quenched qqq models ?

Problem : evidence for its existence is very shaky !

Among 4 references listed in PDG for it:

One without PWA for J^p

Two based on multi-channel analysis gave contradicted BRs Other later multi-channel analyses claim to $\Sigma^*(1660)1/2^+$

The 4-th gave two comparable solutions with and without it by fitting K⁻n $\rightarrow \pi^-\Lambda$ data W.A. Morris et al., PRD17, 55 (1978)

Is the new CB data compatible with the old K⁻n $\rightarrow \pi^-\Lambda$ data analyzed by W.A. Morris et al., claiming possible $\Sigma^*(1620)1/2^-$?

new CB data on $K^-p \rightarrow \pi^0 \Lambda$ vs old $K^-n \rightarrow \pi^-\Lambda$ data

new CB data on K⁻p $\rightarrow \pi^0 \Lambda$: No $\Sigma(1620) 1/2^-$ needed !!

CB Λ Polarization data is crucial for discriminating $\Sigma(1620)1/2^-$ from $\Sigma(1635) 1/2^+$.

PDG2014 downgrades $\Sigma(1620)1/2^{-}$ from ** to *

New evidence for $\Sigma(1380)1/2^-$ from $\Lambda p \to \Lambda p\pi^0$

J.J.Xie, J.J.Wu, B.S.Zou, PRC90 (2014) 055204

The combined fit of new CB data on $K^-p \rightarrow \pi^0 \Lambda$ and old $K^-n \rightarrow \pi^-\Lambda$ data of $\sqrt{s} = 1569 - 1676$ MeV shows:

- 1) $\Sigma(1660)1/2^+$ is definitely needed, while $\Sigma(1620) 1/2^-$ is not needed at all !
- 2) Additional Σ(1542)3/2⁻, Σ(1840)3/2⁺, Σ(1610)1/2⁺ may exist.

Shi&Zou, PRC91(2015) 035202 :

new $\Lambda^{*}(1680)3/2^{+}$ M=1682±1 MeV, Γ =132±1 MeV

Further supports for a new $\Lambda^*(1680)3/2^+$ from coupled channel analysis of KN reactions

Kamano, Nakamura, Lee, Sato, PRC92 (2015) 025205 : M=1681+2 -8 MeV, Γ=10+22 -8 MeV

Fernandez-Ramirez, Danilkin, Manley, Mathieu, Szczepaniak arXiv:1510.07065 [hep-ph] : $M=1690\pm4$ MeV, $\Gamma=46\pm11$ MeV

Liu&Xie, PRC86(2012)055202 new $\Lambda^*(1670)3/2^- \rightarrow \Lambda \eta$ with width of 1.5 MeV [us]{ds} s

3. Possible new sources for $\Sigma^* \& \Lambda^*$

1) $\bar{
u}_{e/\mu} + p \rightarrow e^+/\mu^+ + \pi + \Lambda/\Sigma$, Wu, Zou, FBS 56 (2015) 165

MiniBooNE \rightarrow an ideal place for studying $\Sigma^* \& \Lambda^*$ below Kp threshold

2) $A_c^+ \rightarrow A \pi^+ \pi^0$ BR=3.6%

 $Λ_c$ production from πp, γp, e+eat BESIII, JPARC, JLAB, BelleII

3) K⁻, K_L beam experiments at JPARC&Jlab

Elegant new source for Λ^* , Σ^* & Ξ^* hyperon spectroscopy

→ talks by H.Ohnishi, M.Manley, K.Nakayama, Y.Oh

$$\begin{split} \mathbf{K}_{\mathbf{L}}\mathbf{p} & \rightarrow \Lambda \pi^{+}, \Sigma^{0} \pi^{+}, \Sigma^{+} \pi^{0}, \Sigma^{*0} \pi^{+}, \Sigma^{*+} \pi^{0}: \Sigma^{*}(1540) \ 3/2^{-} \\ \mathbf{K}_{\mathbf{L}}\mathbf{p} & \rightarrow \Sigma^{0} \pi^{0} \pi^{+}, \Lambda \pi^{0} \pi^{+}: \Sigma^{*}(1380) \ 1/2^{-}, \Sigma^{*}(1540) \ 3/2^{-}, \Lambda^{*}(1680) \ 3/2^{+} \\ \mathbf{K}_{\mathbf{L}}\mathbf{p} & \rightarrow \Sigma^{0} \eta \pi^{+}, \Lambda \eta \pi^{+}: \Sigma^{*}(1380) \ 1/2^{-}, \Sigma^{*}(1540) \ 3/2^{-}, \Lambda^{*}(1670) \ 3/2^{-} \end{split}$$

4. Conclusions and Prospects

 New hyperons support unquenched quark picture

 new Σ*(1380)1/2⁻
 replaces Σ*(1620)1/2⁻**

 new Λ*(1680)3/2⁺
 replaces Λ*(1690)3/2⁻****

 new Λ*(1670)3/2⁻
 with width of 1.5 MeV [ud]{ss} s

 →Λη
 Liu&Xie, PRC86(2012)055202

 new Σ*(1540) 3/2⁻

3/2⁻ baryon nonet with strangeness

- $\Lambda^{*}(1670) \sim [ud]{ss} s_{}$
- $N^{*}(1520) \sim [ud]{uq} q$
- $\Lambda^*(1520) ~ [ud]{su} \underline{u}$
- $\Sigma^{*}(1540) \sim [ud]{sd} d$

pentaquark prediction: $\Xi(1630)1/2^{-}$ & $\Xi(1690)3/2^{-}$

• All these and more new hyperons can be studied by forthcoming K beam experiments !

Thanks !