TREK @ J-PARC: Beyond the Standard Model with Stopped K⁺

Michael Kohl <kohlm@jlab.org> *

Hampton University, Hampton, VA 23668 Jefferson Laboratory, Newport News, VA 23606

* Supported by DOE ECA DE-SC0003884 and DOE DE-SC0013941

TREK Program

- E06: Search for Time Reversal Symmetry Violation
- E36: Test of Lepton Universality
- Search for Heavy Neutrinos
 - Lower intensity
- Search for Light Bosons
- TREK Apparatus
- Status

E36 data taking completed!

http://trek.kek.jp

The TREK program

• E06

(Time Reversal Experiment with Kaons, TREK)

- "Measurement of T-violating transverse muon polarization (P_T) in $K^+ \rightarrow \pi^0 \mu^+ \nu$ decays "
 - Proposal to PAC 1100-270 kWStage-1 approved since July 2006Spokespeople: Jun Imazato and M.K.
- E36 (Test of Lepton Universality, Search for Heavy Neutrinos and Light Bosons)
- "Measurement of $\Gamma(K^+ \rightarrow e^+ v) / \Gamma(K^+ \rightarrow \mu^+ v)$ and search for heavy sterile neutrinos using the TREK detector system"
 - Proposal to PACs 10-11,13-18 30-50 kW Stage-1 approved since August 2012 Stage-2 approved since September 2013 Spokespeople: M.K. and Suguru Shimizu

Timeline of TREK

- 2006: E06 (T-violation) Proposal (PAC1)
- 2009: J-PARC PS and HF start operating
- 2010: E36 (LFU/HNS) Proposal (PAC10)
- 2011: E36 stage-1 recommended (PAC11)
- 2012: E36 stage-1 approved (PAC15)
- 2013: E36 stage-2 recommended (PAC17)
- 2014: E36 stage-2 approved (PAC18)
- Detector preparation November 2014 April 2015
- First commissioning run April 8 (24) May 7, 2015
- Second commissioning run June 3 26, 2015
- Implemented improvements in summer 2015
- Production run October 14 November 24, 2015
- Run extended until December 18, 2015

TREK/E06: Transverse muon polarization

KEK-E246: $P_{T} = -0.0017 \pm 0.0023(stat) \pm 0.0011(sys)$ $(|P_{T}| < 0.0050 : 90\% C.L.)$ M. Abe et al., PRL83 (1999) 4253 M. Abe et al., PRL93 (2004) 131601 M. Abe et al., PRD72 (2006) 072005

Limits of lepton universality (LU)

- e, μ , and τ : Different masses, same gauge couplings, valid experimentally
- μ-e universality has been rather well established
- Recent summary by A. Pich, arXiv:1201.0537v1 [hep-ph] (2012)

	$\Gamma_{\tau \to \nu_\tau e \bar{\nu}_e} / \Gamma_{\mu \to \nu_\mu e \bar{\nu}_e}$	$\Gamma_{ au o u_ au \pi} / \Gamma_{\pi o \mu \bar{ u}_\mu}$	$\Gamma_{\tau \to \nu_\tau K} / \Gamma_{K \to \mu \bar{\nu}_\mu}$	$\Gamma_{W\to\tau\bar\nu_\tau}/\Gamma_{W\to\mu\bar\nu_\mu}$
$ g_{ au}/g_{\mu} $	1.0007 ± 0.0022	0.992 ± 0.004	0.982 ± 0.008	1.032 ± 0.012
	$\Gamma_{\tau \to \nu_\tau \mu \bar{\nu}_\mu} / \Gamma_{\tau \to \nu_\tau e \bar{\nu}_e}$	$\Gamma_{\pi \to \mu \bar{\nu}_{\mu}} / \Gamma_{\pi \to e \bar{\nu}_{e}}$	$\Gamma_{K\to\mu\bar\nu_\mu}/\Gamma_{K\to e\bar\nu_e}$	$\Gamma_{K\to\pi\mu\bar\nu_\mu}/\Gamma_{K\to\pi e\bar\nu_e}$
$ g_{\mu}/g_{e} $	1.0018 ± 0.0014	1.0021 ± 0.0016	0.998 ± 0.002	1.001 ± 0.002
	$\Gamma_{W\to\mu\bar\nu_\mu}/\Gamma_{W\to e\bar\nu_e}$		$\Gamma_{\tau \to \nu_\tau \mu \bar{\nu}_\mu} / \Gamma_{\mu \to \nu_\mu e \bar{\nu}_e}$	$\Gamma_{W\to\tau\bar\nu_\tau}/\Gamma_{W\to e\bar\nu_e}$
$ g_{\mu}/g_{e} $	0.991 ± 0.009	$ g_{ au}/g_e $	1.0016 ± 0.0021	1.023 ± 0.011

Recent development of τ spectroscopy

 τ_{τ} , m_{τ} , $\tau_{\tau}/\tau_{\mu} = (m_{\tau}/m_{\mu})^5 (g_{\tau}/g_{\mu})^2$, couplings to *W* and *Z*⁰

- LEP-II [PDG 2010] $R_{\tau\ell}^W = \frac{2 \operatorname{BR} (W \to \tau \,\overline{\nu}_{\tau})}{\operatorname{BR} (W \to e \,\overline{\nu}_e) + \operatorname{BR} (W \to \mu \,\overline{\nu}_{\mu})} = 1.055(23)$ 2.4 σ dev.
- BABAR [Phys. Rev. D 82, 072005 (2010)] $\mathcal{R}(D^{(*)}) = \mathcal{B}(\overline{B} \to D^{(*)}\tau^-\overline{\nu}_{\tau})/\mathcal{B}(\overline{B} \to D^{(*)}\ell^-\overline{\nu}_{\ell})$ 3.5 σ dev.
- LHCb [Phys. Rev. Lett. 113, 151601 (2014)] BR(B⁺→ K⁺μ⁺μ⁻) / BR(B⁺→ K⁺e⁺e⁻) = 0.745^{+0.090}_{-0.074}±0.0036 2.6 σ dev.
- Possible link to proton charge radius puzzle r_e (µH) = 0.84087 ± 0.00039 fm, r_e (CODATA2010) = 0.8775 ± 0.0051 fm

7 σ dev.

Lepton universality in Standard Model K₁₂

Standard Model:

•
$$\Gamma(K_{l2}) = g_l^2 \frac{G^2}{8\pi} f_K^2 m_K m_l^2 \left(1 - \frac{m_l^2}{m_K^2}\right)^2$$

 In the ratio of *Γ(K_{e2})* to *Γ(K_{µ2})*, hadronic form factors are cancelled

$$R_{K}^{SM} = \frac{\Gamma(K^{+} \to e^{+}\nu)}{\Gamma(K^{+} \to \mu^{+}\nu)} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right)^{2} \frac{(1 + \delta_{r})}{(1 + \delta_{r})}$$

$$\frac{helicity \ suppression}{helicity \ suppression}$$

$$radiative \ correction}{(Internal Brems.)}$$

- Strong helicity suppression of the electronic channel enhances sensitivity to effects beyond the SM
- Highly precise SM value
 RSM= (2.477±0.001) x 10⁻⁵ (with

 R_{K}^{SM} = (2.477±0.001) x 10⁻⁵ (with δ_{r} = -0.036); $\delta R_{K}/R_{K}$ =0.04% V. Cirigliano, I. Rosell, Phys. Rev. Lett. 99, 231801 (2007)

 $g_e = g_\mu?$

 v_{e}, v_{μ}

W

K⁺

L

Experimental status of R_{κ}

- Systematics:
 - In-flight-decay experiments: kinematics overlap
 - E36 stopped K⁺: detector acceptance and target
 - E36 complementary to in-flight experiments
- E36 goal: $\delta R_{\kappa}/R_{\kappa} = \pm 0.2\%$ (stat) $\pm 0.15\%$ (syst) [0.25% total]

Dark photon / light neutral boson search

 Dark photons (universal coupling) well motivated by dark matter observations (astronomical, direct, positron excess) and g_µ-2 anomaly

9

E36: Light boson expected signal

- Light neutral bosons (selective coupling) for proton radius puzzle
- Search for visible decay mode of $A' \rightarrow e^+e^-$ in K⁺ decays Kaons: $K^+ \rightarrow \mu^+ \nu A'$; $K^+ \rightarrow \pi^+ A'$ (also invisible decay); Pions: $\pi^0 \rightarrow \gamma A'$, using $K^+ \rightarrow \pi^+ \pi^0$ (21.13%) and $K^+ \rightarrow \mu^+ \nu \pi^0$ (3.27%)

E36: Dark photon exclusion limit

Location of J-PARC

J-PARC Facility (KEK/JAEA) South to North

Hadron Exp.

Facility

Materials and Life Experimental Facility

Linac

nchrotron

50 GeV Synchrotron

Neutrino Beams

(to Kamioka)

Bird's eye photo in January of 2008

J-PARC Hadron Experimental Hall

K1.1BR beamline

- K1.1BR constructed in 2009/10, commissioned by TREK Coll. in Oct. 2010
- Re-aligned after 11/3/11 earthquake, re-commissioned in June 2012
- J-PARC Hadron Hall operations restarted in April 2015
 π/K ratio of ~1.3 observed, kaon flux within expectation (1.4x10⁶/spill @ 32kW)

The TREK apparatus for E36

Modest upgrade of KEK-PS E246

Stopped K method

- K1.1BR beamline
- Fitch Cherenkov
- *K*⁺ stopping target

<u>Tracking</u>

- •MWPC (C2, C3, C4)
- •Spiral Fiber Tracker(SFT)

PID

- TOF1,2; TTC
- Aerogel Cherenkov (AC)
- Pb glass counter (PGC)

<u>Gamma ray</u>

• CsI(Tl)

μ⁺/e⁺ identification

 P_{mis} (total) = P_{mis} (TOF) x P_{mis} (AČ) x P_{mis} (LG) = 8 x 10⁻⁷ < $O(10^{-6})$

Scintillating-fiber kaon stopping target

- Built at TRIUMF (delivered to J-PARC in September 2014)
- 256 scintillating fibers (3x3 mm²), WLS fiber in groove
- MPPC readout

Spiraling fiber tracker (SFT)

- Double-layer fibers in 2 helicities wrapped around target bundle for near target vertex
- Using spare MPPC channels from fiber target

TREK/E36 installation and commissioning

- Completed detector installation Apr. 2015
- Electronics and DAQ set up and tested (area available only mid-January)
- Conditioning of MWPCs

- Commissioning of TGT+TOF1+SFT with cosmic rays
- Check-out of all detectors with beam
- Commissioning of toroidal magnet (cryogenics) only after April 24

Target performance

20000

6 8

10 12 14

Kaon beam profile

Track identification by central detector

Momentum determination

- Charged particle momentum determined by 3-point tracking (C2, C3, C4)
- Events selected requiring track consistency with target and SFT
- Monochromatic peaks from $K_{\mu 2}$ and $K_{\pi 2}$

Track consistency

21

Particle identification by AC, PGC, and TOF²²

- AC and PGC performing as expected
- TOF resolution below expectation due to TOF1
 performance (June data)
- Suppression of muon mis-identification below O(10⁻⁸) level achievable with refined analysis
- Refined analysis of PID performance in progress

Very preliminary

K_{e2} events

- Observed K_{e2} peak in the momentum spectrum after PID cuts
- Statistics from 100 runs in June 2015
- Improved trigger purity and dead time by additional trigger counter (TTC) and by requiring >1 target fiber hit in the trigger
- Collected ~40k K_{e2} events in fall 2015 (estimate based on K_{μ2})

Summary

- Substantial progress of TREK/E36 @ J-PARC toward realization
- E36: Measure K_{e2}/K_{µ2} ratio test of lepton universality to 0.25% (beam power 30-40 kW)
- Searches for dark photon/light boson and heavy sterile neutrino
- Experiment has been fully commissioned in spring 2015
- Production running has been completed (Oct. 14 Dec. 18, 2015)
- Pursue TREK/E06 (T-violation) in the future at extended Hadron F.

TREK (E36/E06) collaboration

~30 collaborators

Spokespeople: M.K., S. Shimizu

CANADA University of Saskatchewan *Department of Physics and Engineering*

University of British Columbia Department of Physics and Astronomy

TRIUMF

Universite de Montreal *Laboratoire de Physique Nucleaire*

USA

University of South Carolina Department of Physics and Astronomy

University of Iowa Department of Physics

Iowa State University College of Liberal Arts & Sciences

Hampton University Department of Physics JAPAN

Osaka University Department of Physics

Chiba University Department of Physics

Rikkyo University Department of Physics

High Energy Accel. Research Organzation (KEK) Institute of Particle and Nuclear Studies

RUSSIA Russian Academy of Sciences (RAS) Institute for Nuclear Research (INR)

VIETNAM University of Natural Sciences

Backup

Lepton universality violation in K₁₂

SUSY with LFV for K_{e2}

- Charged Higgs H⁺ mediated LFV SUSY
- Large enhancement from m_{τ}^2/m_e^2
- A sizable effect of $\Delta R_{\rm K}/R_{\rm K} \sim 1.3\%$ possible
- J. Girrbach and U. Nierste, arXiv:1202.4906;
- A. Masiero, P. Paradisi, and R. Petronzio, Phys. Rev. D 74, 011701 (2006); JHEP11, 042 (2008)

FIG. 1. Contribution to the effective $\bar{\nu}_{\tau} \ell_R H^+$ coupling.

General discussions on SUSY effects

R.M. Fonseca, J.C. Romão, A.M. Teixeira, Eur. Phys. J. C 72, 2228 (2012)

- strong constraints from $B_s \rightarrow \mu^+ \mu^-$ and $B_u \rightarrow \tau v$
- $\bullet \ \left| \Delta R_{\rm K} / R_{\rm K} \right| \sim O(10^{-3})$

Neutrino mixing

 R_{K} constrains neutrino mixing parameters within SM extensions involving

- ◆ 4th generation of quarks and leptons H. Lacker, A. Menzel, JHEP07, 006 (2010)
- sterile neutrinos A. Abada et al., JHEP02, 048 (2013) [arXiv: 1211.3052]

Heavy neutrino search in $K^+ \rightarrow \mu^+ N$, $e^+ N$

- v Minimal Standard Model (vMSM)
 - -- Explanation of DM and BAU
 - -- Possibility of $M_N \leq M_K$

• Search for monochromatic peaks in $K^+ \rightarrow \mu^+ N$, $K^+ \rightarrow e^+ N$ D. Gorbunov and M. Shaposhnikov, JHEP0710, 015 (2007)

Heavy neutrino search in $K^+ \rightarrow \mu^+ N$, e⁺N

very approximate

- **BAU** Baryon asymmetry of the Universe
- **DM** Dark matter
- BBN Big bang nucleosynthesis
 - Sterile neutrino searches

L. Canetti, M. Drewes, M. Shaposhnikov, Phys. Rev. Lett. **110**, 061801 (2013)

Projected TREK / E36

 $BR(K^{\scriptscriptstyle +} \to \mu^{\scriptscriptstyle +}N,\,e^{\scriptscriptstyle +}N) \stackrel{_{\scriptstyle <}}{_{\scriptstyle \sim}} 2\,\times\,10^{\scriptscriptstyle -8}$

 $U^2 \stackrel{_{\scriptstyle <}}{_{\scriptstyle \sim}} 3 \, \times \, 10^{\text{-8}}$ for $M^{}_N$ < 200 MeV

sensitivity for $M_N > 200$ MeV needs more study

Csl(TI) calorimeter analysis

- Energy and timing obtained by pulse shape data from FADC (VF48)
- Events from the K⁺ decays were selected
- K_{µ2} events with single crystal hit used for the energy calibration
- Deposited muon energy used for energy calibration of each crystal

Very preliminary

Calibration data from early June

Combining spectrometer + calorimeter

- K_{π2} events selected by analyzing momentum and TOF (M²)
- π⁰ invariant mass reconstructed
 by selecting two-cluster events
- Large π⁺ / π⁰ opening angle obtained
- Confirmed that the total
 E36 system works correctly and is consistent with E246

