Lattice Studies of Hyperon Spectroscopy

David Richards Jefferson Laboratory

KL2016, Jefferson Lab, Feb 2016

Outline

- Spectroscopy: theory and experiment
- Quantum Chromodynamics on the lattice
- Recent Highlights
- Resonances
 - phenomenology
 - strong decays
- Summary and prospects

Baryon Spectroscopy

- No baryon "exotics", ie quantum numbers not accessible with simple quark model; but may be hybrids!
- Nucleon Spectroscopy: Quark model masses and amplitudes states classified by isospin, parity and spin.

• Missing, because our pictures do not capture correct degrees of freedom?

• Do they just not couple to probes?

Capstick and Roberts, PRD58 (1998) 074011

Low-lying Hadron Spectrum

Benchmark of LQCD $C(t) = \sum_{\vec{x}} \langle 0 \mid N(\vec{x}, t) \bar{N}(0) \mid 0 \rangle = \sum_{n, \vec{x}} \langle 0 \mid e^{ip \cdot x} N(0) e^{-ip \cdot x} \mid n \rangle \langle n \mid \bar{N}(0) \mid 0 \rangle$ $= |\langle n \mid N(0) \mid 0 \rangle|^2 e^{-E_n t} = \sum_{n} A_n e^{-E_n t}$

Jefferson Lab

Durr et al., BMW Collaboration

Science 2008

Control over:

- Quark-mass dependence
- Continuum extrapolation
 - finite-volume effects (pions, resonances)

QCD + QED

BMW Collaboration, Science 2014

Variational Method

• Construct matrix of correlators

$$C_{\alpha\beta}(t,t_0) = \langle 0 \mid \mathcal{O}_{\alpha}(t)\mathcal{O}_{\beta}^{\dagger}(t_0) \mid 0 \rangle$$

$$\longrightarrow \sum_{n} Z_{\alpha}^{n} Z_{\beta}^{n\dagger} e^{-M_n(t-t_0)}$$

where $\{\mathcal{O}_{\alpha}\}$ are basis of operators of definite symmetry: P, C and J?

Delineate contributions using variational method: solve

$$C(t)u(t,t_0) = \lambda(t,t_0)C(t_0)u(t,t_0)$$

$$\lambda_i(t,t_0) \to e^{-E_i(t-t_0)} \left(1 + O(e^{-\Delta E(t-t_0)})\right)$$

Eigenvectors, with metric $C(t_0)$, are orthonormal and project onto the respective states

Baryon Operators

Aim: interpolating operators of *definite* (continuum) JM: O^{JM}

• Lattice does not respect symmetries of continuum: *cubic symmetry for states at rest* $\langle 0 \mid O^{JM} \mid J', M' \rangle = Z^J \delta_{J,J'} \delta_{M,M'}$ Starting point $B = (\mathcal{F}_{\Sigma_F} \otimes \mathcal{S}_{\Sigma_S} \otimes \mathcal{D}_{\Sigma_D}) \{\psi_1 \psi_2 \psi_3\}$

 $\overleftrightarrow{D}_{m=0} = i\overleftrightarrow{D}_{z}$

Introduce circular basis: $\overleftrightarrow{D}_{m=-1} = \frac{i}{\sqrt{2}} \left(\overleftrightarrow{D}_x - i \overleftrightarrow{D}_y \right)$

 $\overleftrightarrow{D}_{m=+1} = -\frac{i}{\sqrt{2}} \left(\overleftrightarrow{D}_x + i \overleftrightarrow{D}_y \right).$

Straighforward to project to definite spin: J = 1/2, 3/2, 5/2

$$\left|\left[J,M\right]\right\rangle = \sum_{m_1,m_2} \left|\left[J_1,m_1\right]\right\rangle \otimes \left|\left[J_2,m_2\right]\right\rangle \left\langle J_1m_1;J_2m_2\right|JM\right\rangle$$

Use projection formula to find subduction under irrep. of cubic group - operators are closed under rotation!

Excited Baryon Spectrum - I

 $[70, 0^+], [56, 2^+], [70, 2^+], [20, 1^+]$

N ^{1/2+} sector: need for complete basis to faithfully extract states

Broad features of SU(6)xO(3) symmetry. Counting of states consistent with NR quark model.

Inconsistent with quark-diquark picture or parity doubling.

Hybrid Baryon Spectrum

Original analysis ignore hybrid operators of form $D_{l=1,M}^{[2]}$

Interpolating Operators

Examine overlaps onto different NR operators, i.e. containing upper components of spinors: *ground state has substantial hybrid component*

Putting it Together

Subtract p

Subtract N

Common mechanism in meson and baryon hybrids: chromomagnetic field with $E_g \sim 1.2 - 1.3 \text{ GeV}$

Setting the strange-quark mass

H-W Lin et al (Hadron Spectrum Collaboration), PRD79, 034502 (2009)

Proportional to *m*_l to LO ChPT

Flavor Structure - I

$SU(3)_F$	\mathbf{S}	L		J^P		
$8_{ m F}$	$\frac{1}{2}$ $\frac{3}{2}$	1 1	$\frac{1}{2}^{-}$ $\frac{1}{2}^{-}$	$\frac{3}{2} - \frac{3}{2} - \frac{3}{2}$	$\frac{5}{2}^{-}$	
$N_8(J)$			2	2	1	
$10_{ m F}$	$\frac{1}{2}$	1	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$		
$N_{10}(J)$			1	1	0	
$1_{ m F}$	$\frac{1}{2}$	1	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$		
$N_1(J)$			1	1	0	

One derivative

R. Edwards et al., Phys. Rev. D87 (2013) 054506

$SU(3)_F$	S	L	J^P			
$8_{\rm F}$	$\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2}$	0 0 1 2 2 0 2	$\frac{\frac{1}{2}}{\frac{1}{2}} + \frac{1}{\frac{1}{2}} + \frac{1}{2} + \frac{1}{2$	$\frac{3}{2} + \frac{3}{2} + \frac{3}$	$\frac{5+}{2}+\frac$	$\frac{7}{2}^+$
$N_8(J)$			4	5	3	1
$10_{ m F}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{3}{2}$	0 2 0 2	$\frac{1}{2}^{+}$ $\frac{1}{2}^{+}$	$\frac{3}{2} + \frac{3}{2} + \frac{3}$	$\frac{5}{2}^{+}$ $\frac{5}{2}^{+}$	$\frac{7}{2}^+$
$N_{10}(J)$			2	3	2	1
$1_{ m F}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{3}{2}$	0 2 1	$\frac{1}{2}^{+}$ $\frac{1}{2}^{+}$	$\frac{3}{2} + \frac{3}{2} + \frac{3}{2} + \frac{3}{2}$	$\frac{5}{2} + \frac{5}{2} + \frac{5}{2}$	
$N_1(J)$			2	2	2	0

Two derivative

Flavor Structure - II

- Can identify predominant flavor for each state: Yellow (10F), Blue (8F), Beige (1F).
- SU(6) x O(3) Counting
- Presence of "hybrids" characteristic across all +ve parity channels: **BOLD Outline**

Spectrum superposition of flavor structure

Roper Resonance

Some of our states are missing...

Momenta are quantised \rightarrow discrete spectrum of energies. Even above threshold at our quark masses we should see (close-to?) these energies in spectrum

Lambda (1405)

Two poles below KN threshold?

Hall et al, arXiv;1411.3402, PRL

- Argue that is molecular state
- Suppression of strangeness contribution to magnetic moment consistent with KN molecule
- Strong caveat interpretation in terms of infinite-volume matrix element requires two-body analysis at finite volume

Isovector meson spectrum

States unstable under strong interactions

Meson spectrum on two volumes: dashed lines denote expected (noninteracting) multi-particle energies.

Allowed two-particle contributions - momenta

- governed by cubic symmetry of volume

Calculation is incomplete.

Momentum-dependent I = 2 $\pi\pi$ **Phase Shift**

Dudek et al., Phys Rev D83, 071504 (2011)

Include two-body operators

Reinventing the *quantum-mechanical* wheel Thanks to Raul Briceno (in 1+1 dimensions)

Periodicity: $L p_n = 2\pi n$

Periodicity: $L p_n^* + 2\delta(p_n^*) = 2\pi n$

$$L p_n^* + 2\delta(p_n^*) = 2\pi n$$

I=2 and Resonant I = 1 $\pi\pi$ Phase Shift

Inelastic in $\pi\pi$ KK channel

Inelastic Threshold

First - and Successful - inelastic

$$\det\left[\delta_{ij}\delta_{JJ'} + i\rho_i t_{ij}^{(J)}(E_{\mathsf{cm}})\left(\delta_{JJ'} + i\mathcal{M}_{JJ'}^{\vec{P}\Lambda}(p_iL)\right)\right] = 0$$

Parametrized as phase shift + inelasticity

Dudek, Edwards, Thomas, Wilson, PRL, PRD

Lattices for Hadron Physics

- Calculations at physical light-quark masses: *direct comparison with experiment*
- Several fine lattice spacings: controlled extrapolation to continuum, and to reach high Q2
- Hypercube symmetry: simplified operator mixing
- Variational method, to control and extract excited states

$$\operatorname{Cost}_{\operatorname{traj}} = C\xi^{1.25} \left(\frac{\operatorname{fm}}{a_s}\right)^6 \cdot \left[\left(\frac{L_s}{\operatorname{fm}}\right)^3 \left(\frac{L_t}{\operatorname{fm}}\right)\right]^{5/4}$$

Major Effort by USQCD

Summary

- Determining the quantum numbers and the study of the "single-hadron" states a solved problem
- Lattice calculations used to construct new "phenomenology" of QCD
 - Quark-model like spectrum, common mechanism for gluonic excitations in mesons and baryons. LOW ENERGY GLUONIC DOF
- **"Prediction"** Additional states in baryon spectrum associated with hybrid dof, including for hyperons! Spectrum at least a rich as quark model flavor structure a superposition!
- Formalism for extracting scattering amplitudes, including inelastic channels, developed - applied for first time to meson sector
- COUPLED-CHANNEL METHODS ARE KEY

Efficient Correlation fns:

• Use the new "distillation" method.

Eigenvectors of

Observe
$$L^{(J)} \equiv (1 - \frac{\kappa}{n}\Delta)^n = \sum_{i=1} f(\lambda_i) v^{(i)} \otimes v^{*(i)}$$

- Truncate sum at sufficient i to capture relevant physics modes we use 64: set "weights" f to be unity
- Baryon correlation function

$$C_{ij}(t) = \Phi^{i,(p,q,r)}_{\alpha\beta\gamma}(t)\Phi^{j,(\bar{p},\bar{q},\bar{r})\dagger}_{\bar{\alpha}\bar{\beta}\bar{\gamma}}(0)$$

$$\times \left[\tau^{p\bar{p}}_{\alpha\bar{\alpha}}(t,0)\tau^{q\bar{q}}_{\beta\bar{\beta}}(t,0)\tau^{r\bar{r}}_{\gamma\bar{\gamma}}(t,0) - \tau^{p\bar{p}}_{\alpha\bar{\alpha}}(t,0)\tau^{q\bar{r}}_{\beta\bar{\gamma}}(t,0)\tau^{r\bar{q}}_{\gamma\bar{\beta}}(t,0)\right]$$

/

M. Peardon *et al.*, PRD80,0 (2009)

٠

where

$$\Phi^{i,(p,q,r)}_{\alpha\beta\gamma} = \epsilon^{abc} S^i_{\alpha\beta\gamma} (\Gamma_1 \xi^{(p)})^a (\Gamma_2 \xi^{(q)})^b (\Gamma_3 \xi^{(r)})^c$$

$$\tau^{p\bar{p}}_{\alpha\bar{\alpha}}(t,0) = \xi^{\dagger(p)}(t) M^{-1}_{\alpha\bar{\alpha}}(t,0) \xi^{(\bar{p})}(0)$$

Perambulators

Jefferson Lab

