Orientifold Planar Equivalence: the chiral condensate

Biagio Lucini
Swansea University

(with A. Armoni, A. Patella, C. Pica [hep-th/0804.4501])

Williamsburg (USA), July 2008
The antisymmetric and the antifundamental representations coincide for $SU(3)$ (but not in general for $SU(N)$) ⇒ different $SU(N)$ generalizations of QCD.

In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to $\mathcal{N} = 1$ SYM in the planar limit ⇒ copy analytical predictions from SUSY to QCD.

The orientifold planar equivalence holds if and only if the C-symmetry is not spontaneously broken in both theories ⇒ a calculation from first principles is mandatory.

Assuming that planar equivalence works, how large are the $1/N$ corrections?

The antisymmetric and the antifundamental representations coincide for $SU(3)$ (but not in general for $SU(N)$) \Rightarrow different $SU(N)$ generalizations of QCD.

In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to $\mathcal{N} = 1$ SYM in the planar limit \Rightarrow copy analytical predictions from SUSY to QCD.

The orientifold planar equivalence holds if and only if the C-symmetry is not spontaneously broken in both theories \Rightarrow a calculation from first principles is mandatory.

Assuming that planar equivalence works, how large are the $1/N$ corrections?

Orientifold planar equivalence

- The antisymmetric and the antifundamental representations coincide for $SU(3)$ (but not in general for $SU(N)$) ⇒ different $SU(N)$ generalizations of QCD.

- In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to $\mathcal{N} = 1$ SYM in the planar limit ⇒ copy analytical predictions from SUSY to QCD.

- The orientifold planar equivalence holds if and only if the C-symmetry is not spontaneously broken in both theories ⇒ a calculation from first principles is mandatory.

- Assuming that planar equivalence works, how large are the $1/N$ corrections?

Orientifold planar equivalence

The antisymmetric and the antifundamental representations coincide for $SU(3)$ (but not in general for $SU(N)$) \Rightarrow different $SU(N)$ generalizations of QCD.

In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to $\mathcal{N}=1$ SYM in the planar limit \Rightarrow copy analytical predictions from SUSY to QCD.

The orientifold planar equivalence holds if and only if the C-symmetry is not spontaneously broken in both theories \Rightarrow a calculation from first principles is mandatory.

Assuming that planar equivalence works, how large are the $1/N$ corrections?
Orientifold planar equivalence

- The antisymmetric and the antifundamental representations coincide for $SU(3)$ (but not in general for $SU(N)$) \Rightarrow different $SU(N)$ generalizations of QCD.

- In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to $\mathcal{N} = 1$ SYM in the planar limit \Rightarrow copy analytical predictions from SUSY to QCD.

- The orientifold planar equivalence holds if and only if the C-symmetry is not spontaneously broken in both theories \Rightarrow a calculation from first principles is mandatory.

- Assuming that planar equivalence works, how large are the $1/N$ corrections?

Dynamical fermions difficult to simulate \Rightarrow start with the quenched theory.
Outline

1. Condensates on the lattice
2. Proof of the "quenched" equivalence
3. Lattice setup
4. Results
Outline

1. Condensates on the lattice
2. Proof of the “quenched” equivalence
3. Lattice setup
4. Results
Aim

To measure the bare quark condensate with staggered fermions in the two-index representations of the gauge group, in the quenched lattice theory.

- Wilson action.
- Staggered Dirac operator $D = m - K$.
- The two-index representations.
- The bare condensate.
Aim

To measure the bare quark condensate with staggered fermions in the two-index representations of the gauge group, in the quenched lattice theory.

- Wilson action.
- Staggered Dirac operator \(D = m - K \).
- The two-index representations.
- The bare condensate.

\[
S_{YM} = -\frac{2N}{\lambda} \sum_p \Re \text{tr } U(p)
\]
Aim

To measure the bare quark condensate with **staggered fermions** in the two-index representations of the gauge group, in the quenched lattice theory.

- Wilson action.
- Staggered Dirac operator. $D = m - K$.
- The two-index representations.
- The bare condensate.

\[
D_{xy} = m\delta_{xy} - K_{xy} =
\]

\[
= m\delta_{xy} + \frac{1}{2} \sum_{\mu} \eta_{\mu}(x) \left\{ R[U_{\mu}(x)]\delta_{x+\hat{\mu},y} - R[U_{\mu}(x - \hat{\mu})]^\dagger \delta_{x-\hat{\mu},y} \right\}
\]
Condensates on the lattice

Aim

To measure the bare quark condensate with staggered fermions in the two-index representations of the gauge group, in the quenched lattice theory.

- Wilson action.
- Staggered Dirac operator $D = m - K$.
- The two-index representations.
- The bare condensate.

\[
\text{tr Adj}[U] = |\text{tr } U|^2 - 1
\]

\[
\text{tr S/AS}[U] = \frac{(\text{tr } U)^2 \pm \text{tr}(U^2)}{2}
\]
Condensates on the lattice

Aim

To measure the bare quark condensate with staggered fermions in the two-index representations of the gauge group, in the quenched lattice theory.

- Wilson action.
- Staggered Dirac operator $D = m - K$.
- The two-index representations.
- The bare condensate.

For S/AS representations:

$$\langle \bar{\psi}\psi \rangle_q = \frac{1}{V} \langle \text{Tr}(m - K)^{-1} \rangle_{YM}$$

For the adjoint representation:

$$\langle \lambda\lambda \rangle_q = \frac{1}{2V} \langle \text{Tr}(m - K)^{-1} \rangle_{YM}$$
Proof of the “quenched” equivalence

\[
\lim_{N \to \infty} \frac{1}{V N^2} \langle \text{Tr} (m - K_{S/AS})^{-1} \rangle = \lim_{N \to \infty} \frac{1}{2V N^2} \langle \text{Tr} (m - K_{Adj})^{-1} \rangle
\]

- Expand in \(m^{-1} \).
- Replace the two-index representations.
- Take the large-\(N \) limit.
- Mathematical details. The condensate is an analytical function of each real mass. The large-\(N \) limit can be exchanged with the series.
Proof of the “quenched” equivalence

Equivalence

\[
\lim_{N \to \infty} \frac{1}{VN^2} \langle \text{Tr}(m - K_{S/AS})^{-1} \rangle = \lim_{N \to \infty} \frac{1}{2VN^2} \langle \text{Tr}(m - K_{\text{Adj}})^{-1} \rangle
\]

- Expand in \(m^{-1} \).
- Replace the two-index representations.
- Take the large-\(N \) limit.

Mathematical details. The condensate is an analytical function of each real mass. The large-\(N \) limit can be exchanged with the series.

\[
\frac{1}{VN^2} \langle \text{Tr}(m - K)^{-1} \rangle = \frac{1}{VN^2} \sum_{n=0}^{\infty} \frac{1}{m^{n+1}} \langle \text{Tr} K^n \rangle = \\
= \frac{1}{VN^2} \sum_{\omega \in \mathcal{C}} \frac{c(\omega)}{m^{L(\omega)+1}} \langle \text{tr} R[U(\omega)] \rangle
\]
Proof of the “quenched” equivalence

Equivalence

\[
\lim_{N \to \infty} \frac{1}{VN^2} \langle \text{Tr}(m - K_{S/AS})^{-1} \rangle = \lim_{N \to \infty} \frac{1}{2VN^2} \langle \text{Tr}(m - K_{\text{Adj}})^{-1} \rangle
\]

- Expand in \(m^{-1} \).
- Replace the two-index representations.
- Take the large-\(N \) limit.

Mathematical details. The condensate is an analytical function of each real mass. The large-\(N \) limit can be exchanged with the series.

\[
\frac{1}{VN^2} \langle \text{Tr}(m - K_{S/AS})^{-1} \rangle = \frac{1}{2V} \sum_{\omega \in C} \frac{c(\omega)}{m^{L(\omega)}+1} \frac{\langle [\text{tr} U(\omega)]^2 \rangle \pm \langle [\text{tr} U(\omega)]^2 \rangle}{N^2}
\]

\[
\frac{1}{2VN^2} \langle \text{Tr}(m - K_{\text{Adj}})^{-1} \rangle = \frac{1}{2V} \sum_{\omega \in C} \frac{c(\omega)}{m^{L(\omega)}+1} \frac{\langle |\text{tr} U(\omega)|^2 \rangle - 1}{N^2}
\]
Proof of the “quenched” equivalence

Equivalence

\[
\lim_{N \to \infty} \frac{1}{VN^2} \langle \text{Tr}(m - K_{S/AS})^{-1} \rangle = \lim_{N \to \infty} \frac{1}{2VN^2} \langle \text{Tr}(m - K_{\text{Adj}})^{-1} \rangle
\]

Expand in \(m^{-1} \).

Replace the two-index representations.

Take the large-\(N \) limit.

Mathematical details. The condensate is an analytical function of each real mass. The large-\(N \) limit can be exchanged with the series.

\[
\frac{1}{VN^2} \langle \text{Tr}(m - K_{S/AS})^{-1} \rangle = \frac{1}{2V} \sum_{\omega \in C} \frac{c(\omega)}{m^{L(\omega) + 1}} \frac{\langle [\text{tr } U(\omega)]^2 \rangle \pm \langle \text{tr } [U(\omega)^2] \rangle}{N^2}
\]

\[
\frac{1}{2VN^2} \langle \text{Tr}(m - K_{\text{Adj}})^{-1} \rangle = \frac{1}{2V} \sum_{\omega \in C} \frac{c(\omega)}{m^{L(\omega) + 1}} \frac{\langle |\text{tr } U(\omega)|^2 \rangle}{N^2} - 1
\]
Proof of the “quenched” equivalence

\[
\lim_{N \to \infty} \frac{1}{VN^2} \langle \text{Tr}(m - K_{S/AS})^{-1} \rangle = \lim_{N \to \infty} \frac{1}{2VN^2} \langle \text{Tr}(m - K_{\text{Adj}})^{-1} \rangle
\]

- Expand in \(m^{-1}\).
- Replace the two-index representations.
- Take the large-\(N\) limit.

Mathematical details. The condensate is an analytical function of each real mass. The large-\(N\) limit can be exchanged with the series.

\[
\frac{1}{VN^2} \langle \text{Tr}(m - K_{S/AS})^{-1} \rangle = \frac{1}{2V} \sum_{\omega \in \mathcal{C}} \frac{c(\omega)}{m^{L(\omega)+1}} \frac{\langle \text{tr} U(\omega) \rangle \langle \text{tr} U(\omega) \rangle}{N^2}
\]

\[
\frac{1}{2VN^2} \langle \text{Tr}(m - K_{\text{Adj}})^{-1} \rangle = \frac{1}{2V} \sum_{\omega \in \mathcal{C}} \frac{c(\omega)}{m^{L(\omega)+1}} \frac{\langle \text{tr} U(\omega) \rangle \langle \text{tr} U(\omega)^\dagger \rangle}{N^2}
\]
Proof of the “quenched” equivalence

\[
\lim_{{N \to \infty}} \frac{1}{VN^2} \langle \text{Tr} (m - K_{S/AS})^{-1} \rangle = \lim_{{N \to \infty}} \frac{1}{2VN^2} \langle \text{Tr} (m - K_{Adj})^{-1} \rangle
\]

- Expand in \(m^{-1} \).
- Replace the two-index representations.
- Take the large-\(N \) limit.
- Mathematical details. The condensate is an analytical function of each real mass. The large-\(N \) limit can be exchanged with the series.
Outline

1. Condensates on the lattice
2. Proof of the "quenched" equivalence
3. Lattice setup
4. Results
A convenient parameterization

\[
\frac{1}{N^2} \langle \bar{\psi} \psi \rangle_{S/\text{AS}} = \frac{1}{2V} \sum_{\omega \in \mathcal{C}} \frac{c(\omega)}{m^L(\omega) + 1} \frac{\langle [\text{tr} U(\omega)]^2 \rangle \pm \langle \text{tr}[U(\omega)^2] \rangle}{N^2}
\]

\[
\frac{1}{N^2} \langle \lambda \lambda \rangle_{\text{Adj}} = \frac{1}{2V} \sum_{\omega \in \mathcal{C}} \frac{c(\omega)}{m^L(\omega) + 1} \frac{\langle |\text{tr} U(\omega)|^2 \rangle - 1}{N^2}
\]
A convenient parameterization

\[\frac{1}{N^2} \langle \bar{\psi} \psi \rangle_{S/AS} = f \left(m, \frac{1}{N^2} \right) \pm \frac{1}{N} g \left(m, \frac{1}{N^2} \right) \]

\[\frac{1}{N^2} \langle \lambda \lambda \rangle_{\text{Adj}} = \tilde{f} \left(m, \frac{1}{N^2} \right) - \frac{1}{2N^2} \langle \bar{\psi} \psi \rangle_{\text{free}} \]

Planar equivalence: \(f(m, 0) = \tilde{f}(m, 0) \).

Strategy

1. Simulate the condensates at various values of the mass.
2. Extract the functions \(f, g, \tilde{f} \).
3. Fit at fixed mass:

\[\tilde{f} = a_0 + \frac{b_0}{N^2} \quad g = a_1 + \frac{b_1}{N^2} \quad f - \tilde{f} = \frac{a_2}{N^2} + \frac{b_2}{N^4} \]
$N = 2, 3, 4, 6, 8$

$\beta(N)$ chosen in such a way that $(aT_c)^{-1} = 5 (a \simeq 0.145 \text{ fm})$

14^4 lattice, which corresponds to $L \simeq 2.0 \text{ fm}$

22 values of the bare mass in the range $0.012 \cdots 8.0$
Outline

1. Condensates on the lattice
2. Proof of the “quenched” equivalence
3. Lattice setup
4. Results
For $m \leq 0.2$ we get $\chi^2 / \text{dof} \leq 0.53$ (we use $N = 4, 6, 8$).
For $m \leq 0.2$ we get $\chi^2 / \text{dof} \leq 0.37$ (we are fitting here $f - \tilde{f}$; we use $N = 4, 6, 8$).
For $m \leq 0.2$ we get χ^2/dof ≤ 0.17 (we use $N = 4, 6, 8$).
Condensate in the adjoint representation

\[\frac{\langle \lambda \lambda \rangle_\text{Adj}(m = 0.012)}{N^2} = 0.23050(22) - \frac{0.3134(72)}{N^2} \]

At \(N = 3 \), relative error \(\simeq 0.8\% \).
Condensate in the antisymmetric representation

\[
\langle \bar{\psi}\psi \rangle_{\text{AS}}(m = 0.012) = \frac{0.23050(22)}{N^2} - \frac{0.4242(11)}{N} - \frac{0.612(43)}{N^2} - \frac{0.811(25)}{N^3}
\]

At \(N = 3 \), condensate < 0!
Condensate in the symmetric representation

\[\frac{\langle \bar{\psi} \psi \rangle_{S}(m = 0.012)}{N^2} = \frac{0.23050(22)}{N} + \frac{0.4242(11)}{N^2} - \frac{0.612(43)}{N^3} + \frac{0.811(25)}{N^4} \]

At \(N = 3 \), relative error \(\simeq 4\% \).
Conclusions and perspectives

- First lattice calculation involving fermions in the two-index representations at $N \geq 4$.
- Check of the orientifold planar equivalence in a simple case.
- Computation of the quark condensate
 - For fermions in the adjoint and symmetric representations, the leading $1/N^2$ correction describes the data at $N \geq 3$ with an accuracy of a few percents;
 - For fermions in the antisymmetric representation higher order corrections play a major role.

- Current and future developments
 - Dynamical fermions;
 - Renormalization of the condensate and continuum limit.