Scaling and Chiral Extrapolation

C. Urbach
for the ETM Collaboration

Humboldt-Universität zu Berlin

Lattice 2008
Continuum, Chiral and Thermodynamic Limits

we need a good understanding of those for extrapolating
 • data at finite a to the continuum
 • data from unphysical m_q to the physical point (χPT)
 • data in a finite box to infinite volume (χPT)
in order to control systematic uncertainties

however, we also have very interest in χPT itself
 • e.g. to extract low energy constants
European Twisted Mass Collaboration

Members from all over Europe:
Cyprus, France, Germany, Great Britain, Italy, Netherlands, Spain, Switzerland

C. Alexandrou, R. Baron, B. Blossier,
Ph. Boucaud, M. Brinet, J. Carbonell,
P. Dimopoulos, V. Drach, A. Deuzeman,
F. Farchioni, R. Frezzotti, V. Gimenez, I. Hailperin,
G. Herdoiza, K. Jansen, X. Feng, J. Gonzalez Lopez, T. Korzec, G. Koutsou, Z. Liu, V. Lubicz,
G. Martinelli, C. McNeile, C. Michael, I. Montvay,
G. Münster, A. Nube, D. Palao, E. Pallante,
O. Pène, S. Reker, D. Renner, C. Richards,
G.C. Rossi, S. Schäfer, L. Scorzato, A. Shindler,
S. Simula, T. Sudmann, C. Tarantino, C. Urbach,
A. Vladikas, M. Wagner, U. Wenger
Wilson Twisted Mass Fermions

- Wilson Twisted Mass Dirac operator

\[
D_{tm} = \frac{1}{2} \sum_{\mu} \left[\gamma_\mu (\nabla_\mu + \nabla^*_\mu) - a \nabla^*_\mu \nabla_\mu \right] + m_0 + i \mu_q \gamma_5 \tau_3
\]

[Frezzotti, Grassi, Sint, Weisz, '99]

- when \(m_0 = m_{\text{crit}} \) (maximal twist)
 physical observables are \(\mathcal{O}(a) \) improved

[Frezzotti, Rossi, 2003]

- bare twisted mass parameter \(\mu_q \)
 directly relates to physical quark mass
 only multiplicative renormalisation

Drawback:

- flavour symmetry explicitly broken at finite \(a \)-values
 appears at \(\mathcal{O}(a^2) \) in physical observables
Overview

<table>
<thead>
<tr>
<th>β</th>
<th>a [fm]</th>
<th>$L^3 \cdot T$</th>
<th>L [fm]</th>
<th>$a\mu$</th>
<th>$N_{\text{traj}} (\tau = 0.5)$</th>
<th>m_{PS} [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.05</td>
<td>~ 0.066</td>
<td>$32^3 \cdot 64$</td>
<td>2.2</td>
<td>0.0030</td>
<td>5200</td>
<td>~ 300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0060</td>
<td>~ 420</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0080</td>
<td>~ 480</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0120</td>
<td>~ 600</td>
</tr>
<tr>
<td></td>
<td>$24^3 \cdot 48$</td>
<td></td>
<td>1.6</td>
<td>0.0060</td>
<td>3000 $\times 2$</td>
<td>~ 420</td>
</tr>
<tr>
<td></td>
<td>$20^3 \cdot 48$</td>
<td></td>
<td>1.3</td>
<td>0.0060</td>
<td>5300 $\times 2$</td>
<td>~ 420</td>
</tr>
<tr>
<td>3.9</td>
<td>~ 0.086</td>
<td>$24^3 \cdot 48$</td>
<td>2.1</td>
<td>0.0040</td>
<td>10500</td>
<td>~ 300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0064</td>
<td>~ 380</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0085</td>
<td>~ 440</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0100</td>
<td>~ 480</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0150</td>
<td>~ 590</td>
</tr>
<tr>
<td></td>
<td>$32^3 \cdot 64$</td>
<td></td>
<td>2.8</td>
<td>0.0030</td>
<td>4500 $\times 2$</td>
<td>~ 265</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0040</td>
<td>~ 300</td>
</tr>
<tr>
<td>3.8</td>
<td>~ 0.100</td>
<td>$24^3 \cdot 48$</td>
<td>2.4</td>
<td>0.0060</td>
<td>4700 $\times 2$</td>
<td>~ 360</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0080</td>
<td>~ 410</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0110</td>
<td>~ 480</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0165</td>
<td>~ 580</td>
</tr>
<tr>
<td></td>
<td>$20^3 \cdot 48$</td>
<td></td>
<td>2.0</td>
<td>0.0060</td>
<td>4000 $\times 2$</td>
<td>~ 360</td>
</tr>
</tbody>
</table>
The Data

For each value of β and μ_q we’ll analyse

- data for $a_{f_{PS}}$

\[a_{f_{PS}} = \frac{2\mu}{m_{PS}^2} |\langle 0 | P^1(0) | \pi \rangle| \]

(no renormalisation needed)

- data for $a_{m_{PS}}$

- data for a_{m_N}

- data for r_0/a, extrapolate to $\mu_q = 0$

- data for Z_P, extrapolate to $\mu_q = 0$

obtained non-pertubatively using RI-MOM

The renormalised quark mass at some renormalisation scale is obtained from

\[\mu_R = \frac{1}{Z_P} \mu_q \]
Flavour Symmetry Breaking

Flavour symmetry is broken at $\mathcal{O}(a^2)$

\[\Rightarrow am^0_{PS} \neq am^\pm_{PS} \]

- not easy to measure: disconnected contributions!
- m^\pm_{PS}, m^0_{PS} mass splitting vanishes like a^2
- $am^0_{PS} < am^\pm_{PS}$ consistent with prediction from χPT for observed phase structure

at $\beta = 4.05$ splitting still a large effect
Flavour Symmetry Breaking

- splitting observed so far only in m_{π^0}
- for other observables O:

$$R_O = \frac{o^{\pm}}{o^{\pm}} - \frac{\sigma^{\pm}}{\sigma^{\pm}}$$

<table>
<thead>
<tr>
<th></th>
<th>β</th>
<th>$a\mu_q$</th>
<th>R_O</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_f^{PS}</td>
<td>3.90</td>
<td>0.004</td>
<td>0.04(06)</td>
</tr>
<tr>
<td></td>
<td>4.05</td>
<td>0.003</td>
<td>-0.03(06)</td>
</tr>
<tr>
<td>a_m^{V}</td>
<td>3.90</td>
<td>0.004</td>
<td>0.02(07)</td>
</tr>
<tr>
<td></td>
<td>4.05</td>
<td>0.003</td>
<td>-0.10(11)</td>
</tr>
<tr>
<td>a_f^{V}</td>
<td>3.90</td>
<td>0.004</td>
<td>-0.07(18)</td>
</tr>
<tr>
<td></td>
<td>4.05</td>
<td>0.003</td>
<td>-0.31(29)</td>
</tr>
<tr>
<td>a_m^{Δ}</td>
<td>3.90</td>
<td>0.004</td>
<td>0.022(29)</td>
</tr>
<tr>
<td></td>
<td>4.05</td>
<td>0.003</td>
<td>-0.004(45)</td>
</tr>
</tbody>
</table>

- Isospin splittings compatible with zero
Finite Size Effects

- correct for finite size effects using χPT

<table>
<thead>
<tr>
<th>β</th>
<th>$m_{PS} L$</th>
<th>meas [%]</th>
<th>GL [%]</th>
<th>CDH [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_{PS}</td>
<td>3.9</td>
<td>3.3</td>
<td>+1.8</td>
<td>+0.6</td>
</tr>
<tr>
<td>f_{PS}</td>
<td>3.9</td>
<td>3.3</td>
<td>−2.5</td>
<td>−2.5</td>
</tr>
<tr>
<td>m_{PS}</td>
<td>4.05</td>
<td>3.0</td>
<td>+6.2</td>
<td>+1.8</td>
</tr>
<tr>
<td>f_{PS}</td>
<td>4.05</td>
<td>3.0</td>
<td>−10.7</td>
<td>−7.3</td>
</tr>
<tr>
<td>m_{PS}</td>
<td>4.05</td>
<td>3.5</td>
<td>+1.1</td>
<td>+0.8</td>
</tr>
<tr>
<td>f_{PS}</td>
<td>4.05</td>
<td>3.5</td>
<td>−1.8</td>
<td>−3.2</td>
</tr>
</tbody>
</table>

- as input for the parameters estimates from CDH were used
- CDH describes our data in general better than GL for the price of more parameters
Continuum Extrapolation of m_N in Finite Volume

- finite volume $L/r_0 \sim 5.0$
- linear interpolation to reference points
 $r_0 m_{PS} = \text{const}$
- constant extrapolation $a \to 0$
 $\beta = 3.8$ not included
 \Rightarrow Only small lattice artifacts (negligible?)!

[ETMC, arXiv:0803.3190]
Description with χPT

- quark mass dependence of f_{PS}, m_{PS} and m_N using $N_f = 2$
 continuum χPT

- simultaneous fit of data at $\beta = 3.9$ and $\beta = 4.05$

- step 1: constant continuum extrapolation
 step 2: continuum χPT fit

- r_0/a and Z_P are included as data in the fit

- finite size corrections performed using CDH formulae for f_{PS} and
 m_{PS}

 [Colangelo, Dürr, Haefeli, 2005]
 no FS correction for m_N so far

- statistical error estimated from a bootstrap analysis
Fit Result

- overall χ^2/dof = 21/19
- good quality fit
Estimate Systematic Effects
quark mass dependence in formulae

- for f_{PS} and m_{PS}

$$r_0 f_{PS} = r_0 f_0 \left[1 - 2\xi \log \left(\frac{\chi_\mu}{\Lambda_4^2} \right) + D_{PS} a^2 / r_0^2 + T_{NNLO} \right] K_f^{CDH}(L)$$

$$(r_0 m_{PS})^2 = \chi_\mu r_0^2 \left[1 + \xi \log \left(\frac{\chi_\mu}{\Lambda_3^2} \right) + D_{mPS} a^2 / r_0^2 + T_{NNLO} \right] K_m^{CDH}(L)^2$$

with

$$\xi \equiv \frac{2B_R \mu_R}{(4\pi f_0)^2}, \quad \chi_\mu \equiv 2B_R \mu_R, \quad f_0 = \sqrt{2}F_0$$

and T_{NNLO} stands for continuum NNLO terms

- and for the nucleon using HB\(\chi\)PT

[Jenkins, Manohar, 1991; Becher, Leutwyler, 1999]

$$r_0 m_N = r_0 M_N - \frac{4c_1}{r_0} \chi_\mu r_0^2 - \frac{6g_A^2}{32\pi f_0^2 r_0^2} (\chi_\mu r_0^2)^{3/2} + r_0 M_N D_{mN} a^2 / r_0^2$$
Estimate Systematic Effects

- NNLO fits are not stable: we include priors e.g. for ℓ_1, ℓ_2, k_M, k_F in the fit
- estimate systematic effects by
 - changing the way the continuum extrapolation is done
 - varying the fit-range
 - including NNLO for m_{PS} and f_{PS}
f_{PS}: higher order χPT and fit range

- constant continuum extrapolation
- red: $\beta = 3.90$
- blue: $\beta = 4.05$

overall χ^2:
- NLO fit: $\chi^2/\text{dof} = 21/19$
- NNLO fit: $\chi^2/\text{dof} = 19/19$
- NNLO, extended fit-range $\chi^2/\text{dof} = 50/23$
f_{PS}: higher order χPT and fit range

- constant continuum extrapolation
- red: $\beta = 3.90$
- blue: $\beta = 4.05$

overall χ^2:
- NLO fit: χ^2/dof = 21/19
- NNLO fit: χ^2/dof = 19/19
- NNLO, extended fit-range χ^2/dof = 50/23
f_{PS}: higher order χPT and fit range

- constant continuum extrapolation
- red: $\beta = 3.90$
- blue: $\beta = 4.05$

overall χ^2:
- NLO fit: χ^2/dof = 21/19
- NNLO fit: χ^2/dof = 19/19
- NNLO, extended fit-range χ^2/dof = 50/23

for largest mass (N)NLO χPT presumably not applicable
f_{PS}: lattice artifacts

- red: $\beta = 3.90$
- blue: $\beta = 4.05$

overall χ^2:
- NLO fit: χ^2/dof = 21/19
- NLO fit + a^2: χ^2/dof = 15/16
f_{PS}: lattice artifacts

- red: $\beta = 3.90$
- blue: $\beta = 4.05$

Overall χ^2:
- NLO fit: χ^2/dof = 21/19
- NLO fit + a^2: χ^2/dof = 15/16
f_{PS}: lattice artifacts

![Graph showing $r_0 f_{PS}$ vs $r_0 \mu_R$]

- red: $\beta = 3.90$
- blue: $\beta = 4.05$

overall χ^2:
 - NLO fit: χ^2/dof = 21/19
 - NLO fit + a^2: χ^2/dof = 15/16

however, all D_X zero within errors \Rightarrow not significant
m^2_{PS}/μ_q: higher order χPT and fit range

- constant continuum extrapolation
- red: $\beta = 3.90$
- blue: $\beta = 4.05$

overall χ^2:
- NLO fit: χ^2/dof = 21/19
- NNLO fit: χ^2/dof = 19/19
- NNLO, extended fit-range χ^2/dof = 50/23
m_{PS}^2/μ_q: higher order χPT and fit range

- constant continuum extrapolation
- red: $\beta = 3.90$
- blue: $\beta = 4.05$

Overall χ^2:
- NLO fit: χ^2/dof = 21/19
- NNLO fit: χ^2/dof = 19/19
- NNLO, extended fit-range χ^2/dof = 50/23
m_{PS}^2/μ_q: higher order χPT and fit range

- constant continuum extrapolation
- red: $\beta = 3.90$
- blue: $\beta = 4.05$

overall χ^2:
- NLO fit: χ^2/dof = 21/19
- NNLO fit: χ^2/dof = 19/19
- NNLO, extended fit-range χ^2/dof = 50/23
m_N: changing the fit range

- constant continuum extrapolation
- red: $\beta = 3.90$
- blue: $\beta = 4.05$

Overall χ^2:
- NLO fit: χ^2/dof = 21/19
- NNLO, extended fit-range χ^2/dof = 50/23
m_N: changing the fit range

- constant continuum extrapolation
- red: $\beta = 3.90$
- blue: $\beta = 4.05$

Overall χ^2:
- NLO fit: χ^2/dof = 21/19
- NNLO, extended fit-range χ^2/dof = 50/23
Fit Results

mean values and statistical errors come from NLO fit

pion sector

- $\bar{\ell}_3 = 3.43(8)(^{+0}_{-28})(^{+8}_{-0})$
- $\bar{\ell}_4 = 4.60(4)(10)(^{+8}_{-4})$
- $f_0 = 121.7(1)(6)(0) \text{ MeV}$
- $B_0 = 2571(44)(^{+0}_{-100})(^{+200}_{-0}) \text{ MeV}$
- $\Sigma^{1/3} = -267(2)(^{+0}_{-4})(^{+10}_{-0}) \text{ MeV}$
- $f_\pi/f_0 = 1.0740(7)(30)(^{+6}_{-0})$

nucleon sector

- $m_N = 962(45)(10)(3)$
- $c_1 = -1.13(27)(5)(20)$, $g_A = 1.13(21)(5)(10)$

errors: statistical, NNLO, a^2
flavour symmetry breaking negligible in many quantities but large in the $\pi^\pm - \pi^0$ mass splitting

finite size effects in f_{PS}, m_{SP} describable with CDH formulae

lattice artifacts appear to be small to current statistical accuracy ($\sim 1\%$)

data can be fitted with continuum χPT
 - extract LEC’s with high precision
 - determine nucleon mass $m_N = 962(45)(10)(3)$ MeV

systematic uncertainties for some quantities larger than statistical error
Sommer Parameter r_0

- statistical accuracy of less than 0.5%,
- compatible with μ_q^2 dependence
- μ_q-dependence is rather weak unlike Wilson / Wilson clover

⇒ at $\mu_q \rightarrow 0$:
 \[
 \begin{align*}
 \beta &= 3.8: \quad r_0/a = 4.46(3) \\
 \beta &= 3.9: \quad r_0/a = 5.22(2) \\
 \beta &= 4.05: \quad r_0/a = 6.61(3)
 \end{align*}
\]
Non-perturbative Renormalisation

- RI-MOM renormalisation scheme
 [Martinelli et al., 1995]

- $O(a)$ improved at maximal twist

- compatible with μ^2 dependence

- nicely consistent with WI method / mixed action (MA) approach

- possible alternative: Schrödinger functional
 [Frezzotti, Rossi, 2005; Sint, 2006]
Continuum Extrapolation f_{PS} in Finite Volume

- finite volume $L/r_0 \sim 5.0$
- linear interpolation to reference points
 $r_0 m_{PS} = \text{const}$
- constant extrapolation $a \to 0$
 $\beta = 3.8$ not included

\Rightarrow Only small lattice artifacts (negligible?)!

Finite Size Effects

- our data is compatible with exponential behaviour in $m_{PS} \cdot L$

$$m_{PS}(L) = m_{PS} \left[1 + \frac{1}{2} \frac{m_{PS}^2}{(4\pi f_0)^2} \tilde{g}_1(m_{PS}L) \right],$$

$$f_{PS}(L) = f_{PS} \left[1 - 2 \frac{m_{PS}^2}{(4\pi f_0)^2} \tilde{g}_1(m_{PS}L) \right],$$

- NNLO known for m_{PS} [Colangelo, Haefeli, 2006]
 - however, resummed asymptotic Lüscher formula provides higher orders easier [Colangelo, Dürr, Haefeli, 2005] (CDH)
 - but depends on many LECs: $\Lambda_1, \Lambda_2, \Lambda_3, \ldots$