B_K for 2+1 flavour domain wall fermions from 243 and 32$^3 \times 64$ lattices

Chris Kelly

University of Edinburgh
RBC & UKQCD Collaborations

Mon 14th July
The neutral kaon mixing amplitude B_K
Outline

The neutral kaon mixing amplitude B_K

Ensemble details
The neutral kaon mixing amplitude B_K

Ensemble details

Measurement of B_K
The neutral kaon mixing amplitude B_K

Ensemble details

Measurement of B_K

The chiral extrapolation of B_K
Outline

The neutral kaon mixing amplitude B_K

Ensemble details

Measurement of B_K

The chiral extrapolation of B_K

The non-perturbative renormalisation of B_K
The neutral kaon mixing amplitude B_K

Ensemble details

Measurement of B_K

The chiral extrapolation of B_K

The non-perturbative renormalisation of B_K

Conclusions and Outlook
The neutral kaon mixing amplitude B_K
Kaon mixing

- Indirect CP violation in neutral kaon sector
Kaon mixing

- Indirect CP violation in neutral kaon sector
- Neutral kaon mixing amplitude:
Kaon mixing

- Indirect CP violation in neutral kaon sector
- Neutral kaon mixing amplitude:

\[A(K^0 \to \bar{K}^0) = \frac{G_F}{2} \sum_i V^i_{\text{CKM}} C_i(\mu) \langle K^0 \mid Q_i(\mu) \mid \bar{K}^0 \rangle \]
Kaon mixing

- Indirect CP violation in neutral kaon sector
- Neutral kaon mixing amplitude:

\[A(K^0 \rightarrow \bar{K}^0) = \frac{G_F}{2} \sum_i V_{CKM}^i C_i(\mu) \langle K^0 | Q_i(\mu) | \bar{K}^0 \rangle \]

scheme dependent perturbative factor summarising contributions from scales \(\gg \mu \)
Kaon mixing

- Indirect CP violation in neutral kaon sector
- Neutral kaon mixing amplitude:

\[A(K^0 \rightarrow \bar{K}^0) = \frac{G_F}{2} \sum_i V_{\text{CKM}}^i C_i(\mu) \langle K^0|Q_i(\mu)|\bar{K}^0\rangle \]

- Scheme dependent hadronic matrix element at scale \(\mu \sim M_K \) obtainable from lattice
- Scheme dependent perturbative factor summarising contributions from scales \(\gg \mu \)
\(B_K \) parameterises the matrix element of the four-quark \(K^0 \to \bar{K}^0 \) operator.
B_K

- B_K parameterises the matrix element of the four-quark $K^0 \to \bar{K}^0$ operator

$$B_K \equiv \frac{\langle K^0 | O_{VV+AA} | \bar{K}^0 \rangle}{\frac{8}{3} f_K^2 M_K^2}$$
B_K

- B_K parameterises the matrix element of the four-quark $K^0 \rightarrow \bar{K}^0$ operator

\[B_K \equiv \frac{\langle K^0 | O_{VV+AA} | \bar{K}^0 \rangle}{\frac{8}{3} f_K^2 M_K^2} \]

\[O_{VV+AA} = (\bar{s}\gamma_\mu d)(\bar{s}\gamma_\mu d) + (\bar{s}\gamma_5\gamma_\mu d)(\bar{s}\gamma_5\gamma_\mu d) \]
B_K

- B_K parameterises the matrix element of the four-quark $K^0 \to \bar{K}^0$ operator

$$B_K \equiv \frac{\langle K^0 | O_{VV+AA} | \bar{K}^0 \rangle}{\frac{8}{3} f_K^2 M_K^2}$$

$$O_{VV+AA} = (\bar{s}\gamma_\mu d)(\bar{s}\gamma_\mu d) + (\bar{s}\gamma_5 \gamma_\mu d)(\bar{s}\gamma_5 \gamma_\mu d)$$

- B_K related to measure of indirect CP violation $\epsilon_K = \frac{K_L \to (\pi\pi)}{K_S \to (\pi\pi)}$

relation contains unknown *direct* CP violating parameters.
B_K

- B_K parameterises the matrix element of the four-quark $K^0 \rightarrow \bar{K}^0$ operator

$$B_K \equiv \frac{\langle K^0|O_{VV+AA}|\bar{K}^0 \rangle}{\frac{8}{3}f_K^2M_K^2}$$

$$O_{VV+AA} = (\bar{s}\gamma_\mu d)(\bar{s}\gamma_\mu d) + (\bar{s}\gamma_5\gamma_\mu d)(\bar{s}\gamma_5\gamma_\mu d)$$

- B_K related to measure of indirect CP violation $\epsilon_K = \frac{K_L\rightarrow(\pi\pi)}{K_S\rightarrow(\pi\pi)}$
 - relation contains unknown direct CP violating parameters.

- ϵ_K known experimentally to high precision $\Rightarrow B_K$ constrains unknown direct CP violating parameters.
Ensemble details
Details of ensembles

\[24^3 \times 64 \quad 32^3 \times 64 \]
Details of ensembles

$24^3 \times 64$
- 2+1f domain wall fermion ensemble with $L_s = 16$

$32^3 \times 64$
- 2+1f domain wall fermion ensemble with $L_s = 16$
Details of ensembles

$24^3 \times 64$
- 2+1f domain wall fermion ensemble with $L_s = 16$
- Iwasaki gauge action $\beta = 2.13$

$32^3 \times 64$
- 2+1f domain wall fermion ensemble with $L_s = 16$
Details of ensembles

$24^3 \times 64$
- 2+1f domain wall fermion ensemble with $L_s = 16$
- Iwasaki gauge action $\beta = 2.13$

$32^3 \times 64$
- 2+1f domain wall fermion ensemble with $L_s = 16$
- Iwasaki gauge action $\beta = 2.25$
Details of ensembles

- $24^3 \times 64$
 - 2+1f domain wall fermion ensemble with $L_s = 16$
 - Iwasaki gauge action $\beta = 2.13$
 - $a^{-1} = 1.729(28) \text{ GeV} \rightarrow (2.74 \text{ fm})^3$ lattice volume

- $32^3 \times 64$
 - 2+1f domain wall fermion ensemble with $L_s = 16$
 - Iwasaki gauge action $\beta = 2.25$
Details of ensembles

24^3 \times 64
- 2+1f domain wall fermion ensemble with \(L_s = 16 \)
- Iwasaki gauge action \(\beta = 2.13 \)
- \(a^{-1} = 1.729(28) \text{ GeV} \rightarrow (2.74 \text{ fm})^3 \) lattice volume

32^3 \times 64
- 2+1f domain wall fermion ensemble with \(L_s = 16 \)
- Iwasaki gauge action \(\beta = 2.25 \)
- \(a^{-1} = 2.42(4) \frac{0.47}{r_0 (\text{fm})} \text{ GeV} \rightarrow (2.61 \text{ fm})^3 \) lattice volume
Details of ensembles

$24^3 \times 64$
- 2+1f domain wall fermion ensemble with $L_s = 16$
- Iwasaki gauge action $\beta = 2.13$
- $a^{-1} = 1.729(28) \text{ GeV} \rightarrow (2.74 \text{ fm})^3$ lattice volume
- Strange sea quark mass 0.04 lattice units

$32^3 \times 64$
- 2+1f domain wall fermion ensemble with $L_s = 16$
- Iwasaki gauge action $\beta = 2.25$
- $a^{-1} = 2.42(4)\frac{0.47}{r_0 (\text{fm})} \text{ GeV} \rightarrow (2.61 \text{ fm})^3$ lattice volume
Details of ensembles

<table>
<thead>
<tr>
<th>Ensemble</th>
<th>Details</th>
</tr>
</thead>
</table>
| $24^3 \times 64$ | - 2+1f domain wall fermion ensemble with $L_s = 16$
| | - Iwasaki gauge action $\beta = 2.13$
| | - $a^{-1} = 1.729(28) \text{ GeV} \rightarrow (2.74 \text{ fm})^3$ lattice volume
| | - Strange sea quark mass 0.04 lattice units |
| $32^3 \times 64$ | - 2+1f domain wall fermion ensemble with $L_s = 16$
| | - Iwasaki gauge action $\beta = 2.25$
| | - $a^{-1} = 2.42(4) \frac{0.47}{r_0 (\text{fm})} \text{ GeV} \rightarrow (2.61 \text{ fm})^3$ lattice volume
| | - Strange sea quark mass 0.03 lattice units |
Up/down sea quark masses

<table>
<thead>
<tr>
<th></th>
<th>$24^3 \times 64$</th>
<th></th>
<th>$32^3 \times 64$</th>
</tr>
</thead>
<tbody>
<tr>
<td>latt. units</td>
<td>m_π (MeV)</td>
<td>latt. units</td>
<td>m_π (MeV)</td>
</tr>
<tr>
<td>0.03</td>
<td>626</td>
<td>0.008</td>
<td>∼ 420</td>
</tr>
<tr>
<td>0.02</td>
<td>558</td>
<td>0.006</td>
<td>∼ 360</td>
</tr>
<tr>
<td>0.01</td>
<td>345</td>
<td>0.004</td>
<td>∼ 300</td>
</tr>
<tr>
<td>0.005</td>
<td>331</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Highly preliminary data as datasets only partially complete.
Measurement of B_K
Method comparison

24³ × 64

32³ × 64
Method comparison

$24^3 \times 64$

- 2 gauge-fixed wall sources at $t = 5, 59$ for propagators

$32^3 \times 64$
Method comparison

\[24^3 \times 64 \]

- 2 gauge-fixed wall sources at \(t = 5, 59 \) for propagators
- Use \(p + a \) boundary conditions \(\rightarrow \) removes unwanted round-the-world contributions.

\[32^3 \times 64 \]
Method comparison

\[24^3 \times 64 \]

- 2 gauge-fixed wall sources at \(t = 5, 59 \) for propagators

- Use \(p + a \) boundary conditions → removes unwanted round-the-world contributions.

- Costs 4 inversions per configuration.

\[32^3 \times 64 \]
Method comparison

$24^3 \times 64$

- 2 gauge-fixed wall sources at $t = 5, 59$ for propagators
- Use $p + a$ boundary conditions → removes unwanted round-the-world contributions.
- Costs 4 inversions per configuration.

$32^3 \times 64$

- 1 gauge-fixed wall source at $t = 0$
Method comparison

\[24^3 \times 64 \]
- 2 gauge-fixed wall sources at \(t = 5, 59 \) for propagators
- Use \(p + a \) boundary conditions \(\rightarrow \) removes unwanted round-the-world contributions.
- Costs 4 inversions per configuration.

\[32^3 \times 64 \]
- 1 gauge-fixed wall source at \(t = 0 \)
- Use \(p + a \) and \(p - a \) boundary conditions \(\rightarrow \) gives forwards and backwards propagating quarks.
Method comparison

$24^3 \times 64$
- 2 gauge-fixed wall sources at $t = 5, 59$ for propagators
- Use $p + a$ boundary conditions → removes unwanted round-the-world contributions.
- Costs 4 inversions per configuration.

$32^3 \times 64$
- 1 gauge-fixed wall source at $t = 0$
- Use $p + a$ and $p - a$ boundary conditions → gives forwards and backwards propagating quarks.
- Costs 2 inversions per configuration.
B_K example plateaux

$24^3 \times 64 \ m_l = 0.005$

Preliminary $32^3 \times 64 \ m_l = 0.004$
The chiral extrapolation of B_K
We use NLO $SU(2) \times SU(2)$ partially-quenched chiral perturbation theory (PQChPT) for maximum use of ensembles.
We use NLO $SU(2) \times SU(2)$ partially-quenched chiral perturbation theory (PQChPT) for maximum use of ensembles.

Kaon sector is coupled to $SU(2)$ soft pion loops at lowest order in non-relativistic expansion.
We use NLO $SU(2) \times SU(2)$ partially-quenched chiral perturbation theory (PQChPT) for maximum use of ensembles.

Kaon sector is coupled to $SU(2)$ soft pion loops at lowest order in non-relativistic expansion

\rightarrow direct connection to HMχPT
We use NLO $SU(2) \times SU(2)$ partially-quenched chiral perturbation theory (PQChPT) for maximum use of ensembles.

Kaon sector is coupled to $SU(2)$ soft pion loops at lowest order in non-relativistic expansion

\rightarrow direct connection to HMχPT

24^3 analysis [Allton et al arXiv:0804.0473] indicated $SU(3) \times SU(3)$ PQChPT has large higher order corrections and doesn’t fit data well up to physical strange quark mass (R. Mawhinney).
$SU(2) \times SU(2)$ PQChPT fit form for B_K

$$B_K = B_K^0 \left[1 + \frac{2B(m_d+m_{\text{res}})c_0}{f^2} + \frac{2B(m_y+m_{\text{res}})c_1}{f^2}
ight.$$

$$\left. - \frac{2B(m_y+m_{\text{res}})}{32\pi^2 f^2} \log \left(\frac{2B(m_y+m_{\text{res}})}{\Lambda^2} \right) \right]$$
SU(2) × SU(2) PQChPT fit form for B_K

$$B_K = B_K^0 \left[1 + \frac{2B(m_d + m_{\text{res}})c_0}{f^2} + \frac{2B(m_y + m_{\text{res}})c_1}{f^2}
ight.$$

$$- \left. \frac{2B(m_y + m_{\text{res}})}{32\pi^2 f^2} \log \left(\frac{2B(m_y + m_{\text{res}})}{\Lambda^2_{\chi}} \right) \right]$$

► 5 free parameters:
$SU(2) \times SU(2)$ PQChPT fit form for B_K

\[B_K = B^0_K \left[1 + \frac{2B(m_d+m_{\text{res}})c_0}{f^2} + \frac{2B(m_y+m_{\text{res}})c_1}{f^2} - \frac{2B(m_y+m_{\text{res}})}{32\pi^2 f^2} \log \left(\frac{2B(m_y+m_{\text{res}})}{\Lambda^2} \right) \right] \]

- 5 free parameters: B^0_K, B, f, c_0, c_1
\[B_K = B_K^0 \left[1 + \frac{2B(m_d + m_{\text{res}})c_0}{f^2} + \frac{2B(m_y + m_{\text{res}})c_1}{f^2} \right. \\
\left. - \frac{2B(m_y + m_{\text{res}})}{32\pi^2 f^2} \log \left(\frac{2B(m_y + m_{\text{res}})}{\Lambda^2} \right) \right] \]

- 5 free parameters: \(B_K^0, B, f, c_0, c_1 \)
\[B_K = B_K^0 \left[1 + \frac{2B(m_d+m_{\text{res}})c_0}{f^2} + \frac{2B(m_y+m_{\text{res}})c_1}{f^2} \right. \\
\left. -\frac{2B(m_y+m_{\text{res}})}{32\pi^2 f^2} \log \left(\frac{2B(m_y+m_{\text{res}})}{\Lambda^2} \right) \right] \]

- 5 free parameters: \(B_K^0, B, f, c_0, c_1 \)
\[B_K = B_K^0 \left[1 + \frac{2B(m_d + m_{\text{res}})}{f^2} c_0 + \frac{2B(m_y + m_{\text{res}})}{f^2} c_1 \right. \]

\[\left. - \frac{2B(m_y + m_{\text{res}})}{32\pi^2 f^2} \log \left(\frac{2B(m_y + m_{\text{res}})}{\Lambda^2} \right) \right] \]

- 5 free parameters: \(B_K^0, B, f, c_0, c_1 \)
SU(2) × SU(2) PQChPT fit form for B_K

$$B_K = B_K^0 \left[1 + \frac{2B(m_d + m_{\text{res}})}{f^2} c_0 + \frac{2B(m_y + m_{\text{res}})}{f^2} c_1
ight. \\
\left. - \frac{2B(m_y + m_{\text{res}})}{32\pi^2 f^2} \log \left(\frac{2B(m_y + m_{\text{res}})}{\Lambda_x^2} \right) \right]$$

- 5 free parameters: B_K^0, B, f, c_0, c_1
SU(2) × SU(2) PQChPT fit form for B_K

\[
B_K = B_K^0 \left[1 + \frac{2B(m_d+m_{\text{res}})c_0}{f^2} + \frac{2B(m_y+m_{\text{res}})c_1}{f^2} - \frac{2B(m_y+m_{\text{res}})}{32\pi^2 f^2} \log \left(\frac{2B(m_y+m_{\text{res}})}{\Lambda^2} \right) \right]
\]

- 5 free parameters: B_K^0, B, f, c_0, c_1

- Use simultaneous pure SU(2) × SU(2) PQChPT fit (no coupling to Kaon sector) to F_{PS} and M_{PS} to determine B and f (E. Scholz)
$SU(2) \times SU(2)$ PQChPT fit form for B_K

\[
B_K = B_K^0 \left[1 + \frac{2B(m_d+m_{\text{res}})c_0}{f^2} + \frac{2B(m_y+m_{\text{res}})c_1}{f^2}
- \frac{2B(m_y+m_{\text{res}})}{32\pi^2f^2} \log \left(\frac{2B(m_y+m_{\text{res}})}{\Lambda^2} \right) \right]
\]

- 5 free parameters: B_K^0, B, f, c_0, c_1
- Use simultaneous pure $SU(2) \times SU(2)$ PQChPT fit (no coupling to Kaon sector) to F_{PS} and M_{PS} to determine B and f (E. Scholz)

\rightarrow perform frozen 3-parameter fit to B_K
Simultaneous PQChPT fits to F_{PS} and M_{PS}: f_{PS}

24$^3 \times 64$

$24^3 \times 64$

$32^3 \times 64$

$$f_{xy}$$

$m_l = 0.005, m_s = 0.04$

fit: $m_{avg} \leq 0.01$

$m_x = 0.001$

$m_x = 0.005$

$m_x = 0.01$

$m_x = 0.02$

$m_x = 0.03$

$m_x = 0.04$

$$f_{xy}$$

$m_l = 0.004, m_s = 0.03$

fit: $m_{avg} \leq 0.008$

$m_x = 0.004$

$m_x = 0.006$

$m_x = 0.008$

$m_x = 0.025$

$m_x = 0.03$

m_{res}
Simultaneous PQChPT fits to F_{PS} and M_{PS}: f_{PS}

- For fixed m_l chiral fit forms non-analytic as $m_{x/y} \to 0$
Simultaneous PQChPT fits to F_{PS} and M_{PS}: f_{PS}

- For fixed m_l chiral fit forms non-analytic as $m_{x/y} \to 0$
- Perform full PQChPT fit to all data points then extrapolate to chiral limit along unitary curve $m_x = m_y = m_l \to 0$ to obtain physical f_{PS}.

![Graph showing f_{xy} vs. $m_y + m_{res}$ with different m_x values]
Simultaneous PQChPT fits to F_{PS} and M_{PS}: f_{PS}

- For fixed m_l chiral fit forms non-analytic as $m_x/y \to 0$
- Perform full PQChPT fit to all data points then extrapolate to chiral limit along unitary curve $m_x = m_y = m_l \to 0$ to obtain physical f_{PS}.
- Unitary curve is finite valued at chiral limit.
Simultaneous PQChPT fits to F_{PS} and M_{PS}: M_{PS}

$24^3 \times 64$

$32^3 \times 64$

$m_l = 0.005$, $m_s = 0.04$

fit: $m_{avg} \leq 0.01$

$m_x = 0.001$
$m_x = 0.005$
$m_x = 0.01$
$m_x = 0.02$
$m_x = 0.03$
$m_x = 0.04$

$m_l = 0.004$, $m_s = 0.03$

fit: $m_{avg} \leq 0.008$
PQChPT fits to B_K

$24^3 \times 64$

- B_{xy}
- $m_y = 0.04$
- fit: $m_x \leq 0.01$

$32^3 \times 64$

- B_{xy}
- $m_y = 0.03$
- fit: $m_x \leq 0.008$

- $m_l = 0.005$
- $m_l = 0.01$
- $m_x = m_l$
- $m_x = m_l = m_{ud}$

- Unitary curve is fixed m_s, $m_x = m_l \rightarrow m_{l}^{\text{phys}}$
PQChPT fits to B_K

24$^3 \times 64$

$\begin{align*}
B_{xy} \\
m_y = 0.04 \\
\text{fit: } m_x \leq 0.01
\end{align*}$

$m_l = 0.005$

$m_l = 0.01$

$m_x = m_l$

$m_x = m_l = m_{ud}$

32$^3 \times 64$

$\begin{align*}
B_{xy} \\
m_y = 0.03 \\
\text{fit: } m_x \leq 0.008
\end{align*}$

$m_l = 0.008$

$m_l = 0.006$

$m_l = 0.004$

$m_x = m_l$

$m_x + m_{\text{res}}$

Stat err?

- Unitary curve is fixed m_s, $m_x = m_l \rightarrow m^\text{phys}_l$
$24^3 \times 64 \ B_K$ chiral limit results – Allton et al
[arXiv:0804.0473]

$24^3 \times 64 \ B^K_{\text{lat}} = 0.565(10)$.
$24^3 \times 64 \, B_K$ chiral limit results – Allton et al [arXiv:0804.0473]

- $24^3 \times 64 \, B_K^{lat} = 0.565(10)$.
- $32^3 \times 64$ extrapolation not yet available, dataset only partially complete
 - Stat uncertainties in data sets, unknown physical quark masses
The non-perturbative renormalisation of B_K
Why NPR?

- Lattice perturbative (DWF) calculations exist but:
Why NPR?

- Lattice perturbative (DWF) calculations exist but:
 - exist only at low order
Why NPR?

- Lattice perturbative (DWF) calculations exist but:
 - exist only at low order
 - are poorly convergent
Why NPR?

- Lattice perturbative (DWF) calculations exist but:
 - exist only at low order
 - are poorly convergent
 - involve prescription dependent ambiguities such as MF improvement
Why NPR?

- Lattice perturbative (DWF) calculations exist but:
 - exist only at low order
 - are poorly convergent
 - involve prescription dependent ambiguities such as MF improvement

- Use Rome-Southampton RI/MOM scheme
Bilinear vertices

- $Z_V = Z_A$ due to good chiral symmetry
Bilinear vertices

- $Z_V = Z_A$ due to good chiral symmetry
- At high momenta, $\Lambda_A = \Lambda_V = \frac{Z_q}{Z_A} = \frac{Z_q}{Z_V}$ should hold.
Bilinear vertices

- $Z_V = Z_A$ due to good chiral symmetry
- At high momenta, $\Lambda_A = \Lambda_V = \frac{Z_q}{Z_A} = \frac{Z_q}{Z_V}$ should hold.
- Therefore can use Λ_A or Λ_V as a measure of $\frac{Z_q}{Z_A}$.
Bilinear vertices

- $Z_V = Z_A$ due to good chiral symmetry.
- At high momenta, $\Lambda_A = \Lambda_V = \frac{Z_q}{Z_A} = \frac{Z_q}{Z_V}$ should hold.
- Therefore can use Λ_A or Λ_V as a measure of $\frac{Z_q}{Z_A}$.
- Λ_A and Λ_V expected to differ at low momenta due to QCD spontaneous chiral symmetry breaking.
Bilinear vertices

- $Z_V = Z_A$ due to good chiral symmetry
- At high momenta, $\Lambda_A = \Lambda_V = \frac{Z_q}{Z_A} = \frac{Z_q}{Z_V}$ should hold.
- Therefore can use Λ_A or Λ_V as a measure of $\frac{Z_q}{Z_A}$.
- Λ_A and Λ_V expected to differ at low momenta due to QCD spontaneous chiral symmetry breaking.
- However, even at high momenta we find $\Lambda_A \neq \Lambda_V$ at 2% level.
Bilinear vertices

- $Z_V = Z_A$ due to good chiral symmetry
- At high momenta, $\Lambda_A = \Lambda_V = \frac{Z_q}{Z_A} = \frac{Z_q}{Z_V}$ should hold.
- Therefore can use Λ_A or Λ_V as a measure of $\frac{Z_q}{Z_A}$.
- Λ_A and Λ_V expected to differ at low momenta due to QCD spontaneous chiral symmetry breaking.
- However, even at high momenta we find $\Lambda_A \neq \Lambda_V$ at 2% level
 → difference caused by kinematic choice: Exceptional momentum configuration
Bilinear vertices

- $Z_V = Z_A$ due to good chiral symmetry
- At high momenta, $\Lambda_A = \Lambda_V = \frac{Z_q}{Z_A} = \frac{Z_q}{Z_V}$ should hold.
- Therefore can use Λ_A or Λ_V as a measure of $\frac{Z_q}{Z_A}$.
- Λ_A and Λ_V expected to differ at low momenta due to QCD spontaneous chiral symmetry breaking.
- However, even at high momenta we find $\Lambda_A \neq \Lambda_V$ at 2% level
 → difference caused by kinematic choice: Exceptional momentum configuration
 → Gives weak $1/p^2$ suppression of low energy chiral symmetry breaking.
Chiral symmetry breaking and exceptional momenta

- Generic bilinear vertex graph

\[q \Gamma^{\mu}(0) q \]

\[p_1 \quad p_2 \]
Chiral symmetry breaking and exceptional momenta

- Generic bilinear vertex graph
- $p^2 \to \infty$ behaviour governed by subgraph with least negative degree of divergence through which we can route all hard external momenta.
- Generic bilinear vertex graph
- $p^2 \to \infty$ behaviour governed by subgraph with least negative degree of divergence through which we can route all hard external momenta.
- For $p_1 \neq p_2$ this is the entire graph.
Chiral symmetry breaking and exceptional momenta

- Generic bilinear vertex graph
- $p^2 \to \infty$ behaviour governed by subgraph with least negative degree of divergence through which we can route all hard external momenta.
- For $p_1 \neq p_2$ this is the entire graph.
- Can connect to low-energy subgraphs which are affected by spont. chiral symmetry breaking, but:
Chiral symmetry breaking and exceptional momenta

- Generic bilinear vertex graph
- $p^2 \to \infty$ behaviour governed by subgraph with least negative degree of divergence through which we can route all hard external momenta.
- For $p_1 \neq p_2$ this is the entire graph.
- Can connect to low-energy subgraphs which are affected by spont. chiral symmetry breaking, but:
 - Low energy subgraph not contained within circled subgraph
Chiral symmetry breaking and exceptional momenta

- Generic bilinear vertex graph
- $p^2 \to \infty$ behaviour governed by subgraph with least negative degree of divergence through which we can route all hard external momenta.
- For $p_1 \neq p_2$ this is the entire graph.
- Can connect to low-energy subgraphs which are affected by spont. chiral symmetry breaking, but:
 - Low energy subgraph not contained within circled subgraph
 - Adding extra external legs to circled subgraph increases suppression of the graph
However in case $p_2 - p_1 = 0$ then high momenta do not enter internal subgraphs.
However in case $p_2 - p_1 = 0$ then high momenta do not enter internal subgraphs.

Graph free to couple to low-energy chiral symmetry breaking subgraphs with no further suppression.
However in case $p_2 - p_1 = 0$ then high momenta do not enter internal subgraphs.

Graph free to couple to low-energy chiral symmetry breaking subgraphs with no further suppression.

This is an exceptional momentum configuration.
However in case $p_2 - p_1 = 0$ then high momenta do not enter internal subgraphs.

Graph free to couple to low-energy chiral symmetry breaking subgraphs with no further suppression.

This is an exceptional momentum configuration.

Chiral symmetry breaking induces difference between Λ_A and Λ_V → use $\frac{1}{2}(\Lambda_A + \Lambda_V) \approx \frac{Z_q}{Z_A}$.
B_K NPR with RI/MOM and exceptional momenta

- Calculate four-quark vertex matrix element in Landau gauge.
Calculate four-quark vertex matrix element in Landau gauge.

Amputate vertex with ensemble averaged unrenormalised propagator, giving $\Lambda_{O_{VV+AA}}$.
Calculate four-quark vertex matrix element in Landau gauge.

Amputate vertex with ensemble averaged unrenormalised propagator, giving $\Lambda_{O_{VV+AA}}$

Renormalisation condition: Fix to tree level value at $\mu^2 = p^2$

$$\frac{Z_{VV+AA}}{Z_q^2} \Lambda_{O_{VV+AA}} = O_{VV+AA}^{tree}$$
Calculate four-quark vertex matrix element in Landau gauge.

Amputate vertex with ensemble averaged unrenormalised propagator, giving $\Lambda_{\mathcal{O}_{VV+AA}}$

Renormalisation condition: Fix to tree level value at $\mu^2 = p^2$

\[
\frac{Z_{VV+AA}}{Z_q^2} \Lambda_{\mathcal{O}_{VV+AA}} = \mathcal{O}_{VV+AA}^{\text{tree}}
\]

Define

\[
Z_{BK}^{RI/MOM} = \frac{Z_{VV+AA}}{Z_A^2} = \left(\frac{Z_q^2}{Z_A^2}\right) \frac{Z_{VV+AA}}{Z_q^2}
\]
BK NPR with RI/MOM and exceptional momenta

- Calculate four-quark vertex matrix element in Landau gauge.
- Amputate vertex with ensemble averaged unrenormalised propagator, giving $\Lambda_{O_{VV+AA}}$
- Renormalisation condition: Fix to tree level value at $\mu^2 = p^2$

$$\frac{Z_{VV+AA}}{Z_q^2} \Lambda_{O_{VV+AA}} = O_{VV+AA}^{tree}$$

- Define

$$Z_{RI/MOM}^{BK} = \frac{Z_{VV+AA}}{Z_q^2} \frac{Z_A^2}{Z_A^2} = \left(\frac{Z_q^2}{Z_A^2}\right) \frac{Z_{VV+AA}}{Z_q^2}$$

- Use $\frac{1}{2}(\Lambda_A + \Lambda_V) \approx \frac{Z_q}{Z_A}$
Method comparison

$24^3 \times 32$

$32^3 \times 64$
Method comparison

\[16^3 \times 32 \]

- Use point sources, 4 quark vertex formed at source location.

\[32^3 \times 64 \]
Method comparison

$16^3 \times 32$ $32^3 \times 64$

- Use point sources, 4 quark vertex formed at source location.
- Average over 4 source locations on 75 configurations on our $m_l = 0.03, 0.02$ and 0.01 ensembles.
Method comparison

\[16^3 \times 32 \]

- Use point sources, 4 quark vertex formed at source location.

- Average over 4 source locations on 75 configurations on our \(m_\ell = 0.03, 0.02 \) and 0.01 ensembles.

- Momentum applied by applying phase difference between propagator source and sink. Solution can be given arbitrary momentum.

\[32^3 \times 64 \]
Method comparison

$16^3 \times 32$

- Use point sources, 4 quark vertex formed at source location.
- Average over 4 source locations on 75 configurations on our $m_f = 0.03, 0.02$ and 0.01 ensembles.
- Momentum applied by applying phase difference between propagator source and sink. Solution can be given arbitrary momentum.

$32^3 \times 64$

- Use lattice volume sources, vertex formed at propagator sink. (D. Broemmel)
Method comparison

\[16^3 \times 32 \]

- Use point sources, 4 quark vertex formed at source location.
- Average over 4 source locations on 75 configurations on our \(m_l = 0.03, 0.02 \) and 0.01 ensembles.
- Momentum applied by applying phase difference between propagator source and sink. Solution can be given arbitrary momentum.

\[32^3 \times 64 \]

- Use lattice volume sources, vertex formed at propagator sink. (D. Broemmel)
- Average over all sink locations, lattice volume factor gain over point approach.
Method comparison

16^3 \times 32

- Use point sources, 4 quark vertex formed at source location.
- Average over 4 source locations on 75 configurations on our \(m_{1/2} = 0.03, 0.02 \) and 0.01 ensembles.
- Momentum applied by applying phase difference between propagator source and sink. Solution can be given arbitrary momentum.

32^3 \times 64

- Use lattice volume sources, vertex formed at propagator sink. (D. Broemmel)
- Average over all sink locations, lattice volume factor gain over point approach.
- Volume source has fixed momentum as phase must be applied to source lattice sites before inversion.
Method comparison

$16^3 \times 32$
- Use point sources, 4 quark vertex formed at source location.
- Average over 4 source locations on 75 configurations on our $m_l = 0.03, 0.02$ and 0.01 ensembles.
- Momentum applied by applying phase difference between propagator source and sink. Solution can be given arbitrary momentum.

$32^3 \times 64$
- Currently calculated 5 independent momenta (10 total) on 10 configurations on our $m_l = 0.006$ and 0.004 ensembles.
$Z_{BK}^{RI/MOM}(\mu)$

$16^3 \times 32$

$32^3 \times 64$

Graph showing Z_{Φ_k} vs. (μ^2) with different values of m_1: $m_1 = 0.01$, $m_1 = 0.02$, $m_1 = 0.03$, and the chiral limit.
$Z_{BK}^{RI/MOM}(\mu)$

$16^3 \times 32$

$32^3 \times 64$

Z_{μ_k}

$(\alpha \mu)^2$

- $m_1 = 0.01$
- $m_1 = 0.02$
- $m_1 = 0.03$
- chiral limit

- $m_1 = 0.006$
- $m_1 = 0.004$
- chiral limit
- Point $m_1 = 0.006$
\[Z^{RI/MOM}_{BK}(\mu) \]

\[16^3 \times 32 \]

\[32^3 \times 64 \]
For each $Z_{BK}(\mu)$, perform a linear chiral extrapolation to $m = -m_{\text{res}}$
Chiral extrapolation – $32^3 \times 64$

For each $Z_{BK}(\mu)$, perform a linear chiral extrapolation to $m = -m_{\text{res}}$

- 32^3 lever-arm for extrapolation small compared to extrapolation distance
For each $Z_{BK}(\mu)$, perform a linear chiral extrapolation to $m = -m_{\text{res}}$

323 lever-arm for extrapolation small compared to extrapolation distance

→ Future: Add $m_1 = 0.008$ dataset
Exceptional momenta systematic error

- 32^3 stat errors small compared to systematic error from exceptional momenta.
Exceptional momenta systematic error

- 32^3 stat errors small compared to systematic error from exceptional momenta.
- On 24^3 we attributed a 1.5% sys error to this alone.
Exceptional momenta systematic error

- 32^3 stat errors small compared to systematic error from exceptional momenta.
- On 24^3 we attributed a 1.5% sys error to this alone.
- Difference greatly reduced by using non-exceptional momentum configuration $p_1 \neq p_2$
Exceptional momenta systematic error

- 32^3 stat errors small compared to systematic error from exceptional momenta.
- On 24^3 we attributed a 1.5% sys error to this alone.
- Difference greatly reduced by using non-exceptional momentum configuration $p_1 \neq p_2$
- Unfortunately no perturbative calculation available for non-exceptional (Y. Aoki)
Removal of lattice artefacts

- Divide out perturbative running: Quantity is scale invariant up to lattice artefacts
Removal of lattice artefacts

- Divide out perturbative running: Quantity is scale invariant up to lattice artefacts
- Expect quadratic dependence of lattice artefacts on lattice spacing
 → fit to form $Z_{BK}^{SI} + B(a\mu)^2$
Extrapolation of Z_{BK}^{SI}

$16^3 \times 32$ \hspace{1cm} $32^3 \times 64$
Extrapolation of Z^{SI}_{BK}

$16^3 \times 32$

$32^3 \times 64$
Reapply RI/MOM perturbative running to Z_{BK}^{SI} and scale to conventional $\mu = 2$ GeV.
Reapply RI/MOM perturbative running to Z_{BK}^{SI} and scale to conventional $\mu = 2$ GeV.

Apply conversion factor $Z_{BK}^{RI/MOM} \rightarrow Z_{BK}^{\overline{MS}}$
Reapply RI/MOM perturbative running to Z_{BK}^{SI} and scale to conventional $\mu = 2$ GeV.

Apply conversion factor $Z_{BK}^{RI/MOM} \rightarrow Z_{BK}^{MS}$

Z_{BK}^{MS} (2 GeV) $= 0.9276 \pm 0.0052$ (stat) ± 0.0220 (sys).
Reapply RI/MOM perturbative running to \(Z_{BK}^{SI} \) and scale to conventional \(\mu = 2 \) GeV.

Apply conversion factor \(Z_{BK}^{RI/MOM} \rightarrow Z_{BK}^{\overline{MS}} \)

\[Z_{BK}^{\overline{MS}} (2 \text{ GeV}) = 0.9276 \pm 0.0052(\text{stat}) \pm 0.0220(\text{sys}). \]

Sys errors:
Reapply RI/MOM perturbative running to Z_{BK}^{SI} and scale to conventional $\mu = 2$ GeV.

Apply conversion factor $Z_{BK}^{RI/MOM} \rightarrow Z_{BK}^{\overline{MS}}$.

$Z_{BK}^{\overline{MS}} (2 \text{ GeV}) = 0.9276 \pm 0.0052(\text{stat}) \pm 0.0220(\text{sys})$.

Sys errors:
- $O(\alpha_s) \Rightarrow 0.0177$ corrections due to truncation of perturbative analysis
Reapply RI/MOM perturbative running to Z_{BK}^{SI} and scale to conventional $\mu = 2$ GeV.

Apply conversion factor $Z_{BK}^{RI/MOM} \rightarrow Z_{BK}^{MS}$

$Z_{BK}^{MS}(2 \text{GeV}) = 0.9276 \pm 0.0052(\text{stat}) \pm 0.0220(\text{sys})$.

Sys errors:
- $O(\alpha_s)$ \Rightarrow 0.0177 corrections due to truncation of perturbative analysis
- \Rightarrow 0.0007 unphysical strange mass correction
Reapply RI/MOM perturbative running to Z_{BK}^{SI} and scale to conventional $\mu = 2$ GeV.

Apply conversion factor $Z_{BK}^{RI/MOM} \rightarrow Z_{BK}^{MS}$

$Z_{BK}^{MS} (2$ GeV$) = 0.9276 \pm 0.0052(\text{stat}) \pm 0.0220(\text{sys})$.

Sys errors:

$\mathcal{O}(\alpha_s) \Rightarrow 0.0177$ corrections due to truncation of perturbative analysis

$\Rightarrow 0.0007$ unphysical strange mass correction

$\Rightarrow 0.0131$ correction for use of exceptional momenta
Reapply RI/MOM perturbative running to Z_{BK}^{SI} and scale to conventional $\mu = 2$ GeV.

Apply conversion factor $Z_{BK}^{RI/MOM} \rightarrow Z_{BK}^{\overline{MS}}$

$Z_{BK}^{\overline{MS}} (2 \text{ GeV}) = 0.9276 \pm 0.0052(\text{stat}) \pm 0.0220(\text{sys})$.

Sys errors:

- $O(\alpha_s) \Rightarrow 0.0177$ corrections due to truncation of perturbative analysis
- $\Rightarrow 0.0007$ unphysical strange mass correction
- $\Rightarrow 0.0131$ correction for use of exceptional momenta

Current $32^3 Z_{BK}^{\overline{MS}}$ stat error ~ 0.0013.
Conclusions and Outlook
$24^3 \times 64$ final value and 32^3 outlook

- Combining chirally extrapolated B_K with aforementioned Z_{BK} result
Combining chirally extrapolated B_K with aforementioned Z_{BK} result: $B_K^{\text{MS}}(2 \text{ GeV}) = 0.524(10)_{\text{stat}}(13)_{\text{ren}}(25)_{\text{sys}}$

[arXiv:0804.0473]
Combining chirally extrapolated B_K with aforementioned Z_{BK} result

$B_K^{\text{MS}}(2 \text{ GeV}) = 0.524(10)_{\text{stat}}(13)_{\text{ren}}(25)_{\text{sys}}$

[arXiv:0804.0473]

Improved techniques for 32^3 in use; results expected soon:
Watch this space!