Phase diagram and EoS from a Taylor expansion of the pressure

Christian Schmidt
Universität Bielefeld

RBC-Bielefeld:

See poster by C. Miao
Outline

• Introduction
• Taylor expansion of the pressure
• The radius of convergence and the QCD critical point
• The isentropic equation of state
• Summary
The phase diagram of QCD

- Fluctuations of B, S, Q can be measured experimentally and indicate criticality
- Lattice at $\mu = 0$ → RHIC, LHC
- Lattice at $\mu > 0$ → RHIC at low energies, FAIR@GSI

$T \sim 190\,\text{MeV}$

$\mu_s = \mu_Q = 0$

$\mu \geq 0$

Quark-gluon plasma deconfined, χ-symmetric

Hadron gas confined, χ-broken

Cooling of the fireball:

\sim few times nuclear matter density

μB
Taylor expansion of the pressure

- **Taylor expansion in $\mu_{B,S,Q}$**

QCD is naturally formulated with quark chemical potentials $\mu_{u,d,s}$

we start from Taylor expansion of the pressure

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln Z(V, T, \mu_u, \mu_d, \mu_s) = \sum_{i,j,k} c_{i,j,k}^{u,d,s} \left(\frac{\mu_u}{T} \right)^i \left(\frac{\mu_d}{T} \right)^j \left(\frac{\mu_s}{T} \right)^k$$

- use unbiased, noisy estimators to calculate $c_{i,j,k}^{u,d,s}$

 \longrightarrow see C. Miao, CS, PoS (Lattice 2007) 175.

- line of constant physics: $m_q = m_s / 10$
 (physical strange quark mass)

- measure currently up to $O(\mu^8) \longleftrightarrow (N_t = 4)$
 $O(\mu^4) \longleftrightarrow (N_t = 6)$

- action: improved staggered (p4fat3)
Taylor expansion of the pressure

• Taylor expansion in μ_B, S, Q

QCD is naturally formulated with quark chemical potentials μ_u, d, s

we start from Taylor expansion of the pressure

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln Z(V, T, \mu_u, \mu_d, \mu_s) = \sum_{i,j,k} c_{i,j,k}^{u,d,s} \left(\frac{\mu_u}{T} \right)^i \left(\frac{\mu_d}{T} \right)^j \left(\frac{\mu_s}{T} \right)^k$$

• expansion coefficients $c_{i,j,k}^{u,d,s}$ are related to B,S,Q-fluctuations

\[
\begin{align*}
n_B &= \frac{\partial(p/T^4)}{\partial(\mu_B/T)} = \frac{1}{3}(n_u + n_d + n_s) & \mu_u &= \frac{1}{3} \mu_B + \frac{2}{3} \mu_Q \\
n_S &= \frac{\partial(p/T^4)}{\partial(\mu_S/T)} = -n_s & \mu_d &= \frac{1}{3} \mu_B - \frac{1}{3} \mu_Q \\
n_Q &= \frac{\partial(p/T^4)}{\partial(\mu_Q/T)} = \frac{1}{3}(2n_u - n_d - n_s) & \mu_s &= \frac{1}{3} \mu_B - \frac{1}{3} \mu_Q - \mu_S
\end{align*}
\]

• choice of $\mu_u \equiv \mu_d$ is equivalent to $\mu_Q \equiv 0$
Taylor expansion of the pressure

- **Current statistics**

\[N_\tau = 4 \]

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>#Conf.</th>
<th>#Sep.</th>
<th>#Ran.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.240</td>
<td>1013</td>
<td>20</td>
<td>480</td>
</tr>
<tr>
<td>3.280</td>
<td>1550</td>
<td>30</td>
<td>480</td>
</tr>
<tr>
<td>3.290</td>
<td>1550</td>
<td>30</td>
<td>480</td>
</tr>
<tr>
<td>3.300</td>
<td>1250</td>
<td>30</td>
<td>384</td>
</tr>
<tr>
<td>3.315</td>
<td>475</td>
<td>60</td>
<td>384</td>
</tr>
<tr>
<td>3.320</td>
<td>475</td>
<td>60</td>
<td>384</td>
</tr>
<tr>
<td>3.335</td>
<td>264</td>
<td>60</td>
<td>384</td>
</tr>
<tr>
<td>3.351</td>
<td>365</td>
<td>30</td>
<td>384</td>
</tr>
<tr>
<td>3.410</td>
<td>199</td>
<td>60</td>
<td>192</td>
</tr>
<tr>
<td>3.460</td>
<td>302</td>
<td>60</td>
<td>96</td>
</tr>
<tr>
<td>3.610</td>
<td>618</td>
<td>10</td>
<td>48</td>
</tr>
</tbody>
</table>

\[N_\tau = 6 \]

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>#Conf.</th>
<th>#Sep.</th>
<th>#Ran.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.410</td>
<td>800</td>
<td>10</td>
<td>400</td>
</tr>
<tr>
<td>3.420</td>
<td>888</td>
<td>10</td>
<td>400</td>
</tr>
<tr>
<td>3.430</td>
<td>850</td>
<td>10</td>
<td>400</td>
</tr>
<tr>
<td>3.445</td>
<td>924</td>
<td>10</td>
<td>400</td>
</tr>
<tr>
<td>3.455</td>
<td>672</td>
<td>10</td>
<td>350</td>
</tr>
<tr>
<td>3.460</td>
<td>600</td>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>3.470</td>
<td>571</td>
<td>10</td>
<td>150</td>
</tr>
<tr>
<td>3.490</td>
<td>450</td>
<td>10</td>
<td>150</td>
</tr>
<tr>
<td>3.510</td>
<td>670</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>3.570</td>
<td>540</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>3.690</td>
<td>350</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>3.760</td>
<td>345</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

→ work in progress!
Results for expansion coefficients $c_{i,j,k}^{u,d,s}$

- c_2^u
 - $n_{f}=2+1$, $m_\pi=220$ MeV
 - $n_{f}=2$, $m_\pi=770$ MeV
 - filled: $n_f=4$
 - open: $n_f=6$

- c_4^u
 - $n_{f}=2+1$, $m_\pi=220$ MeV
 - $n_{f}=2$, $m_\pi=770$ MeV
 - filled: $n_f=4$
 - open: $n_f=6$

- c_6^u

Cut-off dependance:
 - Small cut-off effects in the transition region (similar to p, e-3p, ...)

Mass dependance:
 - T_c decreases with decreasing mass
 - Fluctuations increase with decreasing mass

- red: RBC-Bielefeld, preliminary
Hadronic fluctuations and the QCD critical point

Baryon number fluctuations ($\mu_B = 0$)

- $2c_2^B = \langle B^2 \rangle$
- $24c_4^B = \langle B^4 \rangle - 3 \langle B^2 \rangle^2$

- Fluctuations increase with decreasing mass
- Fluctuations increase over the resonance gas value

- $n_f=2+1, m_\pi=220$ MeV
- $n_f=2, m_\pi=770$ MeV

- red: RBC-Bielefeld, preliminary
• Consequences for the phase diagram: the radius of convergence

The radius of convergence can be estimated from the Taylor coefficients of the pressure:

\[\rho = \lim_{n \to \infty} \rho_n \]

with

\[\rho_n = \sqrt{\frac{c_n^B}{c_{n+2}^B}} \]

• for \(T > T_c \), \(\rho_n \to \infty \)

• for \(T < T_c \), \(\rho_n \) is bound by the transition line

The Resonance gas limit:

\[\frac{p}{T^4} = G(T) + F(T) \cosh \left(\frac{\mu_B}{T} \right) \]

\[\longrightarrow \rho_n = \sqrt{\frac{1}{(n + 2)(n + 1)}} \]

→ look for non-monotonic behavior in the radius of convergence
- Consequences for the phase diagram: the radius of convergence

- non monotonic behavior in the radius of convergence?

<table>
<thead>
<tr>
<th>ρ_2</th>
<th>$N_\tau = 4$</th>
<th>$N_\tau = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_\pi \approx 220$ MeV</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>$m_\pi \approx 770$ MeV</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ρ_4</th>
<th>$N_\tau = 4$</th>
<th>$N_\tau = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_\pi \approx 220$ MeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_\pi \approx 770$ MeV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

→ first hint for a critical region at small masses?

- higher order approximations are needed to locate the critical point
• Consequences for the phase diagram: the radius of convergence

• non monotonic behavior in the radius of convergence?

<table>
<thead>
<tr>
<th></th>
<th>(\rho_2)</th>
<th>(N_\tau = 4)</th>
<th>(N_\tau = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_\pi \approx 220 \text{ MeV})</td>
<td>Yes</td>
<td>(m_\pi \approx 770 \text{ MeV})</td>
<td>No</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c|cc}
& \rho_2 & \rho_4 \\
\hline
\hline
m_\pi & \approx 220 \text{ MeV} & \approx 220 \text{ MeV} \\
\hline
m_\pi & \approx 770 \text{ MeV} & \approx 770 \text{ MeV} \\
\hline
\end{array}
\]

→ first hint for a critical region at small masses? (only at \(N_\tau=4 \)?)

• higher order approximations are needed to locate the critical point
• Consequences for the phase diagram: the radius of convergence

non monotonic behavior in the radius of convergence?

<table>
<thead>
<tr>
<th>(\rho_2)</th>
<th>(N_\tau = 4)</th>
<th>(N_\tau = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_\pi \approx 220 \text{ MeV})</td>
<td>Yes</td>
<td>?</td>
</tr>
<tr>
<td>(m_\pi \approx 770 \text{ MeV})</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\rho_4)</th>
<th>(N_\tau = 4)</th>
<th>(N_\tau = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_\pi \approx 220 \text{ MeV})</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>(m_\pi \approx 770 \text{ MeV})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

→ first hint for a critical region at small masses? (only at \(N_t=4 \)?)

• higher order approximations are needed to locate the critical point

\(\rho_4 \) (and maybe \(\rho_6 \)) are needed in higher precision
• Consequences for the phase diagram: the radius of convergence

• non monotonic behavior in the radius of convergence?

<table>
<thead>
<tr>
<th>ρ_2</th>
<th>$N_T = 4$</th>
<th>$N_T = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_\pi \approx 220$ MeV</td>
<td>Yes</td>
<td>?</td>
</tr>
<tr>
<td>$m_\pi \approx 770$ MeV</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ρ_4</th>
<th>$N_T = 4$</th>
<th>$N_T = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_\pi \approx 220$ MeV</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>$m_\pi \approx 770$ MeV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

→ first hint for a critical region at small masses? (only at Nt=4?)

→ ρ_4 (and maybe ρ_6) are needed in higher precision

→ higher order approximations are needed to locate the critical point.
Consequences for the phase diagram: the radius of convergence

- unexpected behavior in the radius of convergence of the pressure expansion in μ_I/T?

→ pion-condensation phase should show up in the ρ profile
• Pressure, Energy and Entropy: the 0th-order

\[p/T^4 \text{ from integrating over } (\epsilon - 3p)/T^5 \]

- systematic error from starting the integration at \(T_0 = 100\,\text{MeV} \) with \(p(T_0) = 0 \)
- use HRG to estimate systematic error: \([p(T_0)/T_0^4]_{HRG} \approx 0.265 \)

M. Cheng et al. [RBC-Bielefeld], PRD 77 (2008) 014511.
The EoS at non zero density

- Taylor expansion of the trace anomaly

\[
\frac{\epsilon - 3p}{T^4} = \sum_{n=0}^{\infty} c'_n B(T, m_l, m_s) \left(\frac{\mu_B}{T} \right)^n
\]

Coefficients are defined by

\[
c'_n B(T, m_l, m_s) = T \frac{dc^n_B(T, m_l, m_s)}{dT}
\]

Perform T-derivative numerically: discretization error

- "local version" is work in progress

\[
c'_n B(T, \hat{m}_l, \hat{m}_s) = -a \frac{d\beta}{da} \frac{dc^n_B(T, \hat{m}_l, \hat{m}_s)}{d\beta} - a \frac{d\hat{m}_l}{da} \frac{dc^n_B(T, \hat{m}_l, \hat{m}_s)}{d\hat{m}_l} - a \frac{d\hat{m}_s}{da} \frac{dc^n_B(T, \hat{m}_l, \hat{m}_s)}{d\hat{m}_s}
\]

- Taylor expansion of energy and entropy densities

\[
\frac{\epsilon}{T^4} = \sum_{n=0}^{\infty} \left(3c^n_B(T, m_l, m_s) + c'_n B(T, m_l, m_s) \right) \left(\frac{\mu_B}{T} \right)^n \equiv \sum_{n=0}^{\infty} \epsilon^n_B \left(\frac{\mu_B}{T} \right)^n
\]

\[
\frac{s}{T^3} = \sum_{n=0}^{\infty} \left((4 - n)c^n_B(T, m_l, m_s) + c'_n B(T, m_l, m_s) \right) \left(\frac{\mu_B}{T} \right)^n \equiv \sum_{n=0}^{\infty} s^n_B \left(\frac{\mu_B}{T} \right)^n
\]
• Coefficients of the μ_B-expansion

\[
\epsilon_n \approx 10\% \\
\text{pattern of } \epsilon_n \text{ and } s_n \text{ is that of } c_{n+2}
\]
Isentropic trajectories

- Solve numerically for
 \[S(T, \mu_B) / N_B(T, \mu_B) = \text{const.} \]
- 6th order is small at S/N = 30 (trajectories inside estimated radius of convergence)
- Calculate pressure and energy density along isentropic trajectories
- Pressure and energy density increase by \(\approx 10\% \) for S/N = 30.

\[N_T = 4 \]

\[N_T = 6 \]
• Isentropic trajectories

 → solve numerically for

 \[S(T, \mu_B)/N_B(T, \mu_B) = \text{const.} \]

 → 6th order is small at S/N=30
 (trajectories inside estimated radius of convergence)

 → calculate pressure and energy density
 along isentropic trajectories

 → pressure and energy density increase
 by \(\approx 10\% \) for S/N=30.
• **Isentropic trajectories**

- solve numerically for
 \[S(T, \mu_B)/N_B(T, \mu_B) = \text{const.} \]
- 6th order is small at S/N=30 (trajectories inside estimated radius of convergence)
- calculate pressure and energy density along isentropic trajectories
- pressure and energy density increase by \(\approx 10\% \) for S/N=30.

The EoS along isentropic trajectories is fairly independent on S/N.

Leading order corrections:

\[
\frac{p}{\epsilon} = \frac{1}{3} - \frac{1}{3} \left(\frac{\epsilon_0 - 3p_0}{\epsilon_0} \right) \left(1 + \frac{c'_2}{\epsilon_0 - 3p_0} - \frac{\epsilon_2}{\epsilon_0} \right) \left(\frac{\mu_B}{T} \right)^2
\]
• Cut-off effect for Taylor expansion coefficients are small and sizable only in the transition region (similar to the interaction measure e-3p)

• We find non-monotonic behavior in the radius of convergence for \(N_{\tau} = 4 \) which could be a first hint for a critical region in the \(T, \mu_B \) - plane. This needs to be confirmed by \(N_{\tau} = 6 \).

• Isentropic trajectories show non-monotonic behavior for \(N_{\tau} = 4 \). This needs to be confirmed by \(N_{\tau} = 6 \).

• Finite density correction for EoS are small, pressure and energy density increase by \(\approx 10\% \) for S/N=30 (AGS/FAIR), corrections cancel to large extent in \(p/\epsilon \).

• Taylor expansion method will provide valuable input for HIC phenomenology.