High Precision Charm Physics with HISQ quarks

Christine Davies
HPQCD collaboration
Charm quarks in lattice QCD - heavy or light?

Relativistic light quark advantages:
• $E_{\text{sim}} = m$
• PCAC relation (if enough chiral symmetry) gives $Z = 1$ for decay constants
• same action as for u, d, s. Can take ratios to light physics.

Key issue is discretisation errors:

$$m_c a \approx 0.4, (m_c a)^2 \approx 0.2, \alpha_s (m_c a)^2 \approx 0.06, (m_c a)^4 \approx 0.04$$

Need to remove all of these errors for precision results
Improved staggered formalism

Naik term removes tree-level a^2 errors. Smeared link reduces taste-exchange $\alpha_s a^2$ errors

Highly Improved staggered formalism

Second level of smearing (with polar projection) reduces taste-exchange errors further.

Change Naik coefficient to remove leading $(am_c)^4$ errors (check speed of light)
Used HISQ valence light and charm quarks on MILC very coarse, coarse and fine configs with imp.stagg sea quarks

Excellent statistical accuracy from random wall sources (as used by MILC for light mesons)

\[\sum a_i e^{-M_i t} + (-1)^t a_{ip} e^{-M_{ip} t} \]

\[\frac{\text{signal}}{\text{noise}} = e^{-0.133 GeVT} \]

Allows systematic errors to be studied in detail
Calculate D/Ds masses and decay constants *very* precisely

NO free parameters since m_c fixed from η_c
2008 Improved accuracy from CLEO-c
Determine decay constant from leptonic rate and taking $V_{cs}=V_{ud}$, $V_{cd}=V_{us}$

New physics? see Kronfeld talk Friday 2:50pm
Further checks of lattice calculations important ...

1. Spectrum

Hyperfine splitting between vector and pseudoscalar

No dependence on sea quark mass
Dependence on a clearly visible - some of this is a taste-exchange effect

Comparison to expt complicated few MeV e.m and annihilin corrons. Lattice error dominated by square of absolute scale error - 3%

see Kendall talk, Thursday 8:50am
Further taste effects

“Double HISQ” reduces taste-exchange discretisation errors further -
“Treble HISQ” worse again

Too much smearing makes disc. errors worse again
Improved scaling of hyperfine splitting also seen in Double HISQ

All taste versions converging with a^2 to same answer
2. Decay constants

Again, no sea quark mass dependence. Lattice spacing dependence evident for charm.

η_c

η_s
Vector decay constants \(f_V m_V = \langle 0 | J | V \rangle \)

\[
\Gamma_{e^+e^-} = \frac{4\pi}{3} \alpha_{\text{QED}} e^2 Q \frac{f_V^2}{m_V}
\]

“nonpert” renormln using t-moments of JJ correlator (Lepage talk)
error = 4% at a=0.

renormalise using 1-loop pert. th.

Different tastes heading towards agreement with expt - need to complete calc. with conserved vector current
Conclusions

HISQ allows us to do charm physics accurately

\[f_{D_s} = 241(3)\,MeV \quad 3\sigma \quad \text{from expt} \]

All other charmonium and charm-light results agree with expt at few % level.

Future: Similarly accurate 3pt calculations

See also: Lepage talk, Thursday 9:10am
Allison talk, Thursday 9:30am
for 1% accurate \(m_c \)

Bazavov talk, Tuesday 5:00pm, dynamical HISQ