Nearly conformal electroweak sector
with chiral fermions

Dániel Nógrádi

in collaboration with

Zoltán Fodor (Wuppertal), Kieran Holland (UoP)

Julius Kuti (UCSD), Chris Schroeder (UCSD)
Outline and motivation

- BSM Higgs sector
 - Heavy Higgs?
 - Strongly interacting EW symmetry breaking?

- Technicolor idea
 - Walking - nearly conformal
 - Conformal

- Phase diagram of gauge theories \((N_c, N_f, R)\)
 - QCD
 - SUSY YM
 - Other representations?

- Unparticles - conformal hidden sector
Phase diagram \((N_c, N_f, \mathcal{R})\)

- **QCD-like**
 - \(g^* = 0\)
 - UV fixed-point

- **Conformal window**
 - \(g^* > 0\)
 - IR fixed-point
 - \(g^*(N_f) > g^*(N_f)\)

- **Trivial theory**
 - \(g^* = 0\)

\((\mathcal{N} = 1\) YM is a special case)
Phase diagram (N_c, N_f, R) in perturbation theory

Fundamental: gray
(Pallante, Neil, Jin, Deuzeman today, Holland Friday 3:50, Fleming Saturday 9:15)

2 antisym: blue
2 sym: red
adjoint: green

(Sannino)
Technicolor paradigm

Need to know $N_f(\chi)$ for fixed N_c, R

A constraint from phenomenology: S-parameter $\sim \text{dim}(R)N_f$ should be small

$SU(3)$ fundamental representation is ruled out

(JLQCD: non-perturbative \sim perturbative)

$SU(3)$ 2S representation produces right number of Goldstones from symmetry breaking

$$
N_f(BZ) = 1.2 \quad \quad N_f(\chi) = 2.5 \quad \quad N_f(AS) = 3.3
$$

$N_f = 2$ just below conformal window - could be walking

If really in conformal window: good for conformal technicolor

(Luty)
Our model

\[SU(3) \quad N_f = 2 \quad R = 2S \]

Simplest model with small S-parameter, 3 Goldstone-bosons (get eaten by W, Z), EW symmetry breaking works out

Chiral symmetry is important: use dynamical overlap fermions

Previous study: wilson fermions + Schrodinger functional: maybe conformal

Svetitsky (Friday 2:30) DeGrand (Friday 2:50)
Problems everyone in this business has to deal with

Small bare coupling (small volume): always free

Large bare coupling: always χ_{SB}

Staggered: taste breaking, effective $N_f < \text{naive } N_f$

Wilson: explicit χ_{SB}

Overlap: strong coupling phase diagram complicated, little is known very expensive

Most important question: how to distinguish χ_{SB} from conformal?
χ_{SB} vs. conformal

Possible methods

- β-function from Schrodinger functional (Appelquist et al.)

- Locating finite T transition (Pallante et al.)

- ϵ-regime $\rho(\lambda)$ characteristics (Fodor/Holland/Kuti/DN/Schroeder)
If χ_{SB} and $1/f_\pi < L < 1/m_\pi$

Can use chiral Lagrangian without kinetic term

Detailed prediction for microscopic Dirac spectral density $\zeta = \lambda \Sigma V$ and eigenvalue distributions in each Q topological sector, calculable with RMT

$$
\rho_S(\zeta) = \frac{1}{\Sigma V} \rho \left(\frac{\zeta}{\Sigma V} \right) = \sum_{k=0}^{\infty} p_k(\zeta)
$$

For macroscopic $\rho(\lambda)$: Banks-Casher: $\rho(0) = V \Sigma / \pi$
ε-regime and Dirac spectrum

In conformal case: no ε-regime or microscopic spectral density

$$\rho(\lambda) \sim \lambda^{3+\gamma}$$

γ anomalous dimension of $\bar{\psi}\psi$

Unfortunately $p_k(\lambda)$ not known, in principle calculable (work in progress)

Effect of finite m and finite V also not known (work in progress)
ε-regime and Dirac spectrum

Strategy: simulate in real or would-be ε-regime and see if $\rho_S(\zeta)$ and/or $\rho(\lambda)$ is or is not consistent with RMT and/or conformal predictions

Algorithms for dynamical overlap

- Hungarian (reflection/refraction)
- Japanese (topology conserving with extra wilson fermion)

We need fix Q, Japanese algorithm cheaper: use that for initial study
Preliminary results, 6^4 volume, $m = 0.05$, $O(100)$ configurations

What β? Nothing so far in literature, need to start from scratch.

Scan strong coupling $\sim 4.5 < \beta < 5.5 \sim$ free

For RMT one needs $m < \lambda_1$ to see dynamical fermions
Macroscopic spectral density

\[\beta = 4.85 \]

\[\beta = 4.975 \]

\[\beta = 5.10 \]
Microscopic spectral density

\[\Sigma(4.850) = 0.083(4) \]
\[\Sigma(4.975) = 0.084(4) \]
\[\Sigma(5.100) = 0.080(4) \]
Microscopic spectral density from RMT

$\beta = 4.85$

$\beta = 4.975$

$\beta = 5.10$
All our results are preliminary

2S representation seems not consistent with χ_{SB}

Reason can be too small volume, not really ε-regime

Caution! Have not measured any quantity f_π, m_π, \ldots

Conformal? More work needed!
Conclusion

First dynamical overlap simulation of 2S repr of SU(3)

If below conformal window: can predict narrow heavy Higgs particle without free parameters consistent with EW precision (S-parameter)

Measuring β-function will help, $\gamma(g)$.