STRONG COUPLING CONSTANT AND FOUR QUARK CONDENSATES FROM VACUUM POLARIZATION FUNCTIONS WITH DYNAMICAL OVERLAP FERMIONS

Eigo Shintani (KEK)
collaborate with S. Aoki, S. Hashimoto, H. Matsufuru, J. Noaki, T. Onogi, N. Yamada (for the JLQCD collaboration)

Ref. arXiv: 0807.0556
Calculation of strong coupling constant α_s
Fundamental constant of QCD, and provides a high precision test of QCD.

Phenomenological determination (short distance physics)
- Deep-inelastic scattering,
- tau decay (OPAL, ALEPH), e^+e^- annihilation.
- Operator Product Expansion (OPE)

Lattice calculation
- (Heavy) hadron spectroscopy, [SESAM(1999), HP/UKQCD-Flab(2004)]
- Heavy (static) quark potential, [HPQCD(2008)]
- Schrödinger functional scheme, [ALPHA(2005)]
METHODOLOGY

- Matching the OPE with the lattice data of vector (V) and axial-vector (A) vacuum polarization functions in dynamical overlap fermion.

- Exact chiral symmetry of overlap fermion
 - No additive renomalization terms (in chiral condensate)
 - No $O(a)$ lattice artifacts due to the violation of chiral symmetry.

- Dynamical overlap fermion configurations
 - $N_f=2$, $16^3 \times 32$ lattice, $a^{-1}=1.67$ GeV, quark mass: $m_s/6 \sim m_s/2$
 - Non-perturbative renormalization factor
 - Topology is fixed in $Q=0$

See also [HPQCD(2008)]

Talk by S. Hashimoto
VACUUM POLARIZATION FUNCTIONS

Current correlator in the continuum

Different spin (S=0, 1) components

\[i \int d^4 x \langle T\{ J_\mu(x), J_\nu^\dagger(0) \} \rangle e^{iqx} = -(g_{\mu\nu}q^2 - q_\mu q_\nu) \Pi_{J}^{(1)}(q^2) + q_\mu q_\nu \Pi_{J}^{(0)}(q^2) \]

focus on \(\Pi_{J}^{(0+1)}(Q^2) = \Pi_{J}^{(0)}(Q^2) + \Pi_{J}^{(1)}(Q^2), \ Q^2 = -q^2 > 0 \)

OPE

\[
\Pi_{J}^{(0+1)}(Q^2) = C_0(Q^2, \mu^2) + \frac{m^2 C_m^J(Q^2)}{Q^2} + C_{qq}^J(Q^2) \frac{\langle m\bar{q}q \rangle}{Q^4} + C_{GG}(Q^2) \frac{\langle \alpha_s/\pi GG \rangle}{Q^4} + \cdots
\]

\(C_0 \) and \(C_m \) are known at 4-loop, \(C_{qq} \) and \(C_{GG} \) are known at 3-loop.
CURRENT CORRELATOR ON THE LATTICE

- Local (non-conserved) current
 \[V_\mu = Z_V \bar{q} \gamma_\mu \left(1 - \frac{D}{2m_0}\right) q, \quad A_\mu = Z_A \bar{q} \gamma_\mu \gamma_5 \left(1 - \frac{D}{2m_0}\right) q \]

- Correlator
 \[
 \int d^4 x \langle T\{J_\mu(x), J_\nu(0)\}\rangle^{\text{lat}} e^{iQx} = \delta_{\mu\nu} Q^2 \Pi_J^{(1)}(Q) - Q_\mu Q_\nu \Pi_J^{(0+1)}(Q) \\
 - B_0(Q) \delta_{\mu\nu} - \sum_{n=1} B_n(Q) Q_\mu^{2n} \delta_{\mu\nu} - \sum_{m,n=1} C_{mn}(Q) (Q_\mu^{2m+1} Q_\nu^{2n+1} + Q_\nu^{2m+1} Q_\mu^{2n+1})
 \]

 - 1st and 2nd term \([\Pi_J]\): Vacuum polarization function
 - 3rd term: \([B_0]\)
 Same Lorentz structure as \(\Pi_J^{(1)}\) and contains contact term which is divergent as \(1/a^2\).
 - 4th and 5th term: \([B_n, C_{mn}]\)
 Violation of the Lorentz symmetry (lattice artifacts),
CURRENT CORRELATOR ON THE LATTICE

\[\int d^4x \langle T\{J_\mu(x), J_\nu(0)\}\rangle^{\text{lat}} e^{iQx} = \delta_{\mu\nu} Q^2 \Pi^{(1)}_J(Q) - Q_\mu Q_\nu \Pi^{(0+1)}_J(Q) \]

\[-B_0(Q) \delta_{\mu\nu} - \sum_{n=1} B_n(Q) Q^{2n}_\mu \delta_{\mu\nu} - \sum_{m,n=1} C_{mn}(Q) (Q^{2m+1}_\mu Q^{2n+1}_\nu + Q^{2m+1}_\nu Q^{2n+1}_\mu) \]

Our method:
- Focus on \(\Pi^{(0+1)}_J \), then \(Q^2 \Pi^{(1)}_J + B_0 \) can be ignored.
- Truncate the terms of \(O(Q^6) \) and higher, we only consider \(B_{1,2} \) and \(C_{11} \)
- Off-diagonal part \((\mu \neq \nu) \)
 - extract \(\Pi^{(0+1)}_J \) and \(C_{11} \)
- Diagonal part \((\mu = \nu) \)
 - extract \(\Pi^{(0+1)}_J \) and \(B_{1,2} \) using \(C_{11} \) from off-diagonal part.
- Comparison of \(\Pi^{(0+1)}_J \) obtained from diagonal \((\mu = \nu) \) and off-diagonal \((\mu \neq \nu) \) provides a good check of consistency.
NUMERICAL RESULTS: LATTICE ARTIFACTS

Subtraction coefficients (lightest quark mass)

- Solid line: fit function (polynomial), Dashed line: one-loop in lat. PT.
- Dominated by the perturbative contribution
- B_1 (in diagonal part), is much larger than others,
- These coefficients mostly cancel in V-A.

[arXive: 0806.4222] and Yamada’s talk
NUMERICAL RESULTS: SUBTRACTION

$\Pi_V^{(0+1)}$ and subtraction factor

blue filled circle and green filled triangle reasonably agree in $(aQ)^2 < 1.4$

- Higher order is small
- Truncation at $O(Q^6)$ is enough to reduce the Lorentz violating terms
Analysis of two forms of Π_J using the OPE

V+A

Coupling constant $\alpha_s (\Lambda_{\text{MS}})$ and gluon condensate

V - A

Four quark condensate, $a_6(\mu)$, $b_6(\mu)$:

$$a_6(\mu) = 2 \left[2\pi \langle \alpha_s O_8 \rangle + A_8 \langle \alpha_s^2 O_8 \rangle + A_1 \langle \alpha_s^2 O_1 \rangle \right]$$

$$b_6(\mu) = 2 \left[B_8 \langle \alpha_s^2 O_8 \rangle + B_1 \langle \alpha_s^2 O_1 \rangle \right]$$

with

$$\langle O_1 \rangle = \left\langle \bar{q} \gamma_\mu \frac{\tau^3}{2} q \bar{q} \gamma^\mu \gamma_5 \frac{\tau^3}{2} q - \bar{q} \gamma_\mu \gamma_5 \frac{\tau^3}{2} q \bar{q} \gamma^\mu \gamma_5 \frac{\tau^3}{2} q \right\rangle$$

$$\langle O_8 \rangle = \left\langle \bar{q} \gamma_\mu \lambda_a \frac{\tau^3}{2} q \bar{q} \gamma^\mu \lambda_a \frac{\tau^3}{2} q - \bar{q} \gamma_\mu \gamma_5 \lambda_a \frac{\tau^3}{2} q \bar{q} \gamma_5 \gamma^\mu \lambda_a \frac{\tau^3}{2} q \right\rangle$$

which corresponds to $K \rightarrow \pi \pi$ (I=2) matrix element.

[Donaghue(2000)]
ANALYSIS OF V+A

For \[\Pi_{V+A}^{(0+1)} = \Pi_V^{(0+1)} + \Pi_A^{(0+1)} \]

\[\Pi_{V+A}^{(0+1)} |_{\text{OPE}} (Q^2) = c + C_0(Q^2, \mu^2) + \frac{m^2 C_{m+V}^{V+A}(Q^2)}{Q^2} \]

\[+ C_{qq}^{V+A}(Q^2) \frac{\langle m\bar{q}q \rangle}{Q^4} + C_{GG}(Q^2) \frac{\langle \alpha_s/\pi GG \rangle}{Q^4} \]

3 free parameters
- \(\alpha_s (\Lambda_{\text{MS}}) \) and gluon condensate \(<\alpha_s/\pi GG> \),
- \(c \): difference of renormalization scheme (lattice and dimensional regularization)
- \(C_0, C_m, C_{qq}, C_{GG} \) from perturbation theory (3-loop)
- Quark condensate is an input, \([0.251 \text{ GeV}]^3 \) \[\text{[Fukaya}(2007)\text{]}\]

↑ No additional renormalization necessary.

Mass dependence is controlled by the 4\(^{th}\) term
NUMERICAL RESULTS: V+A

![Graphs showing numerical results](image)

- **Fit range** $[0.58, 1.3]$
- **Systematic error** estimated by replacing C_0 by lattice perturbation (one-loop)
- **Gluon condensate** has a large systematic error

\[\Lambda_{MS}^{(2)} = 0.234(9)(^{+16}_{-0}) \text{ GeV} \]

\[\langle \alpha_s/\pi GG \rangle = -0.06 \sim 0.1 \text{ GeV}^4 \]

Statistical vs. *Systematic* errors, e.g. 0.250(16)(16) GeV

[ALPHA(2005)]
ANALYSIS OF V−A

For $\Pi_{V-A}^{(0+1)} = \Pi_V^{(0+1)} - \Pi_A^{(0+1)}$

$$\Pi_{V-A}^{(0+1)}|_{\text{OPE}}(Q^2) = \frac{m^2 C_m^{V-A}(Q^2)}{Q^2} + C_{\bar{q}q}^{V-A}(Q^2) \frac{\langle m\bar{q}q \rangle}{Q^4}$$

$$+ \left[a_6(\mu) + b_6(\mu) \ln(Q^2/\mu^2) + m_q c_6 \right] \frac{1}{Q^6} + \frac{a_8}{Q^8}$$

- In the chiral limit, 1st and 2nd terms go to zero.
 ⇒ start from the dimension-six term (leading)
- $C_m^{V-A}(Q^2), C_{\bar{q}q}^{V-A}(Q^2) \sim O(\alpha_s)$
 ⇒ sub-dominant
- Fit with or without the a_8 term in order to estimate the truncation effect
- Exact chiral symmetry of overlap fermion is important to remove additional operator mixing.
NUMERICAL RESULTS: \(V - A \)

Fit range \([0.58, 1.3]\]

\[
a_6 = -0.0038(3)(^{16}_{-0}) \text{ GeV}^6, \quad b_6 = +0.0017 \sim -0.0008 \text{ GeV}^6
\]

- Systematic error is determined by the comparison with and without the \(a_8 \) term.
- Phenomenological estimate: \(a_6 = -0.003 \sim -0.009 \text{ GeV}^6, \quad b_6 \sim 0.03a_6 \)
SUMMARY

Calculation of strong coupling α_s and four-quark condensate a_6 from vacuum polarization function $\Pi_{V\pm A}$ by matching with OPE.

Dynamical overlap fermions ($N_f=2$)

For $V+A$
- Subtract Lorentz violating terms $B_{1,2}, C_{11}$
- We obtain $\Lambda_{MS}^{(2)} = 0.234(9)(^{+16}_{-0})$, $\langle \alpha_s / \pi G G' \rangle = -0.06 \sim 0.1 \text{GeV}^4$

For $V-A$
- Four-quark condensate is leading term in the chiral limit
- We obtain $a_6 = -0.0038(3)(^{+16}_{-0}) \text{GeV}^6$, $b_6 = +0.0017 \sim -0.0008 \text{GeV}^6$
- Good agreement with phenomenological estimation

On-going project on $N_f=2+1$ configurations