Clover improvement for stout-smeared 2+1 flavour SLiNC fermions: perturbative results

R. Horsley1, H. Perlt2, P.E.L. Rakow3, G. Schierholz4, A. Schiller2

1Edinburgh,2Leipzig,3Liverpool,4DESY

QCDSF collaboration

Lattice08, Williamsburg, VA, USA, 2008 July 14 - 19
Outline

Introduction
 Action for 2+1

Calculation
 Results for c_{SW} and κ_c
 Mean field improvement
 Point operators

Summary
Outline

Introduction
Action for 2+1

Calculation
Results for c_{SW} and κ_c
Mean field improvement
Point operators

Summary
Outline

Introduction

Action for 2+1

Calculation

Results for c_{SW} and κ_c
Mean field improvement
Point operators

Summary
Total action

Current simulations with $2 + 1$ flavours require a careful choice of lattice representations of fermions and gluons

QCDSF collaboration:

\[
S^{\text{total}}(U, U, \psi; c_{\text{SW}}, \kappa, c_i) = S_{\text{SLiNC}} + S_G(U; c_i)
\]

SLiNC action = Stout Link Non-perturbative Clover

\[
S_{\text{SLiNC}} = S_F(U, U, \psi; c_{\text{SW}}, \kappa)
\]
Total action

Current simulations with 2 + 1 flavours require a careful choice of lattice representations of fermions and gluons

QCDSF collaboration:

\[S^{\text{total}}(U, U, \psi; c_{SW}, \kappa, c_i) = S_{\text{SLiNC}} + S_G(U; c_i) \]

SLiNC action=Stout Link Non-perturbative Clover

\[S_{\text{SLiNC}} = S_F(U, U, \psi; c_{SW}, \kappa) \]
Fermionic part

Clover action with stout smeared links U in the hopping term

$$S_F(U, U, \psi; c_{SW}, \kappa) = \sum_{x} \left\{ \overline{\psi}(x) \psi(x) - \kappa \overline{\psi}(x) U^\dagger_\mu(x - \hat{\mu}) [1 + \gamma_\mu] \psi(x - \hat{\mu}) - \kappa \overline{\psi}(x) U_\mu(x + \hat{\mu}) [1 - \gamma_\mu] \psi(x + \hat{\mu}) + \frac{i}{2} \kappa c_{SW} \overline{\psi}(x) \sigma_{\mu\nu} F_{\mu\nu}(U, x) \psi(x) \right\}$$
Fermionic part

where [Morningstar/Peardon]

\[U_\mu(x) = \exp\{iQ_\mu(x)\} U_\mu(x) \]

\[Q_\mu(x) = \frac{\omega}{2i} [VU^\dagger - UV^\dagger - \frac{1}{N_c} \text{Tr}(VU^\dagger - UV^\dagger)]_{\mu} \]

\(V_\mu \) is the sum of all staples around \(U_\mu \).

Terms at \(O(\omega) \):

\[VU^\dagger U \quad \quad \quad \quad UU^\dagger U \quad \quad \quad \quad \text{Tr}(U) \]
Fermionic part

Benefits:
- UV-filtering → improving chiral behavior of clover fermions
- UV-filtering → suppressing unwanted tadpole contributions
- Stout smearing → fat link remains automatically in the gauge group

Choices:
- $\omega \approx 0.1$ → mild smearing
- $F_{\text{clover}}(U)$ unsmeared → fermionic matrix remains not too extended
Fermionic part

Benefits:
- UV-filtering \rightarrow improving chiral behavior of clover fermions
- UV-filtering \rightarrow suppressing unwanted tadpole contributions
- Stout smearing \rightarrow fat link remains automatically in the gauge group

Choices:
- $\omega \approx 0.1 \rightarrow$ mild smearing
- $F_{\text{clover}}(U)$ unsmeared \rightarrow fermionic matrix remains not too extended
Fermionic part

Benefits:
- UV-filtering \rightarrow improving chiral behavior of clover fermions
- UV-filtering \rightarrow suppressing unwanted tadpole contributions
- Stout smearing \rightarrow fat link remains automatically in the gauge group

Choices:
- $\omega \approx 0.1$ \rightarrow mild smearing
- $F_{\text{clover}}(U)$ unsmeared \rightarrow fermionic matrix remains not too extended
Fermionic part

Benefits:
- UV-filtering \rightarrow improving chiral behavior of clover fermions
- UV-filtering \rightarrow suppressing unwanted tadpole contributions
- Stout smearing \rightarrow fat link remains automatically in the gauge group

Choices:
- $\omega \approx 0.1 \rightarrow$ mild smearing
- $F_{\text{clover}}(U)$ unsmeared \rightarrow fermionic matrix remains not too extended
Fermionic part

Benefits:
- UV-filtering → improving chiral behavior of clover fermions
- UV-filtering → suppressing unwanted tadpole contributions
- Stout smearing → fat link remains automatically in the gauge group

Choices:
- $\omega \approx 0.1$ → mild smearing
- $F_{\text{clover}}(U)$ unsmeared → fermionic matrix remains not too extended
Gauge part

Symanzik improved gauge action:

\[
S_G(U; c_i) = \frac{6}{g^2} \left[c_0 \sum_{\text{plaquette}} \frac{1}{3} \text{Re} \text{Tr} (1 - U_{\text{plaquette}}) +
\right. \\
\left. c_1 \sum_{\text{rectangle}} \frac{1}{3} \text{Re} \text{Tr} (1 - U_{\text{rectangle}}) \right]
\]

with \(c_1 = -1/12 \), \(c_0 + 8c_1 = 1 \), \(\beta = \frac{6}{g^2} c_0 \)
Gauge part

Benefits:
- Six-link gauge actions $\rightarrow \mathcal{O}(a^2)$ improvement
- Six-link gauge actions \rightarrow better phase behavior for 2+1

\textbf{JLQCD}
- Tree-level Symanzik $\rightarrow \Lambda^{\overline{\text{MS}}}/\Lambda^{\text{latt}} \approx \mathcal{O}(1)$
- One-loop corrections $\Delta c_i^{(1)}$ to the $c_i \rightarrow \Delta c_i^{(1)} \approx -0.01$, $\Delta c_2^{(1)} \approx -0.00006$ Zhao et al. [2007]
Gauge part

Benefits:
- Six-link gauge actions $\rightarrow \mathcal{O}(a^2)$ improvement
- Six-link gauge actions \rightarrow better phase behavior for 2+1

JLQCD
- Tree-level Symanzik $\rightarrow \Lambda^{\overline{MS}}/\Lambda^{\text{latt}} \approx \mathcal{O}(1)$
- One-loop corrections $\Delta c_i^{(1)}$ to the c_i $\rightarrow \Delta c_i^{(1)} \approx -0.01$, $\Delta c_2^{(1)} \approx -0.00006$ Zhao et al. [2007]
Gauge part

Benefits:
- Six-link gauge actions $\to \mathcal{O}(a^2)$ improvement
- Six-link gauge actions \to better phase behavior for 2+1

JLQCD
- Tree-level Symanzik $\to \Lambda_{\overline{MS}}/\Lambda_{\text{latt}} \approx \mathcal{O}(1)$
- One-loop corrections $\Delta c_i^{(1)}$ to the $c_i \to \Delta c_i^{(1)} \approx -0.01$, $\Delta c_2^{(1)} \approx -0.00006$ Zhao et al. [2007]
Gauge part

Benefits:
- Six-link gauge actions $\rightarrow \mathcal{O}(a^2)$ improvement
- Six-link gauge actions \rightarrow better phase behavior for 2+1

 JLQCD
 - Tree-level Symanzik $\rightarrow \Lambda_{\overline{MS}}/\Lambda_{\text{latt}} \approx \mathcal{O}(1)$
 - One-loop corrections $\Delta c_i^{(1)}$ to the $c_i \rightarrow \Delta c_1^{(1)} \approx -0.01$, $\Delta c_2^{(1)} \approx -0.00006$ *Zhao et al. [2007]*
Parameters of SLiNC

Summary of parameters:

- c_i, ω, c_{SW}, number of smearing steps (n_{smear})

- c_i, ω, n_{smear}: certain freedom

but:

c_{SW} has to be tuned to cancel $O(a)$ scaling violation
(if n_{smear} is small)
Parameters of SLiNC

Summary of parameters:
\(c_i, \omega, c_{SW}, \) number of smearing steps \((n_{smear}) \)

- \(c_i, \omega, n_{smear} \): certain freedom

but:
\(c_{SW} \) has to be tuned to cancel \(O(a) \) scaling violation
(if \(n_{smear} \) is small)
Parameters of SLiNC

Summary of parameters:
$c_i, \omega, c_{SW}, \text{number of smearing steps } (n_{smear})$

- c_i, ω, n_{smear}: certain freedom

but:
c_{SW} has to be tuned to cancel $O(a)$ scaling violation
(if n_{smear} is small)
Perturbative O(a) improvement

First determinations of c_{SW} in one-loop have been published by:

Wohlert[1987] (twisted antiperiodic b.c., plaquette action)

Lüscher and Weisz[1996] (Schrödinger functional, plaquette action)

Aoki and Kuramashi[2003] (Conventional pert. th., improved gauge actions)

Torrero[2008] (NSPT, talk at Lattice08)

This talk:
off-shell Green function from SLiNC action
Perturbative $O(a)$ improvement

First determinations of c_{SW} in one-loop have been published by:

Wohlert[1987] (twisted antiperiodic b.c., plaquette action)
Lüscher and Weisz[1996] (Schrödinger functional, plaquette action)
Aoki and Kuramashi[2003] (Conventional pert. th., improved gauge actions)
Torrero[2008] (NSPT, talk at Lattice08)

This talk:
off-shell Green function from SLiNC action
qqg-Vertex

Looking for quantity \rightarrow one-loop information for c_{SW}

Quark-quark-gluon-vertex (V_μ): it contains to lowest order the improvement parameter $c_{SW} \rightarrow$ one-loop calculation sufficient

$$V_\mu(p_1, p_2, c_{SW}) = -ig \gamma_\mu - g^{1/2} a \mathbf{1}(p_1 + p_2)_\mu$$

$$+ c_{SW} \left(ig \frac{1}{2} a \sigma_{\mu\alpha}(p_1 - p_2)_\alpha + O(a^2) \right).$$

with

$$c_{SW} = 1 + g^2 c_{SW}^{(1)}$$

Strategy: Calculate the full three-point function V_{qqg}^μ to one-loop and demand that all $O(a)$ terms cancel $\rightarrow c_{SW}^{(1)}$
qqg-Vertex

Looking for quantity → one-loop information for c_{SW}

Quark-quark-gluon-vertex (V_μ): it contains to lowest order the improvement parameter $c_{SW} \rightarrow$ one-loop calculation sufficient

$$V_\mu(p_1, p_2, c_{SW}) = -i g \gamma_\mu - g \frac{1}{2} a 1(p_1 + p_2)_\mu$$
$$+ c_{SW} i g \frac{1}{2} a \sigma_{\mu\alpha}(p_1 - p_2)_\alpha + \mathcal{O}(a^2).$$

with

$$c_{SW} = 1 + g^2 c^{(1)}_{SW}$$

Strategy: Calculate the full three-point function V_{qqg}^μ to one-loop and demand that all $\mathcal{O}(a)$ terms cancel $\rightarrow c^{(1)}_{SW}$
qqg-Vertex

Looking for quantity → one-loop information for c_{SW}

Quark-quark-gluon-vertex (V_{μ}): it contains to lowest order the improvement parameter c_{SW} → one-loop calculation sufficient

$$V_{\mu}(p_1, p_2, c_{SW}) = -i g \gamma_{\mu} - g \frac{1}{2} a \mathbf{1}(p_1 + p_2)_{\mu}$$

$$+ c_{SW} i g \frac{1}{2} a \sigma_{\mu\alpha}(p_1 - p_2)_{\alpha} + \mathcal{O}(a^2).$$

with

$$c_{SW} = 1 + g^2 c_{SW}^{(1)}$$

Strategy: Calculate the full three-point function V_{qqg}^μ to one-loop and demand that all $\mathcal{O}(a)$ terms cancel → $c_{SW}^{(1)}$
Off-shell "benefit"

Calculating the qqqg-vertex off-shell \rightarrow additional improvement of the quark field is necessary:

$$\psi_*(x) = \left(1 + a c_D \vec{\nabla} + a i g c_{\text{NGI}} A(x)\right) \psi(x)$$

$$c_D = -\frac{1}{4} \left(1 + g^2 c_D^{(1)}\right) + \mathcal{O}(g^4)$$

QCDSF [2001]

$$c_{\text{NGI}} = g^2 c_{\text{NGI}}^{(1)} + \mathcal{O}(g^4)$$

introduced by Martinelli et al. [2001] \rightarrow first result in one-loop
Calculating the qqg-vertex off-shell → additional improvement of the quark field is necessary:

\[\psi_\star(x) = \left(1 + a c_D \vec{D} + a i g c_{\text{NGI}} A(x) \right) \psi(x) \]

\[c_D = -\frac{1}{4} \left(1 + g^2 c_D^{(1)} \right) + \mathcal{O}(g^4) \]

QCDSF [2001]

\[c_{\text{NGI}} = g^2 c_{\text{NGI}}^{(1)} + \mathcal{O}(g^4) \]

introduced by Martinelli et al. [2001] → first result in one-loop
Feynman diagrams

Figure: One-loop diagrams contributing to the amputated quark-quark-gluon vertex
Example: qqggg-Vertex and stout smearing

\[
V_{\alpha \beta \gamma}^{abc}(p_2, p_1, k_1, k_2, k_3, \omega) = \frac{1}{6} a^2 g^3 \sum_{\mu} \left\{ W_{1\mu}(p_2, p_1) \left[F_{\alpha \beta \gamma \mu}^{abc}(k_1, k_2, k_3) + \text{cyclic perm.} \right] - 6 \omega W_{2\mu}(p_2, p_1) \left[T_{s\alpha}^{abc} V_{\alpha \mu}(k_1) g_{\beta \gamma \mu}(k_2, k_3) + \text{cyclic perm.} \right] \right\}.
\]

\[
F_{\alpha \beta \gamma \mu}^{abc}(k_1, k_2, k_3) = T_{s\alpha}^{abc} f_{\alpha \beta \gamma \mu}^{(1)}(k_1, k_2, k_3) + T_{a\alpha}^{abc} (f_{\alpha \beta \gamma \mu}^{(2)}(k_1, k_2, k_3) - f_{\alpha \gamma \beta \mu}^{(2)}(k_1, k_3, k_2)) + \left(T_{s\alpha}^{abc} - \frac{1}{N_c} g^{abc} \right) f_{\alpha \beta \gamma \mu}^{(3)}(k_1, k_2, k_3),
\]

\[
f_{\alpha \beta \gamma \mu}^{(1)}(k_1, k_2, k_3) = \frac{1}{2} V_{\alpha \mu}(k_1, \omega) V_{\beta \mu}(k_2, \omega) V_{\gamma \mu}(k_3, \omega),
\]

\[
f_{\alpha \beta \gamma \mu}^{(2)}(k_1, k_2, k_3) = \frac{1}{2} V_{\alpha \mu}(k_1, \omega) V_{\beta \mu}(k_2, \omega) \delta_{\gamma \mu} - \frac{1}{2} \delta_{\alpha \mu} \delta_{\beta \mu} V_{\gamma \mu}(k_3, \omega) + 6 \omega \delta_{\alpha \beta} \left[c_{\mu}(k_1 - k_2) c_{\beta}(2k_3 + k_1 + k_2) \delta_{\gamma \mu} + s_{\mu}(k_3) s_{\gamma}(k_3 + 2k_1) \delta_{\beta \mu} \right],
\]

\[
f_{\alpha \beta \gamma \mu}^{(3)}(k_1, k_2, k_3) = 2 \omega \delta_{\beta \gamma} \left[(3 w_{\alpha \mu}(k_1, k_2 + k_3) + v_{\alpha \mu}(k_1 + k_2 + k_3)) \delta_{\alpha \beta} + 12 s_{\beta}(k_1) s_{\alpha}(k_2) s_{\alpha}(k_3) (s_{\beta}(k_1 + k_2 + k_3) \delta_{\alpha \mu} - s_{\alpha}(k_1 + k_2 + k_3) \delta_{\beta \mu}) \right].
\]
Example: qqggg-Vertex and stout smearing

Notation:

\[T^{abc}_{ss} = \{ T^a, \{ T^b, T^c \} \}, \quad T^{abc}_{aa} = [T^a, [T^b, T^c]], \quad T^{abc}_{sa} = \{ T^a, [T^b, T^c] \} \]

\[s_\mu(k) = \sin \left(\frac{a}{2} k_\mu \right), \quad c_\mu(k) = \cos \left(\frac{a}{2} k_\mu \right), \quad s^2(k) = \sum_\mu s^2_\mu(k), \]

\[s^2(k_1, k_2) = \sum_\mu s_\mu(k_1 + k_2) s_\mu(k_1 - k_2) \equiv s^2(k_1) - s^2(k_2) \]

\[W_{1\mu}(p_2, p_1) = i c_\mu(p_2 + p_1) \gamma_\mu + r s_\mu(p_2 + p_1) \]

\[W_{2\mu}(p_2, p_1) = i s_\mu(p_2 + p_1) \gamma_\mu - r c_\mu(p_2 + p_1) \]

\[V_{\alpha\mu}(k, \omega) = \delta_{\alpha\mu} + 4 \omega v_{\alpha\mu}(k) \]

\[v_{\alpha\mu}(k) = s_\alpha(k) s_\mu(k) - \delta_{\alpha\mu} s^2(k) \]

\[g_{\alpha\beta\mu}(k_1, k_2) = \delta_{\alpha\beta} c_\alpha(k_1 + k_2) s_\mu(k_1 - k_2) - \]

\[\delta_{\alpha\mu} c_\alpha(k_2) s_\beta(2k_1 + k_2) + \delta_{\beta\mu} c_\beta(k_1) s_\alpha(2k_2 + k_1) \]

\[w_{\alpha\mu}(k_1, k_2) = s_\alpha(k_1 + k_2) s_\mu(k_1 - k_2) - \delta_{\alpha\mu} s^2(k_1, k_2), \quad w_{\alpha\mu}(k, 0) = v_{\alpha\mu}(k) \]
Results: c_{SW}

\begin{equation*}
c_{SW} = 1 + g^2 c_{SW}^{(1)}
\end{equation*}

\begin{equation*}
c_{SW}^{(1)} = C_F \left(0.116185 + 0.828129 \omega - 2.455080 \omega^2 \right) \\
+ N_c \left(0.013777 + 0.015905 \omega - 0.321899 \omega^2 \right)
\end{equation*}

coincides for $\omega = 0$ with Aoki, Kuramashi [2003]
Results: κ_c

Additive mass renormalization

$$am_0 = \frac{1}{2\kappa_c} - 4 = \frac{g^2 C_F}{16\pi^2} \frac{\Sigma_0}{4} \rightarrow \kappa_c = \frac{1}{8} \left(1 - \frac{g^2 C_F}{16\pi^2} \frac{\Sigma_0}{4}\right)$$

SLiNC action + quark self energy ($\Sigma(p = 0)$) → κ_c:

$$\kappa_c = \frac{1}{8} \left[1 + g^2 C_F \left(0.037730 - 0.662090\omega + 2.668543\omega^2\right)\right].$$

$$\omega = 0.088689 \rightarrow \kappa_c = \frac{1}{8}$$
Quark field improvement results

\[\psi_\star(x) = \left(1 + a \ c_\text{D} \ \vec{D} + a \ i \ g \ c_{\text{NGI}} \ A(x) \right) \psi(x) \]

\[c_\text{D} = -\frac{1}{4} \left(1 + g^2 \ c^{(1)}_\text{D} \right) + \mathcal{O}(g^4) \]

\[c^{(1)}_\text{D} = C_F \ (0.037614 + 0.011755 \xi - 0.835571 \omega + 3.418757 \omega^2) \]

(\(\xi\) - covariant gauge parameter)

\[c_{\text{NGI}} = g^2 \ c^{(1)}_{\text{NGI}} + \mathcal{O}(g^4) \]

\[c^{(1)}_{\text{NGI}} = N_c \ (0.002395 - 0.010841 \omega) \]
Quark field improvement results

\[\psi_\star(x) = \left(1 + a c_D \vec{D} + a i g c_{\text{NGI}} A(x) \right) \psi(x) \]

\[c_D = -\frac{1}{4} \left(1 + g^2 c_D^{(1)} \right) + \mathcal{O}(g^4) \]

\[c_D^{(1)} = C_F \left(0.037614 + 0.011755 \xi - 0.835571 \omega + 3.418757 \omega^2 \right) \]

(\(\xi \) - covariant gauge parameter)

\[c_{\text{NGI}} = g^2 c_{\text{NGI}}^{(1)} + \mathcal{O}(g^4) \]

\[c_{\text{NGI}}^{(1)} = N_c \left(0.002395 - 0.010841 \omega \right) \]
Mean field improvement

Bare coupling constant g^2 leads to a poor approximation:
- g^2 is large in most quantities
- perturbative series converges poorly

Two ideas combined
(1) Calculate each quantity in a simple mean field approximation
 → Re-express the perturbative result as the mean field result multiplied by a perturbative correction factor
 → One-loop correction term should be small
(2) Bare coupling g^2 → “boosted” coupling constant g_{MF}^2
Mean field improvement

Bare coupling constant g^2 leads to a poor approximation:
- g^2 is large in most quantities
- perturbative series converges poorly

Two ideas combined
(1) Calculate each quantity in a simple mean field approximation
 → Re-express the perturbative result as the mean field result multiplied by a perturbative correction factor
 → One-loop correction term should be small
(2) Bare coupling g^2 → “boosted” coupling constant g_{MF}^2
Mean field improvement

Bare coupling constant g^2 leads to a poor approximation:
- g^2 is large in most quantities
- perturbative series converges poorly

Two ideas combined

(1) Calculate each quantity in a simple mean field approximation
→ Re-express the perturbative result as the mean field result multiplied by a perturbative correction factor
→ One-loop correction term should be small

(2) Bare coupling g^2 → “boosted” coupling constant g_{MF}^2
Mean field improvement

Bare coupling constant g^2 leads to a poor approximation:
- g^2 is large in most quantities
- perturbative series converges poorly

Two ideas combined
(1) Calculate each quantity in a simple mean field approximation
 → Re-express the perturbative result as the mean field result multiplied by a perturbative correction factor
 → One-loop correction term should be small
(2) Bare coupling g^2 → “boosted” coupling constant g^2_{MF}
Mean field improvement and stout smearing

Express with two mean fields:

\(u_0 \) - a mean value for the unsmeared link

\(u_S \) - a mean value for smeared links

\[
\kappa_c(g^2) \to \kappa_c^{MF}(g_{MF}^2, u_S) = \frac{u_S^{pert}(g_{MF}^2)}{u_S} \kappa_c(g_{MF}^2)
\]

\[
c_{SW}(g^2) \to c_{SW}^{MF}(g_{MF}^2, u_S, u_0) = \frac{u_S}{u_0^4} \frac{u_0^{pert,4}(g_{MF}^2)}{u_S^{pert}(g_{MF}^2)} c_{SW}(g_{MF}^2)
\]

with

\[
u_S^{pert} = 1 - \frac{g^2 C_F}{16\pi^2} k_S(\omega), \quad u_0^{pert} = 1 - \frac{g^2 C_F}{16\pi^2} k_S(\omega = 0)
\]
Mean field improvement and stout smearing

Express with two mean fields:

- u_0 - a mean value for the unsmeared link
- u_S - a mean value for smeared links

$$\kappa_c(g^2) \rightarrow \kappa_c^{MF}(g_{MF}^2, u_S) = \frac{u_S^{pert}(g_{MF}^2)}{u_S} \kappa_c(g_{MF}^2)$$

$$c_{SW}(g^2) \rightarrow c_{SW}^{MF}(g_{MF}^2, u_S, u_0) = \frac{u_S}{u_0^4} \frac{u_0^{pert,4}(g_{MF}^2)}{u_S^{pert}(g_{MF}^2)} c_{SW}(g_{MF}^2)$$

with

$$u_S^{pert} = 1 - \frac{g^2 C_F}{16\pi^2} k_S(\omega), \quad u_0^{pert} = 1 - \frac{g^2 C_F}{16\pi^2} k_S(\omega = 0)$$
Mean field improvement: c_{SW}

\[
\begin{align*}
 c_{SW}^{Sym} &= 1 + g^2 \times \\
 &\left[C_F \left(0.116185 + 0.828129 \omega - 2.455080 \omega^2 \right) \\
 &+ N_c \left(0.013777 + 0.015905 \omega - 0.321899 \omega^2 \right) \right].
\end{align*}
\]

\[\beta = 6.0, \ u_S = 0.9497, \ u_0 = 0.8644:\]

\[
\begin{align*}
 c_{SW}^{Sym} &= 1.4484 \rightarrow c_{SW}^{Sym, MF} = 1.8678 \leftrightarrow c_{SW}^{Sym, NP} = 2.137
\end{align*}
\]
Mean field improvement: c_{SW}

\[
c_{SW}^{Sym} = 1 + g^2 \times \left[C_F \left(0.116185 + 0.828129 \omega - 2.455080 \omega^2 \right) \\
+ N_c \left(0.013777 + 0.015905 \omega - 0.321899 \omega^2 \right) \right].
\]

\[
\downarrow
\]

\[
c_{SW}^{Sym, MF} = \frac{u_S}{u_0^4} \left\{ 1 + g_{MF}^2 \times \left[C_F \left(-0.0211635 + 0.115961 \omega + 0.685247 \omega^2 \right) \\
+ N_c \left(0.013777 + 0.015905 \omega - 0.321899 \omega^2 \right) \right] \right\}
\]

$\beta = 6.0, u_S = 0.9497, u_0 = 0.8644$:

$c_{SW}^{Sym} = 1.4484 \rightarrow c_{SW}^{Sym, MF} = 1.8678 \leftrightarrow c_{SW}^{Sym, NP} = 2.137$
\[
\kappa_c^{\text{Sym}} = \frac{1}{8} \left[1 + g^2 C_F \times \left(0.037730 - 0.662909 \omega + 2.668543 \omega^2 \right) \right]
\]

\[
\kappa_c^{\text{Sym},MF} = \frac{1}{8 u_S} \left[1 + g_{MF}^2 C_F \times \left(-0.008053 + 0.0500781 \omega - 0.471784 \omega^2 \right) \right]
\]

\[
\beta = 6.0, u_S = 0.9497, u_0 = 0.8644 : \\
\kappa_c^{\text{Sym}} = 0.1245 \rightarrow \kappa_c^{\text{Sym},MF} = 0.1276 \leftrightarrow \kappa_c^{\text{Sym},NP} = 0.124356
\]
\[
\kappa^\text{Sym}_c = \frac{1}{8} \left[1 + g^2 C_F \times
\left(0.037730 - 0.662090 \omega + 2.668543 \omega^2 \right) \right]
\]

\[\downarrow\]

\[
\kappa^\text{Sym, MF}_c = \frac{1}{8 u_S} \left[1 + g^2_{\text{MF}} C_F \times
\left(-0.008053 + 0.0500781 \omega - 0.471784 \omega^2 \right) \right]
\]

\[\beta = 6.0, u_S = 0.9497, u_0 = 0.8644: \]

\[
\kappa^\text{Sym}_c = 0.1245 \rightarrow \kappa^\text{Sym, MF}_c = 0.1276 \leftrightarrow \kappa^\text{Sym, NP}_c = 0.124356
\]
Choice of g_{MF}^2 or $\frac{\Lambda_{lat}^M}{\Lambda_{MS}^M}$

The natural choice

$$g_{MF}^2 = \frac{g^2}{u_0^4}.$$

We have the relation (e.g. Kawai, Seo [1981])

$$\frac{1}{g_{MS}^2(\mu)} - \frac{1}{g_{MF}^2(a)} = 2b_0 \left(\log \frac{\mu}{\Lambda_{MS}} - \log \frac{1}{a\Lambda_{lat}^M} \right)$$

$$= 2b_0 \log(a\mu) + d_g + N_f d_f + \frac{k_u}{3\pi^2}$$

giving

$$\frac{\Lambda_{lat}^M}{\Lambda_{MS}^M} = \exp \left(\frac{d_g + N_f d_f + k_u/3\pi^2}{2b_0} \right).$$

($k_u = k_S(\omega = 0)$)
Choice of g^2_{MF} or $\frac{\Lambda_{lat}^{MF}}{\Lambda_{MS}}$

We have

\[d_g = -0.2361 \text{ (Hasenfratz et al.[1980])} \]

\[d_f = 0.0314917 \text{ (Booth et al.[2001])}, \text{ independent of } \omega \]

\[k_u = 0.732525 \pi^2 \]

\[\rightarrow \frac{\Lambda_{lat}^{MF}}{\Lambda_{MS}} = 2.459 \]
SLiNC and point operators

Expected that renormalization (Z-) factors closer to unity

Z-factors for \(\mathcal{O} = \bar{\psi} 1 \psi, \bar{\psi} \gamma_5 \psi, \bar{\psi} \gamma_\mu \psi, \bar{\psi} \gamma_5 \gamma_\mu \psi \)

General one-loop form

\[
Z_\mathcal{O} = 1 - \frac{g^2 C_F}{16\pi^2} \left(\gamma_\mathcal{O} \log(a^2 \mu^2) + B_\mathcal{O} \right)
\]

Mean field improving program:

\[
Z_{\mathcal{O}}^{MF} = u_S(1 - \frac{g_{MF}^2 C_F}{16\pi^2} \left(\gamma_\mathcal{O} \log(a^2 \mu^2) + B_\mathcal{O} - k_S(\omega) \right)
\]
\[\mathcal{O} = \bar{\psi} 1 \psi = S \]

\[B_S = 15.0747 - 168.341 \omega + 242.254 \omega^2 \]

\[\omega \equiv 0 \]

unsmeared

\[\omega \equiv 0.1 \]

smeared

Mean field improvement:

\[\beta = 6.0, u_S = 0.9497, u_0 = 0.8644, \omega = 0.1 : \]

\[Z_S = 0.9907 \rightarrow Z_S^{MF} = 0.9564 \]
\[\mathcal{O} = \bar{\psi} 1 \psi = S \]

\[\mathcal{B}_S = 15.0747 - 168.341 \omega + 242.254 \omega^2 \]
\[\omega = 0 \quad \implies 15.0747 \quad \text{unsmeared} \]
\[\omega = 0.1 \quad \implies 0.663069 \quad \text{smeared} \]

Mean field improvement:

\[\beta = 6.0, \ u_S = 0.9497, \ u_0 = 0.8644, \ \omega = 0.1 : \]
\[Z_S = 0.9907 \rightarrow Z^\text{MF}_S = 0.9564 \]
\[\mathcal{O} = \bar{\psi} \gamma_5 \psi = P \]

\[B_P = 19.1500 - 267.462\omega + 1065.55\omega^2 \]

\[\omega = 0 \quad 19.1500 \quad \text{unsmeared} \]

\[\omega = 0.1 \quad 3.0593 \quad \text{smeared} \]

Mean field improvement:

\[\beta = 6.0, u_S = 0.9497, u_0 = 0.8644, \omega = 0.1 : \]

\[Z_P = 0.9569 \rightarrow Z_P^{MF} = 0.8990 \]
\[\mathcal{O} = \bar{\psi} \gamma_5 \psi = P \]

\[B_P = 19.1500 - 267.462 \omega + 1065.55 \omega^2 \]

\[\omega = 0 \quad 19.1500 \quad \text{unsmeread} \]
\[\omega = 0.1 \quad 3.0593 \quad \text{smeared} \]

Mean field improvement:

\[\beta = 6.0, u_S = 0.9497, u_0 = 0.8644, \omega = 0.1 : \]

\[Z_P = 0.9569 \rightarrow Z_P^{MF} = 0.8990 \]
$\mathcal{O} = \bar{\psi} \gamma_\mu \psi = V$

\[B_V = 11.9106 - 170.763 \omega + 754.029 \omega^2 \]
\[\begin{align*}
\omega = 0 & : 11.9106 \quad \text{unsmeared} \\
\omega = 0.1 & : 2.37464 \quad \text{smeared}
\end{align*} \]

Mean field improvement:

\[\beta = 6.0, u_S = 0.9497, u_0 = 0.8644, \omega = 0.1 : \]

\[Z_V = 0.9666 \rightarrow Z_V^{MF} = 0.9154 \leftrightarrow Z_V^{NP} = 0.889 \]
\[\mathcal{O} = \bar{\psi} \gamma_\mu \psi = V \]

\[
\begin{align*}
B_V &= 11.9106 - 170.763\omega + 754.029\omega^2 \\
\omega &\equiv 0 \quad 11.9106 \quad \text{unsmeared} \\
\omega &\equiv 0.1 \quad 2.37464 \quad \text{smeared}
\end{align*}
\]

Mean field improvement:

\[
\beta = 6.0, u_S = 0.9497, u_0 = 0.8644, \omega = 0.1 : \\
Z_V = 0.9666 \rightarrow Z_V^{MF} = 0.9154 \leftrightarrow Z_V^{NP} = 0.889
\]
\[\mathcal{O} = \bar{\psi} \gamma_5 \gamma_\mu \psi = A \]

\[B_A = 10.7165 - 127.200 \omega + 342.380 \omega^2 \]

- \(\omega = 0 \) \(\equiv 10.7165 \) unsmeared
- \(\omega = 0.1 \) \(\equiv 1.42034 \) smeared

Mean field improvement:

\[\beta = 6.0, u_S = 0.9497, u_0 = 0.8644, \omega = 0.1 : \]

\[Z_A = 0.9800 \rightarrow Z_{A}^{MF} = 0.9383 \]
\[\mathcal{O} = \bar{\psi} \gamma_5 \gamma_\mu \psi = A \]

\[B_A = 10.7165 - 127.200 \omega + 342.380 \omega^2 \]

\[\omega = 0 \implies 10.7165 \text{ unsmeared} \]

\[\omega = 0.1 \implies 1.42034 \text{ smeared} \]

Mean field improvement:

\[\beta = 6.0, u_S = 0.9497, u_0 = 0.8644, \omega = 0.1 : \]

\[Z_A = 0.9800 \rightarrow Z_A^{MF} = 0.9383 \]
Summary

- We have introduced the SLiNC action as a base for future 2+1 simulations
- Using standard perturbation theory we have calculated one-loop non-amputated Green’s function related to the qqg-vertex with SLiNC fermions
- The result is used to determine the improvement coefficient c_{SW} including stout smearing
- We determined the quark field improvement coefficients c_D and c_{NGI}
- Using SLiNC and quark self energy we determined κ_c also
- On-shell we have reproduced earlier results for non-smeared links
- Mean field improvement for smeared links has been discussed
- With SLiNC fermions we calculated the one-loop corrections to point operators
Summary

- We have introduced the SLiNC action as a base for future 2+1 simulations
- Using standard perturbation theory we have calculated one-loop non-amputated Green’s function related to the qqg-vertex with SLiNC fermions
- The result is used to determine the improvement coefficient c_{SW} including stout smearing
- We determined the quark field improvement coefficients c_D and c_{NGI}
- Using SLiNC and quark self energy we determined κ_C also
- On-shell we have reproduced earlier results for non-smeared links
- Mean field improvement for smeared links has been discussed
- With SLiNC fermions we calculated the one-loop corrections to point operators
Summary

- We have introduced the SLiNC action as a base for future 2+1 simulations
- Using standard perturbation theory we have calculated one-loop non-amputated Green’s function related to the qgq-vertex with SLiNC fermions
- The result is used to determine the improvement coefficient c_{SW} including stout smearing
- We determined the quark field improvement coefficients c_D and c_{NGI}
- Using SLiNC and quark self energy we determined κ_c also
- On-shell we have reproduced earlier results for non-smeared links
- Mean field improvement for smeared links has been discussed
- With SLiNC fermions we calculated the one-loop corrections to point operators
Summary

- We have introduced the SLiNC action as a base for future 2+1 simulations
- Using standard perturbation theory we have calculated one-loop non-amputated Green’s function related to the qqg-vertex with SLiNC fermions
- The result is used to determine the improvement coefficient c_{SW} including stout smearing
- We determined the quark field improvement coefficients c_D and c_{NGI}
 - Using SLiNC and quark self energy we determined κ_c also
 - On-shell we have reproduced earlier results for non-smeared links
 - Mean field improvement for smeared links has been discussed
 - With SLiNC fermions we calculated the one-loop corrections to point operators
Summary

- We have introduced the SLiNC action as a base for future 2+1 simulations
- Using standard perturbation theory we have calculated one-loop non-amputated Green’s function related to the qqg-vertex with SLiNC fermions
- The result is used to determine the improvement coefficient c_{SW} including stout smearing
- We determined the quark field improvement coefficients c_{D} and c_{NGI}
- Using SLiNC and quark self energy we determined κ_{c} also
 - On-shell we have reproduced earlier results for non-smeared links
 - Mean field improvement for smeared links has been discussed
 - With SLiNC fermions we calculated the one-loop corrections to point operators
Summary

- We have introduced the SLiNC action as a base for future 2+1 simulations
- Using standard perturbation theory we have calculated one-loop non-amputated Green’s function related to the qqg-vertex with SLiNC fermions
- The result is used to determine the improvement coefficient c_{SW} including stout smearing
- We determined the quark field improvement coefficients c_D and c_{NGI}
- Using SLiNC and quark self energy we determined κ_c also
- On-shell we have reproduced earlier results for non-smeared links
 - Mean field improvement for smeared links has been discussed
 - With SLiNC fermions we calculated the one-loop corrections to point operators
Summary

- We have introduced the SLiNC action as a base for future 2+1 simulations
- Using standard perturbation theory we have calculated one-loop non-amputated Green’s function related to the qqg-vertex with SLiNC fermions
- The result is used to determine the improvement coefficient c_{SW} including stout smearing
- We determined the quark field improvement coefficients c_D and c_{NGI}
- Using SLiNC and quark self energy we determined κ_c also
- On-shell we have reproduced earlier results for non-smeared links
- Mean field improvement for smeared links has been discussed
- With SLiNC fermions we calculated the one-loop corrections to point operators
Summary

- We have introduced the SLiNC action as a base for future 2+1 simulations.
- Using standard perturbation theory we have calculated one-loop non-amputated Green’s function related to the qgq-vertex with SLiNC fermions.
- The result is used to determine the improvement coefficient c_{SW} including stout smearing.
- We determined the quark field improvement coefficients c_D and c_{NGI}.
- Using SLiNC and quark self energy we determined κ_c also.
- On-shell we have reproduced earlier results for non-smeared links.
- Mean field improvement for smeared links has been discussed.
- With SLiNC fermions we calculated the one-loop corrections to point operators.
Acknowledgements

This investigation has been supported by DFG under contract FOR 465 (Forschergruppe Gitter-Hadronen-Phänomenologie). We also acknowledge support by the EU Integrated Infrastructure Initiative Hadron Physics (I3HP) under contract number RII3-CT-2004-506078.