Stochastic All-to-All Propagators for Baryon Correlators

John Bulava*¹, Robert Edwards², Colin Morningstar¹

¹Carnegie Mellon University, Pittsburgh, PA
²Thomas Jefferson National Accelerator Facility, Newport News, VA

July 17th, 2008
Lattice 2008 - Williamsburg, VA
1 Motivation and Background

2 Methods

3 Dilution Scheme Tests

4 Results and Conclusions
Motivation

LHPC Spectrum effort:

- Goal: extract a large number of low-lying excited hadron states
- Requires a large variational basis of operators
- Multi-particle and non-zero momentum operators are required to identify multi-hadron states in the spectrum
Estimate all elements of the quark propagator, $M^{-1}_{(\alpha a|\beta b)}(x, t|x_0, t_0)$:

- Generate N_r random (Z_4) sources: $\eta^{(r)}_{\alpha a}(x, t)$
- Solve

$$M_{(\alpha a|\beta b)}(x, t|x', t') \phi^{(r)}_{\beta b}(x', t') = \eta^{(r)}_{\alpha a}(x, t)$$

for the $\phi^{(r)}_{\alpha a}(x, t)$
- The quark propagator is given by

$$M^{-1}_{(\alpha a|\beta b)}(x, t|x_0, t_0) = E[\phi_{\alpha a}(x, t) \eta^*_{\beta b}(x_0, t_0)]$$
The Dilution Method [1]

- Instead of adding more noise sources, **Dilute** a single noise source:

\[
\eta_{\alpha a}^{(r)}(x, t) = \sum_{d=1}^{N_d} P_{(\alpha a|\beta b)}^{[d]}(x, t|x', t') \eta_{\beta b}^{(r)}(x', t')
\]

\[
= \sum_{d=1}^{N_d} \eta_{\alpha a}^{(r)[d]}(x, t)
\]

- Solve

\[
M_{(\alpha a|\beta b)}(x, t|x', t') \phi_{\beta b}^{(r)[d]}(x', t') = \eta_{\alpha a}^{(r)[d]}(x, t)
\]

- Examples of dilution schemes:
 - Time
 - Time + spin + color
 - Time + spatial even-odd
Given the $\phi^{(r)}_{\alpha a}(x, t)$ and $\eta^{(r)}_{\alpha a}(x, t)$,

- Form source and sink baryon operators:

$$
\Gamma^{(r)[dA dB dC]}_{\ell}(t) = c^{(\ell)}_{\alpha \beta \gamma; ijk} \sum_x \epsilon_{abc} \phi^{(r)[dA]}_{\alpha ai}(x, t) \phi^{(r)[dB]}_{\beta bj}(x, t) \times \\
\phi^{(r)[dC]}_{\gamma ck}(x, t)
$$

$$
\Omega^{(r)[dA dB dC]}_{\ell}(t) = c^{(\ell)}_{\alpha \beta \gamma; ijk} \sum_x \epsilon_{abc} \eta^{(r)[dA]}_{\alpha ai}(x, t) \eta^{(r)[dB]}_{\beta bj}(x, t) \times \\
\eta^{(r)[dC]}_{\gamma ck}(x, t)
$$

- Combine them to form two-point functions
Advantages of the Dilution Method

- Expected to approach exact all-to-all \textit{faster than} $1/\sqrt{N_d}$ as $N_d \rightarrow N_t \times N_s \times N_c \times V$

- \textit{Complete factorization} of source and sink in correlation functions
 - Great for a large variational basis
 - Use the same operators to make multi-hadrons

- All elements of quark propagator are calculated
 - Non-zero momentum projections require spatial sum at source
 -Disconnected Diagrams
Dilution Scheme Tests

- 100 quenched gauge configurations with: \(L_s = 12, \)
 \(L_t = 48, \) \(a_s \approx 0.1 \) fm, \(\beta = 6.1, \) \(m_\pi \approx 700 \) MeV

- Choose a few relevant observables for comparison of dilution schemes, point-to-all

Question: Assuming time dilution, is it better to add more noise sources or more dilution projectors?
Examined Single-Site, Singly-Displaced, and Triply-Displaced baryon operators

- Single-site
- Singly-displaced
- Triply-displaced

Diagonal correlators evaluated at several time separations is the measure of choice
Results

Stochastic All-to-All Propagators for Baryon Correlators

John Bulava

Motivation and Background

Methods

Dilution Scheme Tests

Results and Conclusions

Single-Site, \(t = 5 \)

- \(\text{time} \)
- \(\text{time} + \text{space}_\text{eo} \)
- \(\text{time} + \text{color} \)
- \(\text{time} + \text{spin} \)
- \(\text{time} + \text{color} + \text{space}_\text{eo} \)
- \(\text{time} + \text{spin} + \text{space}_\text{eo} \)
- \(\text{time} + \text{spin} + \text{color} \)
- \(\text{time} + \text{spin} + \text{color} + \text{space}_\text{eo} \)
- \(\text{pt-to-all} \)
- \(\text{noise limit} \)

Relative Error vs. \(1/\sqrt{N_{\text{inv}}} \)
Results

Singly-Displaced, $t = 5$

Relative Error vs $1/\sqrt{N_{inv}}$

- time
- time + space eo
- time + color
- time + spin
- time + color + space eo
- time + spin + space eo
- time + spin + color
- time + spin + color + space eo
- pt-to-all
- noise limit

Motivation and Background

Methods

Dilution Scheme Tests

Results and Conclusions
Stochastic All-to-All Propagators for Baryon Correlators

John Bulava

Motivation and Background

Methods

Dilution Scheme Tests

Results and Conclusions

Results

\[\frac{1}{\sqrt{N_{\text{inv}}}} \]

Relative Error

\[0 \quad 0.02 \quad 0.04 \quad 0.06 \quad 0.08 \quad 0.1 \]

\[0 \quad 0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6 \]

\[\text{time} \]

\[\text{time} + \text{space}_{\text{eo}} \]

\[\text{time} + \text{color} \]

\[\text{time} + \text{spin} \]

\[\text{time} + \text{color} + \text{space}_{\text{eo}} \]

\[\text{time} + \text{spin} + \text{space}_{\text{eo}} \]

\[\text{time} + \text{spin} + \text{color} \]

\[\text{time} + \text{spin} + \text{color} + \text{space}_{\text{eo}} \]

\[\text{pt-to-all} \]

\[\text{noise limit} \]

Triply-Displaced, \(t = 5 \)
Results - Effective Masses

Motivation and Background

Methods

Dilution Scheme Tests

Results and Conclusions
Conclusions

- Adding more dilution projectors beats adding more noise sources, up to a point.
- Time + spin + color dilution is roughly equivalent to point-to-all method.
- Time + spin + color + spatial-even-odd dilution is consistent with the gauge noise.
- Currently working on an alternative method that gives exact all-to-all for less. Stay Tuned!
Stochastic All-to-All Propagators for Baryon Correlators

John Bulava

Motivation and Background

Methods

Dilution Scheme Tests

Results and Conclusions