Thermodynamics of SU(3) gauge theory at fixed lattice spacing

Takashi Umeda (Univ. of Tsukuba) for WHOT-QCD Collaboration

Lattice 2008, William & Mary, VA, USA, 14-19 July 2008

Introduction

Equation of State (EOS) is important for phenomenological study of QGP, etc.

Methods to calculate the EOS have been established, e.g. Integral method J. Engels et al. ('90).

Temperature $T=1/(N_{\tau}a)$ is varied by $a(\beta)$ at fixed N_{τ}

The EOS calculation requires huge computational cost, in which T=0 calculations dominate despite T>0 study.

- Search for a Line of Constant Physics (LCP)
- beta functions at each temperature
- T=0 subtraction at each temperature

T-integration method to calculate the EOS

We propose a new method ("T-integration method") to calculate the EOS at fixed scales (*)

Temperature $T = 1/(N_{\tau}a)$ is varied by N_{τ} at fixed $a(\beta)$

Our method is based on the trace anomaly (interaction measure),

$$\frac{\epsilon - 3p}{T^4} = \left(\frac{N_\tau^3}{N_\sigma^3}\right) a \frac{d\beta}{da} \left\langle \frac{dS}{d\beta} \right\rangle_{sub}$$

and the thermodynamic relation.

$$\frac{\epsilon - 3p}{T^4} = T \frac{\partial (p/T^4)}{\partial T} \qquad \Longrightarrow \qquad \frac{p}{T^4} = \int_0^T dT' \, \frac{\epsilon - 3p}{T'^5}$$

(*) fixed scale approach has been adopted in L.Levkova et al. ('06) whose method is based on the derivative method.

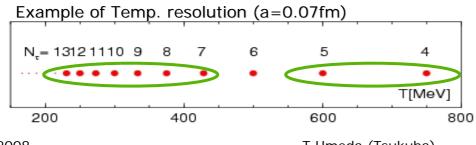
Notable points in T-integration method

Our method greatly reduces computational cost at T=0.

- Zero temperature subtraction is performed using a common T=0 calculation.
- Line of Constant Physics (LCP) is trivially exact (even in full QCD).
- Only the beta functions at the simulation point are required.

However ...

- Temperatures are restricted by integer N_{τ} .
 - → Sufficiently fine lattice is necessary.



Integer N_{τ} provides

- higher resolution at T~T_c
- lower resolution at high T

 $T \sim T_c$ is important for EOS

Lattice 2008 T.Umeda (Tsukuba) 4 /16

Simulation parameters (isotropic lattices)

We present results from SU(3) gauge theory as a test of our method

- plaquette gauge action on $N_{\sigma}^3 \times N_{\tau}$ lattices
- Jackknife analysis with appropriate bin-size

To study scale- & volume-dependence, we prepare 3-type of lattices.

(1) $\beta = 6.0$, $V = (16a)^3$ (2) $\beta = 6.0$, $V = (24a)^3$ (3) $\beta = 6.2$, $V = (22a)^3$ a = 0.094 fm

 N_{σ} N_{τ} T[MeV] conf. 6.0 16 16 ~ 0 350k 6.0 16 10 210 350k 6.0 16 230 250k 6.0 16 8 260 200k 6.0 16 300 100k 6.0 16 6 350 50k 6.0 16 5 420 50k 6.0 16 4 530 50k 6.0 16 700 50k

a = 0.094 fm

β	N_{σ}	$N_{ au}$	T[MeV]	conf.
6.0	24	16	\sim 0	150k
6.0	24	10	210	250k
6.0	24	9	230	200k
6.0	24	8	260	150k
6.0	24	7	300	100k
6.0	24	6	350	50k
6.0	24	5	420	50k
6.0	24	4	530	50k
6.0	24	3	700	50k

6.2 22 12 240 350k 6.2 22 11 270 350k 6.2 22 10 290 250k 6.2 22 320 200k 6.2 22 360 200k 6.2 22 420 100k 6.2 22 490 100k

a = 0.078 fm

 N_{σ} N_{τ} T[MeV]

 \sim 0

220

580

730

22

13

22

6.2 22

6.2 22

6.2 22

6.2

conf.

250k

350k

50k

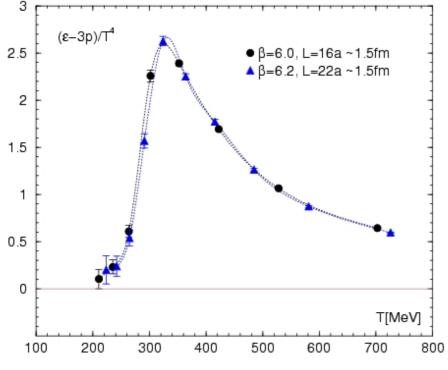
50k

T.Umeda (Tsukuba)

Lattice 2008

Trace anomaly $(e - 3p)/T^4$

$$\frac{\epsilon - 3p}{T^4} = \left(\frac{N_{\tau}^3}{N_{\sigma}^3}\right) a \frac{\partial \beta}{\partial a} \left\langle \frac{\partial S_g}{\partial \beta} \right\rangle_{sub}$$



(1)
$$\beta = 6.0$$
, $a = 0.094$ fm, $V = (1.5$ fm)³

(3)
$$\beta = 6.2$$
, $a = 0.068$ fm, $V = (1.5$ fm)³

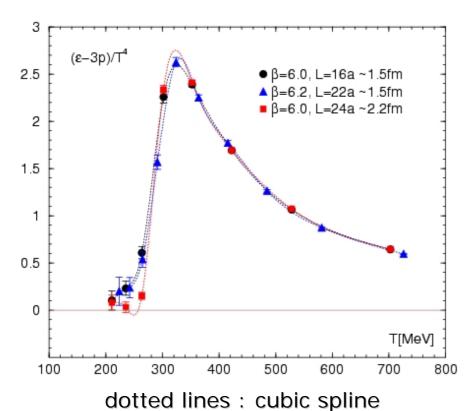
beta function: G.Boyd et al. ('96) lattice scale r₀: R.Edwards et al. ('98)

- Excellent agreementbetween (1) and (3)→ scale violation is small
 - a=0.1fm is good

dotted lines : cubic spline

Trace anomaly $(e - 3p)/T^4$

$$\frac{\epsilon - 3p}{T^4} = \left(\frac{N_\tau^3}{N_\sigma^3}\right) a \frac{\partial \beta}{\partial a} \left\langle \frac{\partial S_g}{\partial \beta} \right\rangle_{sub}$$

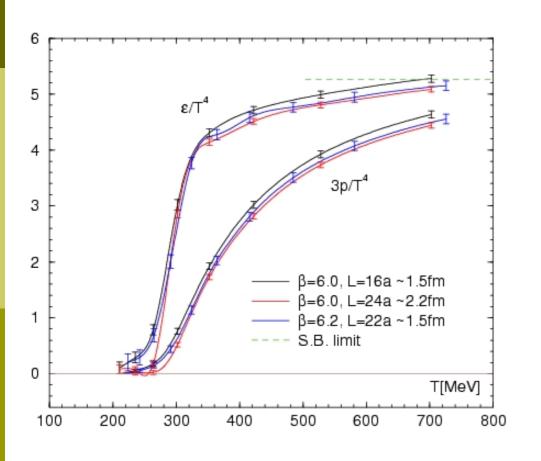


- (1) $\beta = 6.0$, a = 0.094fm, V = (1.5fm)³
- (2) $\beta = 6.0$, a = 0.094fm, V = (2.2fm)³
- (3) $\beta = 6.2$, a = 0.068fm, V = (1.5fm)³

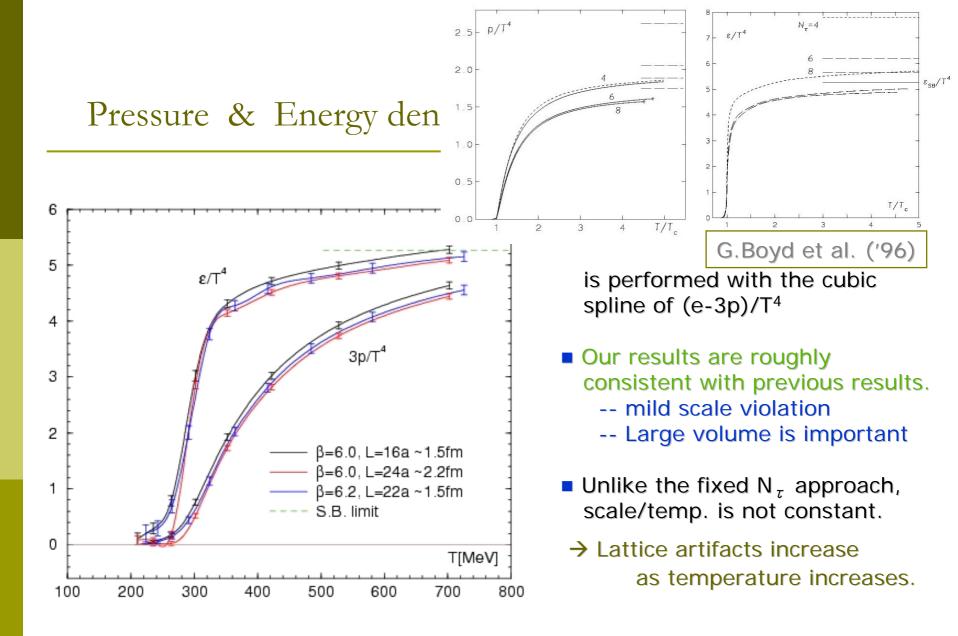
beta function : G.Boyd et al. ('96) lattice scale r_0 : R.Edwards et al. ('98)

- Excellent agreement between (1) and (3)
 - → scale violation is small a=0.1fm is good
- Finite volume effect appears below & near T_c
 - → volume size is important V=(2fm)³ is necessary.

Pressure & Energy density



- Integration $\left(\frac{p}{T^4} = \int_0^T dT' \frac{\epsilon 3p}{T'^5}\right)$
 - is performed with the cubic spline of (e-3p)/T⁴
- Our results are roughly consistent with previous results.
 - -- mild scale violation
 - -- Large volume is important
- Unlike the fixed N_τ approach, scale/temp. is not constant.
- → Lattice artifacts increase as temperature increases.



Simulation parameters (anisotropic lattice)

Anisotropic lattice is useful to increase Temp. resolution, we also test our method on an anisotropic lattice $a_{\sigma} \neq a_{\tau}$

■ plaquette gauge action on $N_{\sigma}^3 \times N_{\tau}$ lattices with anisotropy $\xi = a_{\sigma}/a_{\tau} = 4$

	β	N_{σ}	$N_{ au}$	T[MeV]	conf.
	6.1	20	80	\sim 0	220k
	6.1	20	32	250	520k
П	6.1	20	30	270	220k
	6.1	20	29	280	220k
	6.1	20	28	290	220k
	6.1	20	27	300	220k
	6.1	20	26	310	220k
	6.1	20	24	340	220k
	6.1	20	22	370	220k
	6.1	20	20	410	220k
	6.1	20	18	450	220k
	6.1	20	16	510	220k
	6.1	20	14	580	220k
	6.1	20	12	680	220k
	6.1	20	10	810	220k
	6.1	20	8	1010	220k

$$\beta = 6.1, \ \xi = 4$$
 $V = (20a_{\sigma})^3$
 $= (1.95 \text{fm})^3$
 $a = 0.097 \text{fm}$

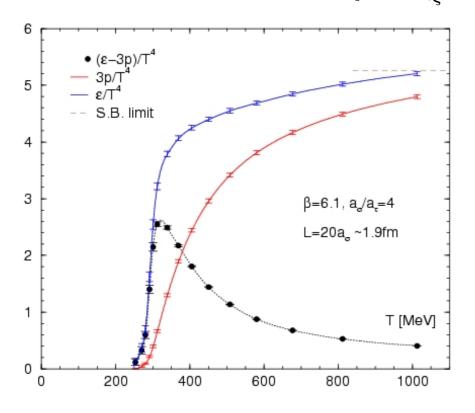
- EOS calculation
- static quark free energy

β	N_{σ}	$N_{ au}$	T[MeV]	conf.
6.1	20	30	270	220k
6.1	20	29	280	220k
6.1	20	28	290	220k
6.1	20	27	300	220k
6.1	20	26	310	220k
6.1	30	30	270	80k
6.1	30	29	280	100k
6.1	30	28	290	180k
6.1	30	27	300	100k
6.1	30	26	310	80k
6.1	40	30	270	70k
6.1	40	29	280	130k
6.1	40	28	290	300k
6.1	40	27	300	140k
6.1	40	26	310	70k

$V = (20a_{\sigma})^3$ = $(1.95 \text{fm})^3$	\
$V=(30a_{\sigma})^3$ = $(2.92 \text{fm})^3$	
$V=(40a_{\sigma})^3$ =(3.89fm) ³	
- critical temp	١.

EOS on an anisotropic lattice

$$\frac{\epsilon - 3p}{T^4} = \left(\frac{N_{\tau}^3}{N_{\sigma}^3 \xi^3}\right) a_{\sigma} \frac{\partial \beta}{\partial a_{\sigma}} \Big|_{\xi} \left\langle \frac{\partial S_g}{\partial \beta} \Big|_{\xi} \right\rangle$$



beta function : obtained by r_0/a_σ fit r_0/a_σ data H.Matsufuru et al. ('01)

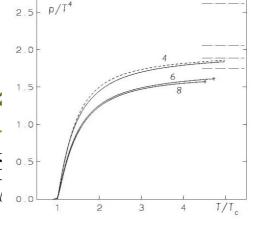
- Anisotropic lattice is useful to increase Temp. resolution.
- Results are roughly consistent with previous & isotropic results
- Additional coefficients are required to calculate (e-3p)/T⁴

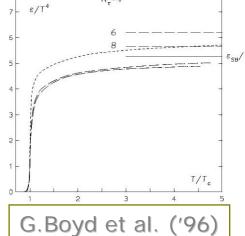
$$\frac{\partial \xi_0}{\partial \beta} \Big|_{\xi}$$
 is required in SU(3) gauge theory.

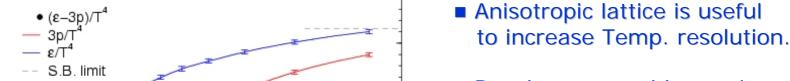
T.R.Klassen ('98)

EOS on an anisotropic la

$$\frac{\epsilon - 3p}{T^4} = \left(\frac{N_{\tau}^3}{N_{\sigma}^3 \xi^3}\right) a_{\sigma} \frac{\partial \beta}{\partial a_{\sigma}} \Big|_{\xi} \left\langle \frac{\partial \xi}{\partial \mu} \right\rangle_{0.0}$$

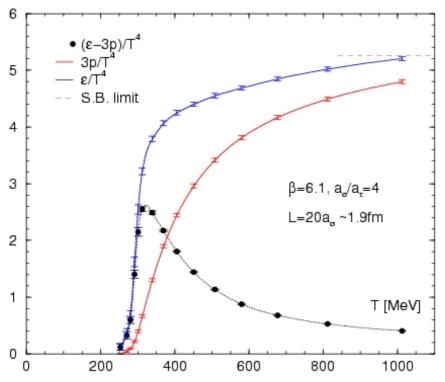




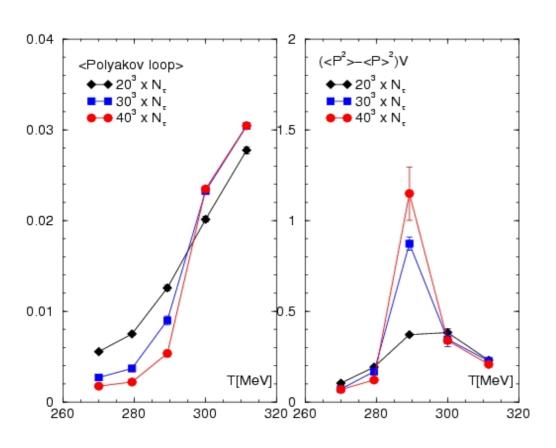


- Results are roughly consistent with previous & isotropic results
- Additional coefficients are required to calculate (e-3p)/T⁴

$$\left. \frac{\partial \xi_0}{\partial \beta} \right|_{\xi}$$
 is required in SU(3) gauge theory.



Transition temperature at fixed scale

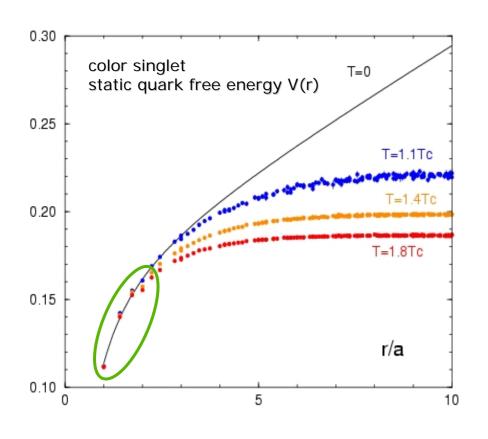


- T-dependence of the (rotated) Polyakov loop and its susceptibility
- No renormalization is required upto overall factor due to the fixed scale.
- Rough estimation of critical temperature is possible.

$$T_c = 280 \sim 300 \text{ MeV}$$

at $\beta = 6.1$, $\xi = 4$
(SU(3) gauge theory)

Static quark free energy at fixed scale



Static quark free energies at fixed scale

- Due to the fixed scale, no renomalization constant is required.
- → small thermal effects in V(r) at short distance (without any matching)
- Easy to distinguish temperature effect of V(r) from scale & volume effects

Conclusion

- We studied thermodynamics of SU(3) gauge theory at fixed lattice scale
- Our method (T-integration method) works well to calculate the EOS
- Fixed scale approach is also useful for
 - critical temperature
 - static quark free energy
 - etc.
- Our method is also available in full QCD !!

Therefore ...

Toward full QCD calculations

- Our method is suited for already performed high statistics full QCD results.
- When beta functions are (able to be) known at a simulation point and T=0 configurations are open to the public,

our method requires no additional T=0 simulation !!

■ We are pushing forward in this direction using CP-PACS/JLQCD results in ILDG (N_f=2+1 Clover+RG, a=0.07fm, m_{ps}/m_v=0.6)

Our final goal is to study

thermodynamics on the physical point with 2+1 flavors of Wilson quarks → see PACS-CS talks