Gapless Dirac spectrum at high temperature

Tamás G. Kovács
University of Pécs
Background

- Just **above** T_c $\langle \bar{\psi} \psi \rangle \neq 0$ if P-loop is complex
 (Chandrasekharan and Christ, hep-lat/9509095)
 \Rightarrow Chiral symmetry is restored at T_c only if P-loop real

- **Random matrix model** \Rightarrow Chiral symmetry restoration occurs
 - at higher T if P-loop complex for SU(3)
 - never if P-loop<0 for SU(2)
 (Stephanov, PLB375 (1996) 249)

- **Lattice:**
 - SU(3): in all P-loop sectors spectral gap appears
 at the same $T = T_c$ (Gattringer et al. PRD66 (2002) 054502)
 - SU(2): $\rho(0) \neq 0$ up to $T = 2T_c$ (Bornyakov et al. arXiv:0807.1980)
Qualitative picture

- In quenched SU(N) YM Polyakov-loop Z(N) symmetry spontaneously broken above T_c (deconfined phase).

- Chiral symmetry restoration above T_c depends strongly on the Polyakov-loop sector.

- Banks-Casher:

 $\langle \bar{\psi} \psi \rangle = \pi \rho(0)$

 chiral symmetry breaking \Leftrightarrow Dirac operator spectral density at 0

- Experience:

 - $(-1) \times P$ closer to 1 \Rightarrow more low Dirac modes

 - $(-1) \times P$ effective boundary condition for quarks
SU(2) further questions

• Does $\rho(0) \neq 0$ persist at arbitrarily high T in the P-loop<0 sector?

• Comparison of Dirac spectrum with random matrix theory (around and above T_c)

• Instantons $\Leftrightarrow \rho(0) \neq 0$?

• How do dynamical fermions select the correct P-loop sector?
SU(2) simulation parameters

• All runs at quenched $\beta = 2.6$ \ (β_c for $N_T=10.4$)

• Vary N_T to change temperature

• $T = 2.6T_c$ ($N_T = 4$), $T = 1.7T_c$ ($N_T = 6$)

• Spatial sizes: $N_S = 8, 10, 12, 16, 20$: $N_{Tc}/N_S = 0.52 - 1.30$

• Overlap Dirac operator

• Antiperiodic quark boundary condition in time
Density of low modes for different Polyakov loop sectors

\[\rho_a^3 \]

- P-loop<0 T=2.6T_c
- P-loop>0 T=2.6T_c
- Lowest free mode

\[\lambda_a \]
Density of low modes for different Polyakov loop sectors
Density of modes at zero

\[\rho(0) a^3 \]

For different spatial box sizes and \(N_{Tc}/N_S \):

- Orange circles: \(T = 2.6 T_c \)
- Blue squares: \(T = 1.7 T_c \)
Cumulative distribution of scaled smallest eigenvalues for $Q=0$

$T = 2.6T_c$ $\Sigma = \langle \bar{\psi} \psi \rangle$: best one-parameter fit to random matrix prediction

![Graph showing cumulative distribution of scaled smallest eigenvalues for $Q=0$. The x-axis represents $\sum \lambda$, and the y-axis represents P. The graph includes a best-fit line and three curves for different values of N_{Tc}/N_S: 0.65, 1.04, and 1.30. The RMT prediction is also shown as a red line.](image-url)
Possible role of instantons?

• Common wisdom: instanton-antiinstanton 0-modes \(\Rightarrow \rho(0) \neq 0 \)

• As temperature goes up:

 – Topological susceptibility drops (instantons “squeezed out”)

 – \(\rho(0) \approx \langle \bar{\psi} \psi \rangle \) increases

• \(\Rightarrow \) At high \(T \) instantons cannot be responsible for \(\rho(0) \neq 0 \)
Why is $\langle \bar{\psi} \psi \rangle = 0$ above T_c in the real world?

- Fermion determinant breaks P-loop $Z(N)$ symmetry
- Favors sector with the least number of low modes
- Effective boundary condition as far from periodic as possible
 - P-loop real for $SU(3)$
 - P-loop<0 for $SU(2)$
- Is it really only the low modes that matter?
Difference in fermion action between P-loop sectors
one quark flavor of mass m

![Graph showing difference in fermion action](image)
Conclusions

• In quenched SU(2) above T_c chiral condensate has strong dependence on the P-loop average
 - If $\langle P \rangle > 0$ condensate vanishes at T_c
 - If $\langle P \rangle < 0$ condensate increases with T

• In the $\langle P \rangle < 0$ sector with chiral symmetry broken above T_c
 - Good agreement with random matrix theory
 - Topological charge fluctuations cannot account for low Dirac modes

• In the real world:
 - Fermion determinant suppresses “wrong” P-loop sector
 - Small fraction of lowest Dirac modes ($< 1\%$) responsible for that

• Picture should be qualitatively similar for other Dirac operators and $SU(3)$