Exploring the phase diagram of sextet QCD

Thomas DeGrand University of Colorado

Yigal Shamir, Ben Svetitsky Tel Aviv University

Overview

- Follow up to Schrodinger functional study (Svetitsky's talk)
- What we did

i

- What we saw
 - Near the $N_t = 8$ deconfinement line
 - Near the $N_t = 8$ chiral restoration line
 - At small quark mass
- Trying to sum up

Disclaimer – this is exploratory, people have not been doing simulations on this model since 1981!

The Big Picture

What we did

- $N_c = 3$, $N_f = 2$, symmetric rep clover fermions
- Scan parameter space, try to find lines of constant physics
- Use finite size as "marker" for scales (as in SF)
- Bulk of simulations •

 - $8^3 \times 12$ and 12^4 for spectroscopy, potential $(12 \times 8^2) \times 8$ for chiral and deconfinement crossovers $12^3 \times 8$ for some deconfinement

 - 12^4 search for scaling
- "P+A" trick •
- Trade κ , κ_c for AWI quark mass \bullet

 $\partial_t \langle A_0(t) X(0) \rangle = 2m_q \langle P(t) X(0) \rangle$

(1)

Connection to conformal physics?

IRFP, if there, would appear as peculiar behavior

- No confinement, Coulombic potential
- No chiral symmetry breaking, $f_{\pi} \rightarrow 0$
- ???

BUT

- Discretization effects break conformal symmetry
- Finite volume breaks conformal symmetry
- Nonzero mass breaks conformal symmetry

Where we simulated

- 8^4 , $(12 \times 8^2) \times 8$ as rounded finite temperature $(N_t = 8)$
- $8^3 imes 12$ when confinement physics sets in, for V(r)
- $12^3 \times 8$ slightly better finite temperature
- 12^4 slightly better zero temperature

Along the $N_t = 8$ deconfinement line

- Observe order-disorder transition in Polyakov loop
- "Conventional" V(r) measurements show rapid increase in r_0/a , rapid fall in $a^2\sigma$ as β rises, m_q falls

Confinement length (as seen by T_c and V(r)) is squeezed out of the volume

Scale separation - I

Deconfinement transition has no apparent effect on pion mass (there is a deconfined, chirally broken phase)

 $\beta = 5.5$

Along the $N_t = 8$ chiral restoration line

With $N_t=8$ the fermions see AP b.c.'s at $m_\pi^2\sim (2(\pi/8))^2$: m_π^2 no longer $\sim m_q$

The two transitions

Octagons – $N_t = 8$ deconfinement, squares – $N_t = 8$ chiral restoration

In the deconfined, chirally broken phase, life is strange

- $m_\pi^2/m_q\sim {\rm constant}$
- Never get small $m_\pi/m_
 ho$
- $m_{a_1}/m_
 ho$ quite close to 1
- f_{π} quite m_q dependent, drops a lot as $m_q \rightarrow 0$, can't tell if it vanishes at $am_q = 0$
- $am_{\rho}(\beta, am_q) = f(am_q)$, nearly β independent for $5.2 < \beta < 7$

Very small quark mass

At even smaller quark masses, finite volume is everything, $mL \sim$ constant

f_{π} –A crucial diagnostic?

- In technicolor models f_{π} = Higgs VEV (246 GeV) sets the scale
- $f_\pi/m_
 ho
 ightarrow m_
 ho$ New physics, the technirho mass
- In large N_c , sextet $f_\pi \sim N_c$, vs fundamental rep $f_\pi \sim \sqrt{N_c}$
- With an IRFP, no chiral symmetry breaking, $f_{\pi}
 ightarrow 0$ as $m_q
 ightarrow 0$

But, simulational dirt can mar the result

- Lattice to continuum conversion
 - $af_{\pi}^{L} = Z_{A} \langle 0|A_{0}(x)|\pi \rangle$ $- Z_{A} = (1 + \frac{g^{2}}{16\pi^{2}}C(R)W)(1 - \frac{6\kappa}{8\kappa_{c}})$
- Finite volume effectively restores chiral symmetry
 - $m_{\pi}L < 1$, $f_{\pi}L > 1$ epsilon regime
 - $f_{\pi}L < 1$ hell regime

07/18/2008

 $f_\pi/m_
ho$ falls to zero as m_q goes to zero, even if volume too big for chiral transition

Conclusions

 $N_f=2~{\rm sextet}~{\rm QCD}$ is not like low- N_f fundamental rep QCD!

- Scale separation: $T_{th} << T_{ch}$
- Funny "chirally broken" phase
- Still to do: can "slow running" of g^2 be seen in aM?
- Direct search for IRFP in spectroscopy seems difficult, as hard as seeing asymptotic freedom in spectroscopy was in QCD
- But never mind! Discoveries await, even though existing language may be inadequate...

"P+A" trick

- Add quark propagators with antiperiodic (A) and periodic (P) temporal b.c.'s
- $C(t) = Z(\exp(-mt) \pm \exp(-m(2N_t t)))$

