Approximate forms of the density of states in pure gauge theory

Yannick Meurice
The University of Iowa
yannick-meurice@uiowa.edu

Lattice 2008, July 18, 2008
With A. Denbleyker, D. Du, Y. Liu and A. Velytsky
Content of the talk

• Motivations

• The density of states (definition and properties)

• Numerical study of finite size effects

• Apparent convergence of series expansions

• Conclusions and perspectives

See arXiv:0807.0185 [hep-lat]
Motivations

Problems that can be addressed using the density of states:

• How to combine weak and strong coupling expansions

• Study of finite size effects for small lattices

• Large order behavior of perturbative series

• Location of Fisher’s zeros for large lattices (poster)
Figure 1: Fisher’s zeros from the density of states with a numerical interpolation (left) and a polynomial approximation (right).
The density of states

Focus: $SU(2)$, Wilson’s action, L^4 lattice, periodic b. c.

$N_p = 6 \times L^4$ is the number of plaquettes

$Z(\beta)$ is the Laplace transform of $n(S)$, the density of states

$$Z(\beta) = \int_0^{2N_p} dS \ n(S) \ e^{-\beta S},$$

with

$$n(S) = \prod_l \int dU_l \delta(S - \sum_p (1 - (1/N) ReTr(U_p)))$$

$\ln(n(S))$ is a ”color entropy” (extensive).
A $SU(2)$ duality ($g^2 \rightarrow -g^2$ means $S \rightarrow 2N_p - S$)

For cubic lattices with even number of sites in each direction and a gauge group that contains -1, it is possible to change $\beta \text{Re} Tr U_p$ into $-\beta \text{Re} Tr U_p$ by a change of variables $U_l \rightarrow -U_l$ on a set of links such that for any plaquette, exactly one link of the set belongs to that plaquette (Li, YM PRD71 016008). This implies

$$Z(-\beta) = e^{2\beta N_p} Z(\beta)$$

$$n(2N_p - S) = n(S)$$

Thanks to this symmetry, we only need to know $n(S)$ for $0 \leq S \leq N_p$. (Note $< S > = N_p$ means $< Tr U_p > = 0$)
The one plaquette case (Li, YM, PRD71 054509)

\[n_{1pl.}(S) = \frac{2}{\pi} \sqrt{S(2 - S)} \]

\[n(S) \propto \sqrt{S} \text{ for small } S \text{ implies } Z \propto \beta^{-3/2} \text{ for large } \beta \]

1/\beta corrections can be calculated by expanding the remaining factor \(\sqrt{2 - S} \)

Series with finite radius of convergence \(\rightarrow \) asymptotic series if we integrate over \(S \) from 0 to \(\infty \) (instead of 0 to 2).

It is easier to approximate \(n(S) \) than the corresponding partition function. Does this survive the infinite volume limit?

\(n(S) \) near \(S = 2 \) can be probed by taking \(\beta \rightarrow -\infty \) in agreement with the common wisdom that the large order behavior of weak coupling series can be understood in terms of the behavior at small negative coupling.
Volume dependence

\[f(x, \mathcal{N}_p) \equiv \ln(n(x\mathcal{N}_p, \mathcal{N}_p)) / \mathcal{N}_p \]

The \(SU(2) \) duality symmetry implies that

\[f(x, \mathcal{N}_p) = f(2 - x, \mathcal{N}_p) \]

The existence of the infinite volume limit requires that

\[\lim_{\mathcal{N}_p \to \infty} f(x, \mathcal{N}_p) = f(x) , \]

In the same limit, the integral can be evaluated by the saddle point method. The maximization of the integrand requires

\[f'(x) = \beta \]
Numerical calculation

Figure 2: Results of patching $P_\beta(S)e^{\beta S}$ for 4^4 and 6^4.
Finite Volume Effects

Figure 3: The difference between $\ln(n(S))/N_p$ for 4^4 and 6^4. The noise on the right is consistent with our understanding of the volume (in)dependence of the strong coupling expansion.
Volume dependence of the leading log

Figure 4: The difference between $\ln\left(\frac{n(S)}{N_p}\right)$ (left) and $\frac{\ln\left(\frac{n(S)}{N_p}\right)}{\ln\left(\frac{S}{N_p}\right)}$ (right) for 4^4 and 6^4. Predicted value of the plateau is -0.0013.
Figure 5: Average plaquette (left) and $\ln(n(S))/\mathcal{N}_p$ (right) compared to weak and strong coupling expansions ($x = S/\mathcal{N}_p$).
Strong coupling expansion

\[P(\beta) \simeq 1 + \sum_{m=1} a_{2m-1} \beta^{2m-1} \]

(From Balian et al.). With periodic b.c., topologically trivial graphs have volume independent contributions.

\[f(1 + y) = g(y) \simeq \sum_{m=0} g_{2m} y^{2m} \]

\[h(y) \equiv g(y) - A(ln(1 - y^2)) \]

In the infinite volume limit, we have \(A = 3/4 \). Expanding

\[h(y) \simeq \sum_{m=0} h_{2m} y^{2m} \]
Figure 6: Logarithm of the absolute value of g_{2m} and h_{2m}
Evidence for finite radius of convergence

Figure 7: Logarithm of the absolute value of the difference between the numerical data and the strong coupling expansion of \(P \) (left) and \(f \) (right) at successive orders. For reference, we also show the numerical errors.
Weak coupling expansion

\[P(\beta) \simeq \sum_{m=1} b_m \beta^{-m} \]

From Karsch, Heller, Alles et al. + dilogarithm model for order 4 and higher; We assume the behavior

\[f(x) \simeq A \ln(x) + \sum_{m=0} f_m x^m \]

Using the saddle point, \(\beta \simeq A/x \simeq A/(b_1/\beta) \) At finite volume, the saddle point calculation of \(P \) should be corrected in order to include \(1/V \) effects \((V = L^D) \). If we perform the Gaussian integration of the quadratic fluctuations, and use the \(V \) dependent value of \(b_1 \) given below,

\[A = (3/4) - (5/12)(1/V) \]
This leading coefficient correction, predicts a difference of \(-0.0013 \ln(x)\) for the difference between \(f(x)\) for a \(4^4\) and \(6^4\). A closed form expression can be found using the zero mode contribution (Coste et al.) for \(b_1\). For the case \(N_c = 2\) and \(D = 4\),

\[b_1 = (3/4)(1 - 1/(3V)) \]

Assuming that \(\partial P / \partial \beta\) has a logarithmic singularity in the complex \(\beta\) plane and integrating (very successful for \(SU(3)\), YM PRD74:096005)

\[\sum_{m=1} b_m \beta^{-k} \approx C(Li_2(\beta^{-1}/(\beta_m^{-1} + i\Gamma))) + h.c, \]

with

\[Li_2(x) = \sum_{k=1} x^k / k^2. \]
Figure 8: Logarithm of the absolute value of the difference between the numerical data and the weak coupling expansion of P at successive orders (left) and without the zero mode (right).
Figure 9: Numerical value of $f(x)$ compared to the weak coupling expansion at successive orders (left). Logarithm of the absolute value of the difference between the numerical data and the weak coupling expansion of f at successive orders (right).
Expansion in Legendre polynomials

\[h(y) \equiv g(y) - A(\ln(1 - y^2)) . \]

\[f(1 + y) = g(y) \simeq \sum_{m=0} g_{2m} y^{2m} \]

\[h(y) = \sum_{m=0} q_{2m} P_{2m}(y) \]

Coefficients decay exponentially.

Approximations improve uniformly with the order.
Figure 10: Legendre polynomial coefficients q_{2m} with the three methods described in the text.
Figure 11: $h(y)$ together with the expansion in Legendre polynomials up to order 20 (left). Logarithm of the absolute value of the difference between the numerical data for $h(y)$ and expansions in Legendre polynomials at successive orders (right). $y = S/N_p - 1 = - \sum_p TrU_p/N_p$
Figure 12: P together with the expansion in Legendre polynomials up to order 20 (left). Logarithm of the absolute value of the difference between the numerical data for P and expansions in Legendre polynomials at successive orders (right).
Conclusions

• Good overlap of weak and strong coupling at low orders (but large orders similar to the plaquette)

• Finite size effects in the leading logarithm under control

• Apparent convergence of polynomial approximations after subtracting log. singularities (this allows us to work in the complex S plane).

• Application: Fisher’s zeros (in progress)

• Plans: decimation in a multicoupling generalization of $n(S)$, finite size effects on asymmetric lattices, $U(1)$, first order PT,
Consider a lattice model in D dimensions, with lattice spacing a, linear size N, volume $V = N^D$ and nonlinear scaling variables u_i.

Under a RG transformation

$$a \rightarrow \ell a; \ N \rightarrow N/\ell; \ u_i \rightarrow \ell^{y_i}u_i$$

with ℓ a fixed value (e.g. 2) that cannot be shrunk to 1

For scalar models with average magnetization m

$$V_{\text{eff}}(\ell^y m, \ell^{y_i}u_i, N/\ell) = \ell^D V_{\text{eff}}(m, u_i, N)$$
For gauge models ($SU(2)$ hereafter) with $N_p = \frac{D(D-1)}{2}V$ plaquettes

$$Z(\beta, \{\beta_i\}) = \int_0^{2N_p} dS \ n(S, \{\beta_i\}) e^{-\beta S},$$

$$n(S, \{\beta_i\}) = \prod_l \int dU_l \delta(S - \sum_p (1 - (1/N)ReTr(U_p))) e^{-\sum_i \beta_i (1 - \chi_i(U_p)/d_i)}$$

$$f(s, \{\beta_i\}, N_p) \equiv \ln(n(sN_p, \{\beta_i\}, N_p))/N_p$$

can be used as the effective potential if we can find a RG transformation for the $\{\beta_i\}$ associated with the characters χ_i (e.g. Migdal-Kadanoff)

$$\lim_{N_p \to \infty} f(s, \{\beta_i\}, N_p) = f(s, \{\beta_i\})$$