Non-perturbative renormalization of $N_f = 2 + 1$ QCD with Schrödinger functional scheme

Yusuke Taniguchi for PACS-CS collaboration
Our ultimate purpose

- Determine the fundamental parameter of \(N_f = 2 + 1 \) QCD

\[
\mathcal{L} = -\frac{1}{4g^2} F^{a}_{\mu \nu} F^{a}_{\mu \nu} + \bar{\psi}_i (\gamma_\mu D_\mu + m_i) \psi_i
\]

- Strong coupling \(g \): target of this talk
 - Low energy input \(r_0 \) is measured by PACS-CS (Namekawa)
- Quark masses \(m_i \)
 - Bare quark masses are measured by PACS-CS (Kadoh, Kuramashi, Ukita)
 - NP renormalization factor will be needed.

- We adopt input of low energy experimental values.
 - Comparison with high energy input (estimation of systematic error)
 - Need calculation from weak to strong coupling region.
Plan of this project

- Evaluate $\alpha_S(M_Z)$ by an input of low energy observable (r_0).
- NP renormalization factor of quark mass.
 - as a by product of $\alpha_S(M_Z)$ in this talk
 (inhomogeneous BC at $t=0, T$)

Method

- Non-perturbative renormalization with Schrödinger functional
 - Finite volume of L^4
 - Appropriate boundary condition
 - Renormalization scale $\sim 1/L$
 - Good compatibility with lattice.
 - Covers from low to high energy region.
Schrödinger functional scheme (Lüscher et al, Alpha)

- Dirichlet boundary condition at $t = 0, T$.

$$U_k(x)\big|_{x_0=0} = \exp(\alpha C_k), \quad C_k = \frac{i}{L} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix}$$

- Unique global minimum at background field B_{μ}.
- Mass gap in fermionic mode
 (quark mass can be set to zero).
- Renormalized coupling

$$S_0 = \frac{1}{2} g_0^2 F_{\mu\nu}^2 \Rightarrow \Gamma_0[B_{\mu}] = \Gamma[B_{\mu}] = \frac{1}{g_R^2(L)} k[B_{\mu}]$$

- Mass renormalization factor

$$Z_m(L) = \frac{\langle P(t = L/2) \cdot \mathcal{O}_{\text{boundary}} \rangle_{\text{lattice}}}{\langle P(t = L/2) \cdot \mathcal{O}_{\text{boundary}} \rangle_{\text{tree}}}$$
Step Scaling Function

- Renormalization group flow $g(L) \rightarrow g(2L)$ when one changes the renormalization scale $L \rightarrow 2L$

implemented easily on lattice

- Follow the renormalization group flow in discretized way.
Step scaling function

- The point is:
 - To take continuum limit for every step of RG flow.
 - \(L \to 2L, \quad g(L, a) \to g(2L, a) \)

- Obtain the RG flow \(g(L) \to g(2L) \) in the continuum.
Numerical setup

- Iwasaki gauge action $\beta = 2.1 \sim 6.2$
 - tree level boundary improvement
 - inhomogeneous DBC, $\theta = \pi/5$
- Wilson fermion with clover term.
 - non-perturbative c_{SW}
 - one loop boundary improvement
- RHMC/HMC algorithm for 3rd/two flavour(s)
- CPS++ code
- Machines
 - PC cluster kaede at Tsukuba: (~180 PU)
 - SR11000 at Tokyo: (~64 PU)
 - PACS-CS: (256 PU)\times 1 month
 - RSCC at Riken (128 PU)
 - T2K at Tsukuba: (2560 cores)\times 10 days
 - T2K at Tokyo: (128 cores)
Current status

- Take the continuum limit by three box sizes.

<table>
<thead>
<tr>
<th>L/a</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2L/a$</td>
<td>8</td>
<td>12</td>
<td>16</td>
</tr>
</tbody>
</table>

- Tuning of β and κ is finished for fixed physical box size.

<table>
<thead>
<tr>
<th>\bar{g}^2</th>
<th>1.001</th>
<th>1.249</th>
<th>1.524</th>
<th>1.840</th>
<th>2.129</th>
<th>2.632</th>
<th>3.418</th>
</tr>
</thead>
<tbody>
<tr>
<td>4^4</td>
<td>110K</td>
<td>170K</td>
<td>230K</td>
<td>170K</td>
<td>210K</td>
<td>320K</td>
<td>100K</td>
</tr>
<tr>
<td>8^4</td>
<td>40K</td>
<td>40K</td>
<td>86K</td>
<td>134K</td>
<td>50K</td>
<td>74K</td>
<td>308K</td>
</tr>
<tr>
<td>6^4</td>
<td>153K</td>
<td>150K</td>
<td>50K</td>
<td>170K</td>
<td>110K</td>
<td>144K</td>
<td>120K</td>
</tr>
<tr>
<td>12^4</td>
<td>42K</td>
<td>51K</td>
<td>42K</td>
<td>35K</td>
<td>28K</td>
<td>21K</td>
<td>38K</td>
</tr>
<tr>
<td>8^4</td>
<td>98K</td>
<td>86K</td>
<td>122K</td>
<td>98K</td>
<td>74K</td>
<td>122K</td>
<td>122K</td>
</tr>
<tr>
<td>16^4</td>
<td>16.2K</td>
<td>18K</td>
<td>116K</td>
<td>3.2K</td>
<td>4K</td>
<td>5.1K</td>
<td>3.2K</td>
</tr>
</tbody>
</table>

- Now performing simulation for larger box of $2L$

 - $L/a = 8 \rightarrow L/a = 16$: Now going on
Distribution of data

- Distribution of $\partial S/\partial \eta \propto 1/g^2$ (12^4 at strong coupling)

$\partial S/\partial \eta$ vs τ

Its distribution
\[\sigma(u) = \bar{g}^2(2L) \bigg|_{u=g^2(L)} \]
SSF (preliminary)

\[\sigma(u)/u \]
SSF (preliminary)

- $\sigma(u)/u$

![Graph showing SSF for coupling with different L/a values and polynomial fit](image)

- Polynomial fit

\[\sigma(u) = u + s_0 u^2 + s_1 u^3 + s_2 u^4 + f_3 u^5 + f_4 u^6 \]

\[\chi^2/dof \sim 0.8 \]
Introduction of scale

- r_0 at vanishing PCAC mass ($m_u = m_d = m_s \to 0$)

<table>
<thead>
<tr>
<th></th>
<th>β</th>
<th>$(r_0/a)_{m=0}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.83</td>
<td>4.342(26)</td>
<td></td>
</tr>
<tr>
<td>1.90</td>
<td>6.45(27)(34)</td>
<td></td>
</tr>
<tr>
<td>2.05</td>
<td>7.787(66)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L^4</th>
<th>β</th>
<th>\bar{g}^2</th>
<th>m_{AWT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>4^4</td>
<td>1.90</td>
<td>4.695(23)</td>
<td>$-0.00039(28)$</td>
</tr>
<tr>
<td>4^4</td>
<td>2.05</td>
<td>3.808(17)</td>
<td>0.00010(31)</td>
</tr>
<tr>
<td>6^4</td>
<td>2.05</td>
<td>4.763(70)</td>
<td>$-0.00810(20)$</td>
</tr>
</tbody>
</table>

$$\Lambda = \mu (b_0 \bar{g})^{-\frac{b_1}{2b_0^2}} \exp \left(-\frac{1}{2b_0 \bar{g}} \right) \exp \left(- \int_{\bar{g}} \exp \left(\frac{1}{\beta} + \frac{1}{b_0 g^3} - \frac{b_1}{b_0^2 g} \right) \right)$$

$$\Lambda_{\overline{MS}} = 2.612 \Lambda_{\overline{SF}}$$
Scaling behaviour is not good for $L/a = 4$.

May be able to take the continuum limit by two data points.

PT improvement may not work for 4^4 but may be for 6^4.
Conclusion

- Calculation for the running coupling is going on
- Scaling behaviour seems to be good.
- Scaling behaviour of quark mass SSF is not so good.
 - We may need perturbative improvement.

Future work

- Take the continuum limit
- Take data for $L/a = 16$
 - Much expectation on T2K machine!
- Adopt appropriate setup for Z_m and repeat the calculation
 - Homogeneous BC, $\theta = 0.5$
Distribution of data

- $(8^4 \text{ at strong coupling})$

- $(16^4 \text{ at strong coupling})$
Scaling of SSF

- For one loop improved gauge boundary term (condition B)