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Hadron Masses and the QCD Trace Anomaly

The QCD trace anomaly, arising from the breaking of scale invariance in 
massless QCD, provides

T µ
µ =

βQCD

2gs
Ga

µνGµν
a where T µν =

i

2
ψ̄ γµ←→D ν ψ

is the energy momentum tensor.

Adding the quark masses, we have

T µ
µ =

βQCD

2gs
Ga

µνGµν
a + muq̄uqu + mdq̄dqd + msq̄sqs + . . .

The first term provides the dominant mass for all light hadrons (no c, b, t), 
except for the pseudo-Goldstone modes.  For example,

〈N(p)|T µ
µ |N(p)〉 = MN ū(p)u(p)

= 〈N(p)|βQCD

2gs
Ga

µνGµν
a + muq̄uqu + mdq̄dqd + msq̄sqs|N(p)〉

The leading chiral correction to all light hadron masses then scales as        ,
aside from the pseudo-Goldstone modes for which 

mq

m2
π,K,η ! B(mq1 + mq2)



(Heavy) Baryon Chiral Perturbation Theory

Writing down a relativistic effective nucleon Lagrangian, one immediately runs 
into trouble

L = ψ̄N (i∂/−M0) ψN + gAψ̄N γµγ5A
µ ψN + . . .

Aµ =
∂µφ

f
+ . . . φ =

(

π
0

√

2
π+

π−
−

π
0

√

2

)

Leading order equation of motion

i∂/ψN = M0 ψN M0 ∼ Λχ

How do you count powers of                     ?i∂/

Λχ
=

M0

Λχ

Heavy baryon chiral perturbation theory is an effective field theory describing 
the interactions of pions with non-relativistic nucleons.  Based upon heavy quark 
effective theory. E. Jenkins and A. Manohar  PLB 255 (1991)



(Heavy) Baryon Chiral Perturbation Theory

Nv(x) =
1 + v/

2
eiM0v·xψN (x)

Similar to the phase one introduces to convert the Klein-Gordon equation to 
the Schroedinger equation

in the rest frame                        vµ = (1,0)

−→ 1 + γ0

2
non-relativistic projector

the nucleon momentum can be parameterized as Pµ = M0vµ + kµ

−→ L = N̄viv · ∂Nv + 2gAN̄vS ·ANv + 2αM N̄vNvtr(M+)

+O
(

1
Λχ

)
+O

(
1

M0

)
M+ = mQ + . . .

∂µNv = ikµNv

k2 ∼ m2
π " Λ2

χconsistent power counting with 

E. Jenkins and A. Manohar



(Heavy) Baryon Chiral Perturbation Theory

Including the delta degrees of freedom explicitly adds a slight complication.  One 
can not simultaneously phase away the nucleon mass in the chiral limit along 
with the delta mass in the chiral limit.  This introduces a new parameter in the 
theory

E. Jenkins and A. Manohar

∆0 = M∆ −MN

∣∣∣
mq=0

∆ ! 290 MeVphenomenologically

+2gAN̄S · AN + 2g∆∆T̄µS · ATµ + g∆N

(
T̄µAµN + N̄AµTµ

)
L = N̄iv · ∂N + 2αM N̄Ntr(M+)− T̄µ [iv · ∂ −∆0]Tµ − 2γ̄M T̄µTµtr(M+)

leading axial 
charge of 
nucleon

leading axial 
charge of 

delta

leading axial 
transition 

charge

these charges are phenomenologically very important and they also give rise to 
the leading non-analytic pion mass dependence of the baryon masses.
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mass, σmB [mq], taking their central values from tables II, III, VI and VII respectively.6 To construct this list of
global χ2 functions, as can be seen with Eq. (22), it is essential to have an equal number of bootstrap samples on the
different quark mass ensembles, precluding the use of the jackknife method, at least with our sets of ensembles.

The advantages of this method then follow naturally. Because the baryon masses on the different quark mass
ensembles are statistically independent, this amounts to adding independent noise, weighted by the statistical error
σmB [mq], to the central value of a given baryon mass on each of the different quark mass ensembles, mimicking a well
known method of handling fits with highly correlated parameters. We note that for our calculations, the bootstrap
samples appear Gaussian distributed about the mean. Furthermore, the correlations among the different baryon
masses on a given quark mass ensemble are automatically taken into account by use of the bootstrap distributions.
Therefore, by minimizing each of the Nbs entries in the global χ2[bs] list, we generate a bootstrap list of the fit
parameters, or the determined LECs, {λi[bs]}.7 Using the bootstrap error analysis, we can then make predictions for
the resulting LECs, as well as the extrapolated baryon masses, which accounts both for the correlations among the
ensembles at a given quark mass as well the correlations among the LECs from the minimization procedure,

λi = λi0 ± σλi , λi0 =
1

Nbs

Nbs∑

bs

λi[bs], σλi =

√√√√ 1
Nbs − 1

Nbs∑

bs

(λi[bs] − λi0)
2, (23)

and

mB = mB0 ± σmB , mB0 = g(mB : fphys
π , mphys

π , mphys
K , . . . , λi0),

σmB =

√√√√ 1
Nbs − 1

Nbs∑

bs

(
mB0 − g(mB : fphys

π , mphys
π , mphys

K , . . . , λi[bs])
)2

. (24)

To perform the minimization, we use both Mathematica and MINUIT.

B. Two flavor chiral extrapolations

In this section, we perform two-flavor chiral extrapolations of our nucleon and delta mass results. From the point
of view of testing predictions from HBχPT, i.e. looking for non-analytic chiral behavior, one would ultimately like to
determine values of gA, g∆∆ and g∆N directly from the nucleon and delta mass extrapolations. These LECs represent
the leading order (LO) axial charges of the nucleon, delta and nucleon-delta transitions. The leading virtual pion
cloud contributions to the nucleon and delta masses are proportional to these couplings, contributing at NLO. For
example, the nucleon mass takes the following form at NLO

MN = M0 − 2αM (µ)m2
π − 3πg2

A

(4πfπ)2
m3

π − 8g2
∆N

3(4πfπ)2
F(mπ, ∆, µ) , (25)

with

F(m, ∆, µ) = (∆2 − m2 + iε)3/2 ln

(
∆ +

√
∆2 − m2 + iε

∆ −
√

∆2 − m2 + iε

)
− 3

2
∆ m2 ln

(
m2

µ2

)
− ∆3 ln

(
4∆2

m2

)
. (26)

However, fits to our lattice results for the nucleon mass with this NLO formula return values of gA and g∆N that are
inconsistent with our knowledge of these LECs from either phenomenology or from lattice QCD.8 In large part, this
can be understood from the observation that our lattice data of the nucleon mass are well approximated by Eq. (17),
MN = αN

0 + αN
1 mπ (see Table VIII and Figure 9 for more details). Therefore, in order for the SU(2) HBχPT

nucleon mass expression to fit our lattice results, the different orders in the heavy baryon expansion of MN , which
is a polynomial series in mπ beginning at O(m2

π) and supplemented by chiral logarithms, must conspire to form this

6 The inclusion of these fluctuations amounts to an error on the error, which is beyond our consideration here.
7 We could also generate the bootstrap list of the error correlation matrix, but this would also amount to an error on the error, so we

only retain the central values of this matrix.
8 The use of the mixed action expression for the nucleon mass at this order [31], supplemented by the known valence-sea meson mass

splitting [36] does not qualitatively change this conclusion. See Table VIII for details.

15

mass, σmB [mq], taking their central values from tables II, III, VI and VII respectively.6 To construct this list of
global χ2 functions, as can be seen with Eq. (22), it is essential to have an equal number of bootstrap samples on the
different quark mass ensembles, precluding the use of the jackknife method, at least with our sets of ensembles.

The advantages of this method then follow naturally. Because the baryon masses on the different quark mass
ensembles are statistically independent, this amounts to adding independent noise, weighted by the statistical error
σmB [mq], to the central value of a given baryon mass on each of the different quark mass ensembles, mimicking a well
known method of handling fits with highly correlated parameters. We note that for our calculations, the bootstrap
samples appear Gaussian distributed about the mean. Furthermore, the correlations among the different baryon
masses on a given quark mass ensemble are automatically taken into account by use of the bootstrap distributions.
Therefore, by minimizing each of the Nbs entries in the global χ2[bs] list, we generate a bootstrap list of the fit
parameters, or the determined LECs, {λi[bs]}.7 Using the bootstrap error analysis, we can then make predictions for
the resulting LECs, as well as the extrapolated baryon masses, which accounts both for the correlations among the
ensembles at a given quark mass as well the correlations among the LECs from the minimization procedure,

λi = λi0 ± σλi , λi0 =
1

Nbs

Nbs∑

bs

λi[bs], σλi =

√√√√ 1
Nbs − 1

Nbs∑

bs

(λi[bs] − λi0)
2, (23)

and

mB = mB0 ± σmB , mB0 = g(mB : fphys
π , mphys

π , mphys
K , . . . , λi0),

σmB =

√√√√ 1
Nbs − 1

Nbs∑

bs

(
mB0 − g(mB : fphys

π , mphys
π , mphys

K , . . . , λi[bs])
)2

. (24)

To perform the minimization, we use both Mathematica and MINUIT.

B. Two flavor chiral extrapolations

In this section, we perform two-flavor chiral extrapolations of our nucleon and delta mass results. From the point
of view of testing predictions from HBχPT, i.e. looking for non-analytic chiral behavior, one would ultimately like to
determine values of gA, g∆∆ and g∆N directly from the nucleon and delta mass extrapolations. These LECs represent
the leading order (LO) axial charges of the nucleon, delta and nucleon-delta transitions. The leading virtual pion
cloud contributions to the nucleon and delta masses are proportional to these couplings, contributing at NLO. For
example, the nucleon mass takes the following form at NLO

MN = M0 − 2αM (µ)m2
π − 3πg2

A

(4πfπ)2
m3

π − 8g2
∆N

3(4πfπ)2
F(mπ, ∆, µ) , (25)

with

F(m, ∆, µ) = (∆2 − m2 + iε)3/2 ln

(
∆ +

√
∆2 − m2 + iε

∆ −
√

∆2 − m2 + iε

)
− 3

2
∆ m2 ln

(
m2

µ2

)
− ∆3 ln

(
4∆2

m2

)
. (26)

However, fits to our lattice results for the nucleon mass with this NLO formula return values of gA and g∆N that are
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nucleon mass expression to fit our lattice results, the different orders in the heavy baryon expansion of MN , which
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π) and supplemented by chiral logarithms, must conspire to form this

6 The inclusion of these fluctuations amounts to an error on the error, which is beyond our consideration here.
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only retain the central values of this matrix.
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splitting [36] does not qualitatively change this conclusion. See Table VIII for details.

−iΣ = + + + ...

E. Jenkins and A. Manohar
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However, fits to our lattice results for the nucleon mass with this NLO formula return values of gA and g∆N that are
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π
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ddk

(2π)d

S · k S · k

(v · k + iε)(k2 −m2
π + iε)
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Nbs
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Nbs∑
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(
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√
∆2 − m2 + iε
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√

∆2 − m2 + iε

)
− 3

2
∆ m2 ln

(
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µ2
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− ∆3 ln
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4∆2
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. (26)

However, fits to our lattice results for the nucleon mass with this NLO formula return values of gA and g∆N that are
inconsistent with our knowledge of these LECs from either phenomenology or from lattice QCD.8 In large part, this
can be understood from the observation that our lattice data of the nucleon mass are well approximated by Eq. (17),
MN = αN

0 + αN
1 mπ (see Table VIII and Figure 9 for more details). Therefore, in order for the SU(2) HBχPT

nucleon mass expression to fit our lattice results, the different orders in the heavy baryon expansion of MN , which
is a polynomial series in mπ beginning at O(m2

π) and supplemented by chiral logarithms, must conspire to form this

6 The inclusion of these fluctuations amounts to an error on the error, which is beyond our consideration here.
7 We could also generate the bootstrap list of the error correlation matrix, but this would also amount to an error on the error, so we

only retain the central values of this matrix.
8 The use of the mixed action expression for the nucleon mass at this order [31], supplemented by the known valence-sea meson mass

splitting [36] does not qualitatively change this conclusion. See Table VIII for details.
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mass, σmB [mq], taking their central values from tables II, III, VI and VII respectively.6 To construct this list of
global χ2 functions, as can be seen with Eq. (22), it is essential to have an equal number of bootstrap samples on the
different quark mass ensembles, precluding the use of the jackknife method, at least with our sets of ensembles.

The advantages of this method then follow naturally. Because the baryon masses on the different quark mass
ensembles are statistically independent, this amounts to adding independent noise, weighted by the statistical error
σmB [mq], to the central value of a given baryon mass on each of the different quark mass ensembles, mimicking a well
known method of handling fits with highly correlated parameters. We note that for our calculations, the bootstrap
samples appear Gaussian distributed about the mean. Furthermore, the correlations among the different baryon
masses on a given quark mass ensemble are automatically taken into account by use of the bootstrap distributions.
Therefore, by minimizing each of the Nbs entries in the global χ2[bs] list, we generate a bootstrap list of the fit
parameters, or the determined LECs, {λi[bs]}.7 Using the bootstrap error analysis, we can then make predictions for
the resulting LECs, as well as the extrapolated baryon masses, which accounts both for the correlations among the
ensembles at a given quark mass as well the correlations among the LECs from the minimization procedure,

λi = λi0 ± σλi , λi0 =
1

Nbs

Nbs∑

bs

λi[bs], σλi =

√√√√ 1
Nbs − 1

Nbs∑

bs

(λi[bs] − λi0)
2, (23)

and

mB = mB0 ± σmB , mB0 = g(mB : fphys
π , mphys

π , mphys
K , . . . , λi0),

σmB =

√√√√ 1
Nbs − 1

Nbs∑

bs

(
mB0 − g(mB : fphys

π , mphys
π , mphys

K , . . . , λi[bs])
)2

. (24)

To perform the minimization, we use both Mathematica and MINUIT.

B. Two flavor chiral extrapolations

In this section, we perform two-flavor chiral extrapolations of our nucleon and delta mass results. From the point
of view of testing predictions from HBχPT, i.e. looking for non-analytic chiral behavior, one would ultimately like to
determine values of gA, g∆∆ and g∆N directly from the nucleon and delta mass extrapolations. These LECs represent
the leading order (LO) axial charges of the nucleon, delta and nucleon-delta transitions. The leading virtual pion
cloud contributions to the nucleon and delta masses are proportional to these couplings, contributing at NLO. For
example, the nucleon mass takes the following form at NLO
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v → v +
ε

M0
k → k − ε

The price: Lorentz invariance is lost...

E. Jenkins and A. Manohar

However, it can be recovered order-by-order in 
1

M0

This is know as Reparameterization Invariance (RPI)
M. Luke and A. Manohar   PLB 286 (1992)

Consider a small shift in the parameterization of the nucleon momentum

Pµ = M0vµ + kµ

Requiring the theory to be invariant under this reparameterization recovers 
Lorentz invariance order-by-order in inverse powers of the nucleon mass.  

This happens through a constraint of the coefficients of certain operators in 
the effective Lagrangian.  Implementing RPI, one finds the coefficients of 
higher dimensional operators are exactly constrained by coefficients of 
lower dimensional operators
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N̄iv · ∂N −→ N̄iv · ∂N − N̄
∂2

2M0
N + O

(
1

M2
0

)
Reparameterization Invariance

N̄
(v · ∂)2

2M0
N

∂2
⊥ = ∂2 − (v · ∂)2

i

v · k + iε
−→ i

v · k − !k2

2M0
+ iε

The coefficient of the operator                       is unconstrained, but one can use 
the equations of motion to make a field redefinition to convert the Lagrangian 
to the form

L = N̄iv · ∂N − N̄
∂2
⊥

2M0
N

E. Jenkins and A. Manohar

A. Manohar    PRD 56 (1997)

with

this provides the familiar form of the non-relativistic propagator if this 
leading kinetic operator is re-summed to all orders
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straight line. Viewed in this light, it is not surprising that an NLO analysis fails to return values of gA and g∆N that
are consistent with their known values. Therefore, in accord with the expectations from Refs. [83, 84], we must use
the extrapolation formula to at least NNLO and ideally next-to-next-to-next-to-leading order (NNNLO) to test if the
values have stabilized. At this order, unfortunately, there are too many LECs in the formula to be determined from
a fit to the lattice data points alone, a problem that is only exacerbated with the use of the mixed action formula.
Hence, we must resort to fixing the values of some of these parameters using results either from phenomenology or
other lattice calculations, ideally determined with the same lattice action.

1. The nucleon mass

To study the chiral extrapolation of the nucleon mass, we perform fits to our lattice data with the following formulae;

• LO: SU(2) HBχPT,

MN = M0 − 2αMm2
π , (27)

• NLO: SU(2) HBχPT, Eq. (25) [42, 63, 64].

• NLO: SU(4|2) mixed action HBχPT [31] with

MN = M0 − 2αM (µ)m2
π −

(g2
A − 4gAg1 − 5g2

1)π

3(4πfπ)2
m3

π −
(8g2

A + 4gAg1 + 5g2
1)π

3(4πfπ)2
m̃3

ju

−
4g2

∆N

3(4πfπ)2
F(mπ, ∆, µ) −

4g2
∆N

3(4πfπ)2
F(m̃ju, ∆, µ) −

3π(gA + g1)2

2(4πfπ)2
mπ ∆̃2

PQ , (28)

where g1 is an additional axial coupling appearing in the mixed action/partially quenched Lagrangian [81],
∆̃2

PQ = a2∆I is the taste-singlet staggered meson splitting, and m̃2
ju = m2

π + a2∆Mix, with the mixed valence-
sea meson mass splitting given in Ref. [36].

• NNLO: SU(2) HBχPT with explicit delta degrees of freedom (explicit deltas) [65] (and a slightly modified
renormalization prescription from Ref. [65])9

MN = M0 − 2αM (µ)m2
π −

3πg2
A

(4πfπ)2
m3

π −
8g2

∆N

3(4πfπ)2
F(mπ , ∆, µ)

+ m4
π

[

bM (µ) +
8g2

∆NαM (µ)

(4πfπ)2
−

9g2
∆N

4M0(4πfπ)2
−

45g2
A

32M0(4πfπ)2

]

+
8g2

∆NαM

(4πfπ)2
m2

πJ (mπ, ∆, µ)

+
m4

π

(4πfπ)2
ln

(

m2
π

µ2

) [

6αM (µ) −
3bA(µ)

4πfπ
−

27g2
A

16M0
−

5g2
∆N

2M0

]

, (29)

with F given in Eq. (26), and

J (m, ∆, µ) = m2 ln

(

m2

µ2

)

− 2∆
√

∆2 − m2 + iε ln

(

∆ +
√

∆2 − m2 + iε

∆ −
√

∆2 − m2 + iε

)

+ 2∆2 ln

(

4∆2

m2

)

. (30)

• NNLO: SU(2) HBχPT without explicit deltas, Eq. (29) with g∆N = 0.

• NNLO: SU(2) covariant baryon χPT formula without explicit deltas, expanded to O(m5
π) [85]

MN = M0 − 4c1m
2
π −

3πg2
A

(4πfπ)2
m3

π +
3πg2

A

8M2
0 (4πfπ)2

m5
π

+ m4
π

[

e1(µ) −
3

2(4πfπ)2

(

g2
A

M0
−

c2

2

)

−
3

2(4πfπ)2

(

g2
A

M0
− 8c1 + c2 + 4c3

)

ln

(

m2
π

µ2

)]

. (31)

9 The coefficients bA(µ) and bM (µ) are not the renormalized coefficients as defined in Ref. [65]. There are additional operators which
contribute to the nucleon mass at NNLO, notably the operators which are responsible for the LO contribution to the delta mass.
However, the contribution to the nucleon mass from these other operators is parametrically (in mπ) the same as those proportional to
bA and bM . Since we are not doing a combined fit of the nucleon and delta mass, we have absorbed these effects with a re-definition of
these coefficients.

E. Jenkins and A. Manohar

Nucleon mass to NNLO B. Tiburzi and A. Walker-Loud   Nucl.Phys. A 764 (2006)

known to NNNLO without explicit deltas J. McGovern and M. Birse    PRD 74 (2006)

Lattice spacing corrections to this formula are known for

Wilson fermions S. Beane and M. Savage    PRD 68 (2003)

twisted mass fermions A. Walker-Loud and J.M.S. Wu    PRD 75 (2005)

domain-wall on staggered B. Tiburzi    PRD 72 (2005)

staggered on staggered J. Bailey    PRD 77 (2008)



(Heavy) Baryon Chiral Perturbation Theory

Analyticity and kinematic thresholds

Because we have approximated the nucleon as an infinitely heavy static field, a 
naive use of the theory will lead to incorrect analytic structure.

Static quantities such as the nucleon mass will be insensitive to these 
problems in the range of convergence of the theory.

Dynamic quantities with external momentum insertions, such as pion-
nucleon scattering, the scalar form factor, etc need to be analyzed 
carefully, to see if for kinematic reasons, the power counting must be 
rearranged.
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at any finite order, the sum fails to reproduce the observed cross section
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P − k

k − qk

P

q

P − q
Evaluation of this process using the static nucleon 
propagator leads to an unphysical singularity

〈N(P )|mq q̄q|N(P − q)〉

To begin, lets re-sum the kinetic correction to the nucleon propagator

GN =
i(1 + v/)/2

v · k − !k2

2M0
+ iε

1 + v/

2
Nv = Nv

P − k

k − qk

P

q

P − q

∼ g2
A

f2
π

∫
ddk

(2π)d

1+v/
2 h(S, k)

(v · k − "k2

2M0
)((k − q)2 −m2

π)(k2 −m2
π)
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P − k

k − qk

P

q

P − q

N̄
(v · ∂)2

2M0
Nrecall, the coefficient of the operator                   is not physical, since we are 

free to make a field redefinition to absorb it.  Therefore we are free to change

!k2 −→ k2

Also, let me pull the         out of the nucleon propagator2M0
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∼ g2
A

f2
π

∫
ddk

(2π)d

[M0v/− k/ + M0]h′(S, k)
(2M0v · k − k2)((k − q)2 −m2

π)(k2 −m2
π)
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For on-shell nucleons, M0v/→ P/
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(M2

0 − (P − k)2)((k − q)2 −m2
π)(k2 −m2

π)

L = ψ̄N (i∂/−M0) ψN + gAψ̄N γµγ5A
µ ψN + . . .

up to numerator structure, this is what we would get if we naively started 
from the relativistic Lagrangian,

Becher and Leutwyler, in 1999, wrote a nice paper showing how to regulate 
this integral in a manner which preserves chiral symmetry and can be 
expanded to reproduce the heavy baryon expansion.

T. Becher and H. Leutwyler   Eur.Phys.J.C9 (1999)covariant baryon χPT
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σ(t) =
3πg2

A mπ
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t
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√
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1 +
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∼ g2
A

f2
π

∫
ddk

(2π)d
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L = ψ̄N (i∂/−M0) ψN + gAψ̄N γµγ5A
µ ψN + . . .

up to numerator structure, this is what we would get if we naively started 
from the relativistic Lagrangian,

Becher and Leutwyler, in 1999, wrote a nice paper showing how to regulate 
this integral in a manner which preserves chiral symmetry and can be 
expanded to reproduce the heavy baryon expansion.

t ∼ 4m2
π

T. Becher and H. Leutwyler   Eur.Phys.J.C9 (1999)covariant baryon χPT
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(Heavy) Baryon Chiral Perturbation Theory

Is covariant baryon chiral perturbation theory a new effective field theory?

No, it is equivalent to heavy baryon chiral perturbation theory with a re-
summed class of diagrams. T. Becher and H. Leutwyler   Eur.Phys.J.C9 (1999)

Near kinematic thresholds, the power counting of heavy baryon         may 
change, as we have seen. 

χPT

Keeping the full expressions determined in the covariant formalism, away 
from these thresholds is equivalent to the power-counting

mπ ∼M0
mπ

2M0
∼
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and near the thresholds
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Near kinematic thresholds, the power counting of heavy baryon         may 
change, as we have seen. 

χPT

Keeping the full expressions determined in the covariant formalism, away 
from these thresholds is equivalent to the power-counting
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working away from the kinematic thresholds and not including the delta 
degrees of freedom is equivalent to the power-counting

mπ ∼M0 "M∆ −MN
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TABLE VIII: Various two-flavor nucleon mass chiral extrapolation results. In the left column, we provide the particular fit
function as well as the values of LECs fixed in the minimization. In the far right column, we provide the resulting nucleon
mass at mπ = 137 MeV. In the fit parameters as well as the predicted nucleon masses, the first uncertainty is statistical. In
the NNLO fits, the second uncertainty is systematic determined by varying the fixed LECs over their given ranges. The last fit
function is motivated purely by the observed lattice results for the nucleon mass, and not by any understanding of low-energy
QCD we currently have. We have set the renormalization scale to µ = 1 GeV.

FIT: LO range M0[GeV] αM [GeV−1] χ2 d.o.f. MN [MeV]

MN = M0 − 2αMm2
π 007-020 1.00(1) -0.57(3) 1.4 1 1028 ± 9

007-030 1.02(1) -0.53(2) 4.6 2 1037 ± 8

007–040 1.02(1) -0.51(1) 6.8 3 1043 ± 7

007–050 1.04(1) -0.47(1) 21 4 1056 ± 6

NLO SU(2), Eq. (25) range M0[GeV] αM [GeV−1] gA g∆N χ2 d.o.f. MN [MeV]

f0 = 121.9(8.8) MeV 007–040 0.98(2) -0.80(12) 0.43(9) 0.00(1.86) 1.39 1 1013 ± 15

007–050 0.98(1) -0.84(8) 0.47(6) 0.00(2.48) 1.60 2 1009 ± 12

NLO SU(4|2), Eq. (28) range M0[GeV] αM [GeV−1] (gA, g1) g∆N χ2 d.o.f. MN [MeV]

f0 = 121.9(8.8) MeV 007–050 1.01(4) -0.95(13) (0.6(2) , -0.5(1.4)) 0.03(3.60) 1.66 1 1046 ± 38

NNLO, Eq. (29) range M0[GeV] αM [GeV−1] bM [GeV−3] bA χ2 d.o.f. MN [MeV]

f0 = 121.9(8.8) MeV 007–040 0.87(6)(3) -3.1(7)(8) 62(11)(30) -29(8)(16) 0.06 1 941 ± 42 ± 17

gA = 1.2(1), g∆N = 1.5(3) 007–050 0.90(4)(5) -2.7(4)(9) 55(7)(24) -24(5)(17) 0.75 2 966 ± 43 ± 20

NNLO, Eq. (29) range M0[GeV] αM [GeV−1] bM [GeV−3] bA χ2 d.o.f. MN [MeV]

f0 = 121.9(8.8) MeV 007–040 0.91(5)(0) -1.8(5)(1) 4.6(0.4)(1.0) -7.6(4.2)(0.9) 0.00 1 964 ± 41 ± 20

gA = 1.2(1), g∆N = 0 007–050 0.96(4)(5) -1.4(3)(6) 4.8(0.3)(1.1) -3.6(2.3)(4.1) 1.36 2 996 ± 30 ± 30

NNLO, Eq. (31) range M0[GeV] c1[GeV−1] e1[GeV−3] χ2 d.o.f. MN [MeV]

f0 = 121.9(8.8) MeV 007–030 0.90(2)(1) -0.97(4)(8) 2.8(5)(9) 0.02 1 958 ± 15 ± 9

gA = 1.2(1) 007–040 0.90(1)(2) -0.97(2)(8) 2.7(2)(8) 0.07 2 956 ± 12 ± 11

[c2, c3] = [3.2(4),−3.4(4)] GeV−1 007–050 0.88(1)(2) -1.01(1)(10) 2.2(1)(8) 6.5 3 940 ± 9 ± 14

Eq. (17), MN = αN
0 + αN

1 mπ range αN
0 [GeV] αN

1 χ2 d.o.f. MN [MeV]

007–020 0.83(2) 0.93(5) 0.00 1 953 ± 13

007–030 0.82(2) 0.94(4) 0.18 2 950 ± 11

007–040 0.80(1) 0.99(3) 4.39 3 938 ± 9

007–050 0.80(1) 1.01(2) 5.40 4 933 ± 8

• MN = αN
0 + αN

1 mπ: an empirical form motivated by the observed nucleon mass results, not motivated by any
understanding of low energy QCD we currently have.

Performing the LO through NNLO fits in principle allows us to study not only the chiral convergence of the nucleon
mass, but also to monitor the resulting values of the LECs as higher order terms are added to the expansion. If
things are working as desired, we would find not only that the expression for the nucleon mass is converging order
by order, but that the values of the LECs determined in the analysis would shift by only small amounts as we add
higher order terms. Unfortunately, since we must fix certain LECs in the NNLO fits, we are not able to honestly make
this comparison. In the NLO and NNLO expressions, the LECs fπ, gA and g∆N can either take their LO values,
or one can replace them with their lattice-physical values,10 the difference appearing at NNNLO. To maintain as

10 We denote lattice-physical quantities as those that are determined directly from correlation functions, and that have not been extrapo-
lated to the continuum, infinite volume or physical/chiral point.
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TABLE VIII: Various two-flavor nucleon mass chiral extrapolation results. In the left column, we provide the particular fit
function as well as the values of LECs fixed in the minimization. In the far right column, we provide the resulting nucleon
mass at mπ = 137 MeV. In the fit parameters as well as the predicted nucleon masses, the first uncertainty is statistical. In
the NNLO fits, the second uncertainty is systematic determined by varying the fixed LECs over their given ranges. The last fit
function is motivated purely by the observed lattice results for the nucleon mass, and not by any understanding of low-energy
QCD we currently have. We have set the renormalization scale to µ = 1 GeV.

FIT: LO range M0[GeV] αM [GeV−1] χ2 d.o.f. MN [MeV]

MN = M0 − 2αMm2
π 007-020 1.00(1) -0.57(3) 1.4 1 1028 ± 9

007-030 1.02(1) -0.53(2) 4.6 2 1037 ± 8

007–040 1.02(1) -0.51(1) 6.8 3 1043 ± 7

007–050 1.04(1) -0.47(1) 21 4 1056 ± 6

NLO SU(2), Eq. (25) range M0[GeV] αM [GeV−1] gA g∆N χ2 d.o.f. MN [MeV]

f0 = 121.9(8.8) MeV 007–040 0.98(2) -0.80(12) 0.43(9) 0.00(1.86) 1.39 1 1013 ± 15

007–050 0.98(1) -0.84(8) 0.47(6) 0.00(2.48) 1.60 2 1009 ± 12

NLO SU(4|2), Eq. (28) range M0[GeV] αM [GeV−1] (gA, g1) g∆N χ2 d.o.f. MN [MeV]

f0 = 121.9(8.8) MeV 007–050 1.01(4) -0.95(13) (0.6(2) , -0.5(1.4)) 0.03(3.60) 1.66 1 1046 ± 38

NNLO, Eq. (29) range M0[GeV] αM [GeV−1] bM [GeV−3] bA χ2 d.o.f. MN [MeV]

f0 = 121.9(8.8) MeV 007–040 0.87(6)(3) -3.1(7)(8) 62(11)(30) -29(8)(16) 0.06 1 941 ± 42 ± 17

gA = 1.2(1), g∆N = 1.5(3) 007–050 0.90(4)(5) -2.7(4)(9) 55(7)(24) -24(5)(17) 0.75 2 966 ± 43 ± 20

NNLO, Eq. (29) range M0[GeV] αM [GeV−1] bM [GeV−3] bA χ2 d.o.f. MN [MeV]

f0 = 121.9(8.8) MeV 007–040 0.91(5)(0) -1.8(5)(1) 4.6(0.4)(1.0) -7.6(4.2)(0.9) 0.00 1 964 ± 41 ± 20

gA = 1.2(1), g∆N = 0 007–050 0.96(4)(5) -1.4(3)(6) 4.8(0.3)(1.1) -3.6(2.3)(4.1) 1.36 2 996 ± 30 ± 30

NNLO, Eq. (31) range M0[GeV] c1[GeV−1] e1[GeV−3] χ2 d.o.f. MN [MeV]

f0 = 121.9(8.8) MeV 007–030 0.90(2)(1) -0.97(4)(8) 2.8(5)(9) 0.02 1 958 ± 15 ± 9

gA = 1.2(1) 007–040 0.90(1)(2) -0.97(2)(8) 2.7(2)(8) 0.07 2 956 ± 12 ± 11

[c2, c3] = [3.2(4),−3.4(4)] GeV−1 007–050 0.88(1)(2) -1.01(1)(10) 2.2(1)(8) 6.5 3 940 ± 9 ± 14

Eq. (17), MN = αN
0 + αN

1 mπ range αN
0 [GeV] αN

1 χ2 d.o.f. MN [MeV]

007–020 0.83(2) 0.93(5) 0.00 1 953 ± 13

007–030 0.82(2) 0.94(4) 0.18 2 950 ± 11

007–040 0.80(1) 0.99(3) 4.39 3 938 ± 9

007–050 0.80(1) 1.01(2) 5.40 4 933 ± 8

• MN = αN
0 + αN

1 mπ: an empirical form motivated by the observed nucleon mass results, not motivated by any
understanding of low energy QCD we currently have.

Performing the LO through NNLO fits in principle allows us to study not only the chiral convergence of the nucleon
mass, but also to monitor the resulting values of the LECs as higher order terms are added to the expansion. If
things are working as desired, we would find not only that the expression for the nucleon mass is converging order
by order, but that the values of the LECs determined in the analysis would shift by only small amounts as we add
higher order terms. Unfortunately, since we must fix certain LECs in the NNLO fits, we are not able to honestly make
this comparison. In the NLO and NNLO expressions, the LECs fπ, gA and g∆N can either take their LO values,
or one can replace them with their lattice-physical values,10 the difference appearing at NNNLO. To maintain as

10 We denote lattice-physical quantities as those that are determined directly from correlation functions, and that have not been extrapo-
lated to the continuum, infinite volume or physical/chiral point.
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TABLE VIII: Various two-flavor nucleon mass chiral extrapolation results. In the left column, we provide the particular fit
function as well as the values of LECs fixed in the minimization. In the far right column, we provide the resulting nucleon
mass at mπ = 137 MeV. In the fit parameters as well as the predicted nucleon masses, the first uncertainty is statistical. In
the NNLO fits, the second uncertainty is systematic determined by varying the fixed LECs over their given ranges. The last fit
function is motivated purely by the observed lattice results for the nucleon mass, and not by any understanding of low-energy
QCD we currently have. We have set the renormalization scale to µ = 1 GeV.

FIT: LO range M0[GeV] αM [GeV−1] χ2 d.o.f. MN [MeV]

MN = M0 − 2αMm2
π 007-020 1.00(1) -0.57(3) 1.4 1 1028 ± 9

007-030 1.02(1) -0.53(2) 4.6 2 1037 ± 8

007–040 1.02(1) -0.51(1) 6.8 3 1043 ± 7

007–050 1.04(1) -0.47(1) 21 4 1056 ± 6

NLO SU(2), Eq. (25) range M0[GeV] αM [GeV−1] gA g∆N χ2 d.o.f. MN [MeV]

f0 = 121.9(8.8) MeV 007–040 0.98(2) -0.80(12) 0.43(9) 0.00(1.86) 1.39 1 1013 ± 15

007–050 0.98(1) -0.84(8) 0.47(6) 0.00(2.48) 1.60 2 1009 ± 12

NLO SU(4|2), Eq. (28) range M0[GeV] αM [GeV−1] (gA, g1) g∆N χ2 d.o.f. MN [MeV]

f0 = 121.9(8.8) MeV 007–050 1.01(4) -0.95(13) (0.6(2) , -0.5(1.4)) 0.03(3.60) 1.66 1 1046 ± 38

NNLO, Eq. (29) range M0[GeV] αM [GeV−1] bM [GeV−3] bA χ2 d.o.f. MN [MeV]

f0 = 121.9(8.8) MeV 007–040 0.87(6)(3) -3.1(7)(8) 62(11)(30) -29(8)(16) 0.06 1 941 ± 42 ± 17

gA = 1.2(1), g∆N = 1.5(3) 007–050 0.90(4)(5) -2.7(4)(9) 55(7)(24) -24(5)(17) 0.75 2 966 ± 43 ± 20

NNLO, Eq. (29) range M0[GeV] αM [GeV−1] bM [GeV−3] bA χ2 d.o.f. MN [MeV]

f0 = 121.9(8.8) MeV 007–040 0.91(5)(0) -1.8(5)(1) 4.6(0.4)(1.0) -7.6(4.2)(0.9) 0.00 1 964 ± 41 ± 20

gA = 1.2(1), g∆N = 0 007–050 0.96(4)(5) -1.4(3)(6) 4.8(0.3)(1.1) -3.6(2.3)(4.1) 1.36 2 996 ± 30 ± 30

NNLO, Eq. (31) range M0[GeV] c1[GeV−1] e1[GeV−3] χ2 d.o.f. MN [MeV]

f0 = 121.9(8.8) MeV 007–030 0.90(2)(1) -0.97(4)(8) 2.8(5)(9) 0.02 1 958 ± 15 ± 9

gA = 1.2(1) 007–040 0.90(1)(2) -0.97(2)(8) 2.7(2)(8) 0.07 2 956 ± 12 ± 11

[c2, c3] = [3.2(4),−3.4(4)] GeV−1 007–050 0.88(1)(2) -1.01(1)(10) 2.2(1)(8) 6.5 3 940 ± 9 ± 14

Eq. (17), MN = αN
0 + αN

1 mπ range αN
0 [GeV] αN

1 χ2 d.o.f. MN [MeV]

007–020 0.83(2) 0.93(5) 0.00 1 953 ± 13

007–030 0.82(2) 0.94(4) 0.18 2 950 ± 11

007–040 0.80(1) 0.99(3) 4.39 3 938 ± 9

007–050 0.80(1) 1.01(2) 5.40 4 933 ± 8

• MN = αN
0 + αN

1 mπ: an empirical form motivated by the observed nucleon mass results, not motivated by any
understanding of low energy QCD we currently have.

Performing the LO through NNLO fits in principle allows us to study not only the chiral convergence of the nucleon
mass, but also to monitor the resulting values of the LECs as higher order terms are added to the expansion. If
things are working as desired, we would find not only that the expression for the nucleon mass is converging order
by order, but that the values of the LECs determined in the analysis would shift by only small amounts as we add
higher order terms. Unfortunately, since we must fix certain LECs in the NNLO fits, we are not able to honestly make
this comparison. In the NLO and NNLO expressions, the LECs fπ, gA and g∆N can either take their LO values,
or one can replace them with their lattice-physical values,10 the difference appearing at NNNLO. To maintain as

10 We denote lattice-physical quantities as those that are determined directly from correlation functions, and that have not been extrapo-
lated to the continuum, infinite volume or physical/chiral point.
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BMW, ETM, JLQCD, LHP, MILC, NPLQCD, PACS-CS, QCDSF/UKQCD, RBC/UKQCDMN :

Budapest-Marseille-Wupertal (BMW) Collaboration mπ ≥ 193 MeV

European Twisted Mass (ETM) Collaboration

Japanese Lattice QCD (JLQCD) Collaboration

Lattice Hadron Physics (LHP) Collaboration

MIMD Lattice Computation (MILC) Collaboration

PACS-CS Collaboration

QCDSF/UKQCD Collaboration

RBC/UKQCD Collaborations

3 lattice spacings,  multiple volumessee talk by Chirstian Hoelbling  Monday 3:50

arXiv:0803.3190

mπ ≥ 311 MeV

2+1 clover improved

3 lattice spacings

2 flavor twisted mass

mπ ≥ 288 MeV 2 flavor overlap

mπ ≥ 293 MeV 2+1 DWF on MILC

mπ ≥ 217 MeV 2+1 staggered

3 lattice spacings,  multiple volumes

see talk by Daisuke Kadoh  Monday 4:10

mπ ≥ 156 MeVarXiv:0807.1661

see talk by Tom Blum  Monday 6:00
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New Lessons

What is needed to have confidence in chiral 
extrapolation?

Assume the “straight line” behavior is 
accidental: what precision is needed to 
rule out this extrapolation function?

Ideally,                 would come out of 
analysis and not be inputs 

gA, g∆N

This is unlikely, but possible
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Also, unphysical extrapolation functions 
should be ruled out by analysis



What is needed?

0.0 0.2 0.4 0.6 0.8
1.0

1.1

1.2

1.3

1.4

1.5

1.6

mΠ ! "2 2 Π f0#

M
N
"GeV

#

0.0 0.2 0.4 0.6 0.8
1.0

1.1

1.2

1.3

1.4

1.5

1.6

mΠ ! "2 2 Π f0#

M
N
"GeV

#

0.0 0.2 0.4 0.6 0.8
1.0

1.1

1.2

1.3

1.4

1.5

1.6

mΠ ! "2 2 Π f0#

M
N
"GeV

#

3%

2%

1% 1% error bars

2% error bars

MN = αN
0 + αN

1 mπ , χ2/dof

2% error bars
1% error bars 2.08

0.52

Need        error bar to rule out the 
straight line fit!!!

1%



Heavy baryon extrapolation formulae is in good statistical agreement with the lattice 
results

although resulting convergence is not great

All 2+1 flavor results show an unexpected trend with the theoretically unmotivated fit 
ansatz                                        describing the results remarkably well. MN = αN

0 + αN
1 mπ

Conclusions

To distinguish between this straight line and the expected behavior from heavy baryon 
chiral perturbation theory, each nucleon mass point needs to be known at the ~1% level, 
including lattice spacing and finite volume systematics

The 2-flavor results are systematically different from the 2+1 flavor results, and they are 
not consistent with each other.

Larger systematic effects in the nucleon mass than previously thought

Determining the nucleon axial charge from the mass extrapolation is likely not possible
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Move towards global analysis, in which the axial charges are fit simultaneously with the 
masses
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