

PREVIEW

Hadron Masses and the QCD Trace Anomaly

The QCD trace anomaly, arising from the breaking of scale invariance in massless QCD, provides

$$
\mathcal{T}_{\mu}^{\mu}=\frac{\beta_{Q C D}}{2 g_{s}} G_{\mu \nu}^{a} G_{a}^{\mu \nu} \quad \text { where } \quad \mathcal{T}^{\mu \nu}=\frac{i}{2} \bar{\psi} \gamma^{\mu} \overleftrightarrow{D^{\nu}} \psi
$$

is the energy momentum tensor.
Adding the quark masses, we have

$$
\mathcal{T}_{\mu}^{\mu}=\frac{\beta_{Q C D}}{2 g_{s}} G_{\mu \nu}^{a} G_{a}^{\mu \nu}+m_{u} \bar{q}_{u} q_{u}+m_{d} \bar{q}_{d} q_{d}+m_{s} \bar{q}_{s} q_{s}+\ldots
$$

The first term provides the dominant mass for all light hadrons (no c, b, t), except for the pseudo-Goldstone modes. For example,

$$
\begin{aligned}
& \langle N(\mathbf{p})| \mathcal{T}_{\mu}^{\mu}|N(\mathbf{p})\rangle=M_{N} \bar{u}(\mathbf{p}) u(\mathbf{p}) \\
& \quad=\langle N(\mathbf{p})| \frac{\beta_{Q C D}}{2 g_{s}} G_{\mu \nu}^{a} G_{a}^{\mu \nu}+m_{u} \bar{q}_{u} q_{u}+m_{d} \bar{q}_{d} q_{d}+m_{s} \bar{q}_{s} q_{s}|N(\mathbf{p})\rangle
\end{aligned}
$$

The leading chiral correction to all light hadron masses then scales as m_{q}, aside from the pseudo-Goldstone modes for which $m_{\pi, K, \eta}^{2} \simeq B\left(m_{q_{1}}+m_{q_{2}}\right)$

(Heavy) Baryon Chiral Perturbation Theory

Heavy baryon chiral perturbation theory is an effective field theory describing the interactions of pions with non-relativistic nucleons. Based upon heavy quark effective theory.
E. Jenkins and A. Manohar PLB 255 (I99I)

Writing down a relativistic effective nucleon Lagrangian, one immediately runs into trouble

$$
\begin{gathered}
\mathcal{L}=\bar{\psi}_{N}\left(i \not \partial-M_{0}\right) \psi_{N}+g_{A} \bar{\psi}_{N} \gamma_{\mu} \gamma_{5} A^{\mu} \psi_{N}+\ldots \\
A_{\mu}=\frac{\partial_{\mu} \phi}{f}+\ldots \quad \phi=\left(\begin{array}{cc}
\frac{\pi^{0}}{\sqrt{2}} & \pi^{+} \\
\pi^{-} & -\frac{\pi^{0}}{\sqrt{2}}
\end{array}\right)
\end{gathered}
$$

Leading order equation of motion

$$
\begin{aligned}
& i \not \partial \psi_{N}=M_{0} \psi_{N} \quad M_{0} \sim \Lambda_{\chi} \\
& \text { How do you count powers of } \frac{i \not \partial}{\Lambda_{\chi}}=\frac{M_{0}}{\Lambda_{\chi}} ?
\end{aligned}
$$

(Heavy) Baryon Chiral Perturbation Theory E.Jenkins and A. Manohar

Similar to the phase one introduces to convert the Klein-Gordon equation to the Schroedinger equation

$$
N_{v}(x)=\frac{1+\psi}{2} e^{i M_{0} v \cdot x} \psi_{N}(x)
$$

in the rest frame $v_{\mu}=(1, \mathbf{0})$

$$
\longrightarrow \frac{1+\gamma_{0}}{2} \text { non-relativistic projector }
$$

$\longrightarrow \mathcal{L}=\bar{N}_{v} i v \cdot \partial N_{v}+2 g_{A} \bar{N}_{v} S \cdot A N_{v}+2 \alpha_{M} \bar{N}_{v} N_{v} \operatorname{tr}\left(\mathcal{M}_{+}\right)$

$$
+\mathcal{O}\left(\frac{1}{\Lambda_{\chi}}\right)+\mathcal{O}\left(\frac{1}{M_{0}}\right)
$$

$$
\mathcal{M}_{+}=m_{Q}+\ldots
$$

the nucleon momentum can be parameterized as $P_{\mu}=M_{0} v_{\mu}+k_{\mu}$

$$
\partial_{\mu} N_{v}=i k_{\mu} N_{v}
$$

consistent power counting with $k^{2} \sim m_{\pi}^{2} \ll \Lambda_{\chi}^{2}$

(Heavy) Baryon Chiral Perturbation Theory E.Jenkins and A. Manohar

Including the delta degrees of freedom explicitly adds a slight complication. One can not simultaneously phase away the nucleon mass in the chiral limit along with the delta mass in the chiral limit. This introduces a new parameter in the theory

$$
\begin{array}{cc}
\Delta_{0}=M_{\Delta}-\left.M_{N}\right|_{m_{q}=0} & \text { phenomenologically } \quad \Delta \simeq 290 \mathrm{MeV} \\
\mathcal{L}=\bar{N} i v \cdot \partial N+2 \alpha_{M} \bar{N} N \operatorname{tr}\left(\mathcal{M}_{+}\right)-\bar{T}^{\mu}\left[i v \cdot \partial-\Delta_{0}\right] T_{\mu}-2 \bar{\gamma}_{M} \bar{T}^{\mu} T_{\mu} \operatorname{tr}\left(\mathcal{M}_{+}\right) \\
+2 g_{A} \bar{N} S \cdot A N+2 g_{\Delta \Delta} \bar{T}^{\mu} S \cdot A T_{\mu}+g_{\Delta N}\left(\bar{T}^{\mu} A_{\mu} N+\bar{N} A^{\mu} T_{\mu}\right) \\
\uparrow & \uparrow
\end{array}
$$

these charges are phenomenologically very important and they also give rise to the leading non-analytic pion mass dependence of the baryon masses.

(Heavy) Baryon Chiral Perturbation Theory E.Jenkins andA. Manohar

nucleon mass to nlo

$\mathcal{F}(m, \Delta, \mu)=\left(\Delta^{2}-m^{2}+i \epsilon\right)^{3 / 2} \ln \left(\frac{\Delta+\sqrt{\Delta^{2}-m^{2}+i \epsilon}}{\Delta-\sqrt{\Delta^{2}-m^{2}+i \epsilon}}\right)-\frac{3}{2} \Delta m^{2} \ln \left(\frac{m^{2}}{\mu^{2}}\right)-\Delta^{3} \ln \left(\frac{4 \Delta^{2}}{m^{2}}\right)$

(Heavy) Baryon Chiral Perturbation Theory E.Jenkins andA. Manohar

$$
\begin{aligned}
& \text { nucleon mass to nlo } \\
& \begin{array}{l}
-i \Sigma=+\cdots \\
M_{N}=M_{0}-2 \alpha_{M}(\mu) m_{\pi}^{2}-\frac{3 \pi g_{A}^{2}}{\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{3}-\frac{8 g_{\Delta N}^{2}}{3\left(4 \pi f_{\pi}^{2}\right)^{2}} \mathcal{F}\left(m_{\pi}, \Delta, \mu\right), \\
\mathcal{F}(m, \Delta, \mu)=\left(\Delta^{2}-m^{2}+i \epsilon\right)^{3 / 2} \ln \left(\frac{\Delta+\sqrt{\Delta^{2}-m^{2}+i \epsilon}}{\Delta-\sqrt{\Delta^{2}-m^{2}+i \epsilon}}\right)-\frac{3}{2} \Delta m^{2} \ln \left(\frac{m^{2}}{\mu^{2}}\right)-\Delta^{3} \ln \left(\frac{4 \Delta^{2}}{m^{2}}\right)
\end{array} \\
& \sim \frac{g_{A}^{2}}{f_{\pi}^{2}} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{S \cdot k S \cdot k}{(v \cdot k+i \epsilon)\left(k^{2}-m_{\pi}^{2}+i \epsilon\right)} \\
& \frac{k^{d+2}}{k^{3}}
\end{aligned}
$$

(Heavy) Baryon Chiral Perturbation Theory E.Jenkins andA.Manohar

$$
\begin{aligned}
& \text { nucleon mass to nlo } \\
& \begin{array}{l}
-i \Sigma= \\
M_{N}=M_{0}-2 \alpha_{M}(\mu) m_{\pi}^{2}-\frac{3 \pi g_{A}^{2}}{\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{3}-\frac{8 g_{\Delta N}^{2}}{3\left(4 \pi f_{\pi}^{2}\right)^{2}} \mathcal{F}\left(m_{\pi}, \Delta, \mu\right), \\
\mathcal{F}(m, \Delta, \mu)=\left(\Delta^{2}-m^{2}+i \epsilon\right)^{3 / 2} \ln \left(\frac{\Delta+\sqrt{\Delta^{2}-m^{2}+i \epsilon}}{\Delta-\sqrt{\Delta^{2}-m^{2}+i \epsilon}}\right)-\frac{3}{2} \Delta m^{2} \ln \left(\frac{m^{2}}{\mu^{2}}\right)-\Delta^{3} \ln \left(\frac{4 \Delta^{2}}{m^{2}}\right)
\end{array} \\
& \sim \frac{g_{A}^{2}}{f_{\pi}^{2}} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{S \cdot k S \cdot k}{(v \cdot k+i \epsilon)\left(k^{2}-m_{\pi}^{2}+i \epsilon\right)} \\
& \sim \frac{g_{A}^{2}}{f_{\pi}^{2}} m_{\pi}^{3}
\end{aligned}
$$

(Heavy) Baryon Chiral Perturbation Theory E.Jenkins andA. Manohar

$$
\begin{aligned}
& -i \Sigma=1 \text { nucleon mass to nlo } \\
& \mathcal{F}(m, \Delta, \mu)=\left(\Delta^{2}-m^{2}+i \epsilon\right)^{3 / 2} \ln \left(\frac{\Delta+\sqrt{\Delta^{2}-m^{2}+i \epsilon}}{\Delta-\sqrt{\Delta^{2}-m^{2}+i \epsilon}}\right)-\frac{3}{2} \Delta m^{2} \ln \left(\frac{m^{2}}{\mu^{2}}\right)-\Delta^{3} \ln \left(\frac{4 \Delta^{2}}{m^{2}}\right) \\
& M_{N}=M_{0}-2 \alpha_{M}(\mu) m_{\pi}^{2}-\frac{3 \pi g_{A}^{2}}{\left(4 \pi f_{\pi}^{2}\right.} m_{\pi}^{3}-\frac{8 g_{\Delta N}^{2}}{3\left(4 \pi f_{\pi}^{2}\right.} \mathcal{F}\left(m_{\pi}, \Delta, \mu\right), \\
& M_{0} \rightarrow M_{0}+\frac{16 g_{\Delta N}^{2}}{9} \frac{\Delta^{3}}{\Lambda_{\chi}^{2}}+d_{3}^{M} \frac{\Delta^{3}}{\Lambda_{\chi}^{2}} \quad \alpha_{M}(\mu)=\alpha_{M}+\frac{2 g_{\Delta N}^{2}}{3} \frac{\Delta}{\Lambda_{\chi}^{2}}-2 g_{\Delta N}^{2} \frac{\Delta}{\Lambda_{\chi}^{2}} \ln \left(\frac{\mu^{2}}{\mu_{0}^{2}}\right)+d_{1}^{\alpha} \frac{\Delta}{\Lambda_{\chi}^{2}} \\
& g_{A} \rightarrow g_{A}\left(1+d_{1}^{g} \frac{\Delta}{\Lambda_{\chi}}+d_{2}^{g} \frac{\Delta^{2}}{\Lambda_{\chi}^{2}}+\ldots\right)
\end{aligned}
$$

(Heavy) Baryon Chiral Perturbation Theory E.Jenkins and A. Manohar

The price: Lorentz invariance is lost...
However, it can be recovered order-by-order in $\frac{1}{M_{0}}$
This is know as Reparameterization Invariance (RPI)
M. Luke and A. Manohar PLB 286 (1992)

Consider a small shift in the parameterization of the nucleon momentum

$$
P_{\mu}=M_{0} v_{\mu}+k_{\mu} \quad v \rightarrow v+\frac{\epsilon}{M_{0}} \quad k \rightarrow k-\epsilon
$$

O Requiring the theory to be invariant under this reparameterization recovers Lorentz invariance order-by-order in inverse powers of the nucleon mass.

O This happens through a constraint of the coefficients of certain operators in the effective Lagrangian. Implementing RPI, one finds the coefficients of higher dimensional operators are exactly constrained by coefficients of lower dimensional operators

(Heavy) Baryon Chiral Perturbation Theory E.Jenkins andA. Manohar

Reparameterization Invariance

$$
\bar{N} i v \cdot \partial N \longrightarrow \bar{N} i v \cdot \partial N-\bar{N} \frac{\partial^{2}}{2 M_{0}} N+\mathcal{O}\left(\frac{1}{M_{0}^{2}}\right)
$$

The coefficient of the operator $\bar{N} \frac{(v \cdot \partial)^{2}}{2 M_{0}} N$ is unconstrained, but one can use the equations of motion to make a field redefinition to convert the Lagrangian to the form
A. Manohar PRD 56 (1997)

$$
\mathcal{L}=\bar{N} i v \cdot \partial N-\bar{N} \frac{\partial_{\perp}^{2}}{2 M_{0}} N \quad \text { with } \quad \partial_{\perp}^{2}=\partial^{2}-(v \cdot \partial)^{2}
$$

this provides the familiar form of the non-relativistic propagator if this leading kinetic operator is re-summed to all orders

$$
\frac{i}{v \cdot k+i \epsilon} \longrightarrow \frac{i}{v \cdot k-\frac{\vec{k}^{2}}{2 M_{0}}+i \epsilon}
$$

(Heavy) Baryon Chiral Perturbation Theory E.Jenkins andA. Manohar

Nucleon mass to NNLO

B.Tiburzi and A.Walker-Loud Nucl.Phys.A 764 (2006)

$$
\begin{align*}
M_{N}= & M_{0}-2 \alpha_{M}(\mu) m_{\pi}^{2}-\frac{3 \pi g_{A}^{2}}{\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{3}-\frac{8 g_{\Delta N}^{2}}{3\left(4 \pi f_{\pi}\right)^{2}} \mathcal{F}\left(m_{\pi}, \Delta, \mu\right) \\
& +m_{\pi}^{4}\left[b_{M}(\mu)+\frac{8 g_{\Delta N}^{2} \alpha_{M}(\mu)}{\left(4 \pi f_{\pi}\right)^{2}}-\frac{9 g_{\Delta N}^{2}}{4 M_{0}\left(4 \pi f_{\pi}\right)^{2}}-\frac{45 g_{A}^{2}}{32 M_{0}\left(4 \pi f_{\pi}\right)^{2}}\right]+\frac{8 g_{\Delta N}^{2} \alpha_{M}}{\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{2} \mathcal{J}\left(m_{\pi}, \Delta, \mu\right) \\
& +\frac{m_{\pi}^{4}}{\left(4 \pi f_{\pi}\right)^{2}} \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)\left[6 \alpha_{M}(\mu)-\frac{3 b_{A}(\mu)}{4 \pi f_{\pi}}-\frac{27 g_{A}^{2}}{16 M_{0}}-\frac{5 g_{\Delta N}^{2}}{2 M_{0}}\right], \tag{29}
\end{align*}
$$

known to NNNLO without explicit deltas J.McGovern and M. Birse PRD 74 (2006)

Lattice spacing corrections to this formula are known for

Wilson fermions
twisted mass fermions
domain-wall on staggered
staggered on staggered
S. Beane and M. Savage PRD 68 (2003)
A.Walker-Loud and J.M.S.Wu PRD 75 (2005)
B.Tiburzi PRD 72 (2005)
J. Bailey PRD 77 (2008)

(Heavy) Baryon Chiral Perturbation Theory

Analyticity and kinematic thresholds

Because we have approximated the nucleon as an infinitely heavy static field, a naive use of the theory will lead to incorrect analytic structure.

Static quantities such as the nucleon mass will be insensitive to these problems in the range of convergence of the theory.

Dynamic quantities with external momentum insertions, such as pionnucleon scattering, the scalar form factor, etc need to be analyzed carefully, to see if for kinematic reasons, the power counting must be rearranged.

(Heavy) Baryon Chiral Perturbation Theory

Consider electron-positron scattering near the Z-pole

at any finite order, the sum fails to reproduce the observed cross section

$$
\sigma_{e^{+} e^{-}}(s) \sim \frac{1}{\left(s-M_{Z}^{2}\right)^{2}} \sim \sim \sim m m^{+}
$$

(Heavy) Baryon Chiral Perturbation Theory

$$
\langle N(P)| m_{q} \bar{q} q|N(P-q)\rangle
$$

Evaluation of this process using the static nucleon propagator leads to an unphysical singularity

To begin, lets re-sum the kinetic correction to the nucleon propagator

$$
G_{N}=\frac{i(1+\ngtr) / 2}{v \cdot k-\frac{\vec{k}^{2}}{2 M_{0}}+i \epsilon}
$$

$$
\frac{1+\psi}{2} N_{v}=N_{v}
$$

$$
\sim \frac{g_{A}^{2}}{f_{\pi}^{2}} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\frac{1+k}{2} h(S, k)}{\left(v \cdot k-\frac{\vec{k}^{2}}{2 M_{0}}\right)\left((k-q)^{2}-m_{\pi}^{2}\right)\left(k^{2}-m_{\pi}^{2}\right)}
$$

(Heavy) Baryon Chiral Perturbation Theory

$$
\langle N(P)| m_{q} \bar{q} q|N(P-q)\rangle
$$

Evaluation of this process using the static nucleon propagator leads to an unphysical singularity

To begin, lets re-sum the kinetic correction to the nucleon propagator

$$
G_{N}=\frac{i(1+\not) / 2}{v \cdot k-\frac{\vec{k}^{2}}{2 M_{0}}+i \epsilon} \quad \frac{1+\nLeftarrow}{2} N_{v}=N_{v}
$$

$$
\sim \frac{g_{A}^{2}}{f_{\pi}^{2}} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\frac{1+k}{2} h(S, k)}{\left(v \cdot k-\frac{\vec{k}^{2}}{2 M_{0}}\right)\left((k-q)^{2}-m_{\pi}^{2}\right)\left(k^{2}-m_{\pi}^{2}\right)}
$$

$$
\sim \frac{g_{A}^{2}}{f_{\pi}^{2}} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\left[\frac{1+k}{2}-\not k\right] h^{\prime}(S, k)}{\left(v \cdot k-\frac{\vec{k}^{2}}{2 M_{0}}\right)\left((k-q)^{2}-m_{\pi}^{2}\right)\left(k^{2}-m_{\pi}^{2}\right)}
$$

(Heavy) Baryon Chiral Perturbation Theory

recall, the coefficient of the operator $\bar{N} \frac{(v \cdot \partial)^{2}}{2 M_{0}} N$ is not physical, since we are free to make a field redefinition to absorb it. Therefore we are free to change

$$
\vec{k}^{2} \longrightarrow k^{2}
$$

Also, let me pull the $2 M_{0}$ out of the nucleon propagator

$$
\sim \frac{g_{A}^{2}}{f_{\pi}^{2}} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\left[M_{0} \psi-\not k+M_{0}\right] h^{\prime}(S, k)}{\left(2 M_{0} v \cdot k-k^{2}\right)\left((k-q)^{2}-m_{\pi}^{2}\right)\left(k^{2}-m_{\pi}^{2}\right)}
$$

(Heavy) Baryon Chiral Perturbation Theory

$$
\sim \frac{g_{A}^{2}}{f_{\pi}^{2}} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\left[\frac{1+k}{2}-\not k\right] h^{\prime}(S, k)}{\left(v \cdot k-\frac{\vec{k}^{2}}{2 M_{0}}\right)\left((k-q)^{2}-m_{\pi}^{2}\right)\left(k^{2}-m_{\pi}^{2}\right)}
$$

recall, the coefficient of the operator $\bar{N} \frac{(v \cdot \partial)^{2}}{2 M_{0}} N$ is not physical, since we are free to make a field redefinition to absorb it. Therefore we are free to change

$$
\vec{k}^{2} \longrightarrow k^{2}
$$

Also, let me pull the $2 M_{0}$ out of the nucleon propagator

$$
\sim \frac{g_{A}^{2}}{f_{\pi}^{2}} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\left[M_{0} \psi-\not k+M_{0}\right] h^{\prime}(S, k)}{\left(2 M_{0} v \cdot k-k^{2}\right)\left((k-q)^{2}-m_{\pi}^{2}\right)\left(k^{2}-m_{\pi}^{2}\right)}
$$

For on-shell nucleons, $M_{0} \psi \rightarrow \not P$

(Heavy) Baryon Chiral Perturbation Theory

$$
\sim \frac{g_{A}^{2}}{f_{\pi}^{2}} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\left[\frac{1+k}{2}-\not k\right] h^{\prime}(S, k)}{\left(v \cdot k-\frac{\vec{k}^{2}}{2 M_{0}}\right)\left((k-q)^{2}-m_{\pi}^{2}\right)\left(k^{2}-m_{\pi}^{2}\right)}
$$

recall, the coefficient of the operator $\bar{N} \frac{(v \cdot \partial)^{2}}{2 M_{0}} N$ is not physical, since we are free to make a field redefinition to absorb it. Therefore we are free to change

$$
\vec{k}^{2} \longrightarrow k^{2}
$$

Also, let me pull the $2 M_{0}$ out of the nucleon propagator

$$
\sim \frac{g_{A}^{2}}{f_{\pi}^{2}} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\left[M_{0} \psi-\not /+M_{0}\right] h^{\prime}(S, k)}{\left(2 M_{0} v \cdot k-k^{2}\right)\left((k-q)^{2}-m_{\pi}^{2}\right)\left(k^{2}-m_{\pi}^{2}\right)}
$$

For on-shell nucleons, $M_{0} \psi \rightarrow \not P$

$$
\sim \frac{g_{A}^{2}}{f_{\pi}^{2}} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\left[\not P-\nmid k+M_{0}\right] h^{\prime}(S, k)}{\left(M_{0}^{2}-(P-k)^{2}\right)\left((k-q)^{2}-m_{\pi}^{2}\right)\left(k^{2}-m_{\pi}^{2}\right)}
$$

(Heavy) Baryon Chiral Perturbation Theory

$$
\sim \frac{g_{A}^{2}}{f_{\pi}^{2}} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\left[P P-\nmid k+M_{0}\right] h^{\prime}(S, k)}{\left(M_{0}^{2}-(P-k)^{2}\right)\left((k-q)^{2}-m_{\pi}^{2}\right)\left(k^{2}-m_{\pi}^{2}\right)}
$$

up to numerator structure, this is what we would get if we naively started from the relativistic Lagrangian,

$$
\mathcal{L}=\bar{\psi}_{N}\left(i \not \partial-M_{0}\right) \psi_{N}+g_{A} \bar{\psi}_{N} \gamma_{\mu} \gamma_{5} A^{\mu} \psi_{N}+\ldots
$$

Becher and Leutwyler, in 1999, wrote a nice paper showing how to regulate this integral in a manner which preserves chiral symmetry and can be expanded to reproduce the heavy baryon expansion.

(Heavy) Baryon Chiral Perturbation Theory

$$
\sim \frac{g_{A}^{2}}{f_{\pi}^{2}} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\left[\not P-\not \vDash+M_{0}\right] h^{\prime}(S, k)}{\left(M_{0}^{2}-(P-k)^{2}\right)\left((k-q)^{2}-m_{\pi}^{2}\right)\left(k^{2}-m_{\pi}^{2}\right)}
$$

up to numerator structure, this is what we would get if we naively started from the relativistic Lagrangian,

$$
\mathcal{L}=\bar{\psi}_{N}\left(i \not \partial-M_{0}\right) \psi_{N}+g_{A} \bar{\psi}_{N} \gamma_{\mu} \gamma_{5} A^{\mu} \psi_{N}+\ldots
$$

Becher and Leutwyler, in 1999, wrote a nice paper showing how to regulate this integral in a manner which preserves chiral symmetry and can be expanded to reproduce the heavy baryon expansion.

$$
\begin{array}{r}
\text { covariant baryon } \chi P T \quad \text { T. Becher and H.Leutwyler Eur.Phys.J.C9 (I999) } \\
\sigma(t)=\frac{3 \pi g_{A}^{2} m_{\pi}}{4\left(4 \pi f_{\pi}^{2}\right)^{2}}\left(t-2 m_{\pi}^{2}\right)\left[\sqrt{\frac{m_{\pi}^{2}}{t}} \ln \frac{2+\sqrt{t / m_{\pi}^{2}}}{2-\sqrt{t / m_{\pi}^{2}}}-\ln \left(1+\frac{m_{\pi} /\left(2 M_{0}\right)}{\sqrt{1-t /\left(4 m_{\pi}^{2}\right)}}\right)\right]
\end{array}
$$

(Heavy) Baryon Chiral Perturbation Theory

$$
\sim \frac{g_{A}^{2}}{f_{\pi}^{2}} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\left[\not P-\not ้+M_{0}\right] h^{\prime}(S, k)}{\left(M_{0}^{2}-(P-k)^{2}\right)\left((k-q)^{2}-m_{\pi}^{2}\right)\left(k^{2}-m_{\pi}^{2}\right)}
$$

up to numerator structure, this is what we would get if we naively started from the relativistic Lagrangian,

$$
\mathcal{L}=\bar{\psi}_{N}\left(i \not \partial-M_{0}\right) \psi_{N}+g_{A} \bar{\psi}_{N} \gamma_{\mu} \gamma_{5} A^{\mu} \psi_{N}+\ldots
$$

Becher and Leutwyler, in 1999, wrote a nice paper showing how to regulate this integral in a manner which preserves chiral symmetry and can be expanded to reproduce the heavy baryon expansion.

$$
\begin{aligned}
& \text { covariant baryon } \chi P T \quad \text { T. Becher and H.Leutwyler Eur.Phys.J.C9 (1999) } \\
& \sigma(t)=\frac{3 \pi g_{A}^{2} m_{\pi}}{4\left(4 \pi f_{\pi}\right)^{2}}\left(t-2 m_{\pi}^{2}\right)\left[\sqrt{\frac{m_{\pi}^{2}}{t}} \ln \frac{2+\sqrt{t / m_{\pi}^{2}}}{2-\sqrt{t / m_{\pi}^{2}}}-\ln \left(1+\frac{m_{\pi} /\left(2 M_{0}\right)}{\sqrt{1-t /\left(4 m_{\pi}^{2}\right)}}\right)\right] \\
& \text { near } t \sim 4 m_{\pi}^{2} \text { each term diverges }
\end{aligned}
$$

(Heavy) Baryon Chiral Perturbation Theory

Is covariant baryon chiral perturbation theory a new effective field theory?
No, it is equivalent to heavy baryon chiral perturbation theory with a resummed class of diagrams. T. Becher and H. Leutwyler Eur.Phys.J.C9 (I999)

Near kinematic thresholds, the power counting of heavy baryon χ PT may change, as we have seen.

Keeping the full expressions determined in the covariant formalism, away from these thresholds is equivalent to the power-counting

$$
m_{\pi} \sim M_{0} \quad \text { and near the thresholds } \quad \frac{m_{\pi}}{2 M_{0}} \sim \sqrt{1-\frac{t}{4 m_{\pi}^{2}}}
$$

(Heavy) Baryon Chiral Perturbation Theory

Is covariant baryon chiral perturbation theory a new effective field theory?
No, it is equivalent to heavy baryon chiral perturbation theory with a resummed class of diagrams. T. Becher and H. Leutwyler Eur.Phys.J.C9 (1999)

Near kinematic thresholds, the power counting of heavy baryon χ PT may change, as we have seen.

Keeping the full expressions determined in the covariant formalism, away from these thresholds is equivalent to the power-counting

$$
m_{\pi} \sim M_{0} \quad \text { and near the thresholds } \quad \frac{m_{\pi}}{2 M_{0}} \sim \sqrt{1-\frac{t}{4 m_{\pi}^{2}}}
$$

working away from the kinematic thresholds and not including the delta degrees of freedom is equivalent to the power-counting

$$
m_{\pi} \sim M_{0} \ll M_{\Delta}-M_{N}
$$

COMPARING TO LATTICE RESULTS

Comparing to LHP results

Comparing to LHP results

Comparing to LHP results

Comparing to LHP results

Comparing to LHP results

Comparing to LHP results

$M_{N}:$ BMW, ETM, JLQCD, LHP, MILC, NPLQCD, PACS-CS, QCDSF/UKQCD, RBC/UKQCD

○ Budapest-Marseille-Wupertal (BMW) Collaboration $m_{\pi} \geq 193 \mathrm{MeV} \quad 2+$ I clover improved see talk by Chirstian Hoelbling Monday 3:50 3 lattice spacings, multiple volumes

Ouropean Twisted Mass (ETM) Collaboration arXiv:0803.3190

○ Japanese Lattice QCD (JLQCD) Collaboration arXiv:0806.4744

O Lattice Hadron Physics (LHP) Collaboration arXiv:0806.4549
O MIMD Lattice Computation (MILC) Collaboration arXiv:07II.002|

〇 PACS-CS Collaboration arXiv:0807.166। see talk by Daisuke Kadoh Monday 4:I0

○ QCDSF/UKQCD Collaboration

O RBC/UKQCD Collaborations see talk by Tom Blum Monday 6:00
$m_{\pi} \geq 311 \mathrm{MeV} \quad 2$ flavor twisted mass
3 lattice spacings
$m_{\pi} \geq 288 \mathrm{MeV} 2$ flavor overlap
$m_{\pi} \geq 293 \mathrm{MeV} \quad 2+$ I DWF on MILC
$m_{\pi} \geq 217 \mathrm{MeV} \quad 2+\mid$ staggered
3 lattice spacings, multiple volumes
$m_{\pi} \geq 156 \mathrm{MeV} \quad 2+\mathrm{I}$ clover improved
$m_{\pi} \geq 240 \mathrm{MeV} 2$ flavor clover improved
$m_{\pi} \geq 331 \mathrm{MeV} \quad 2+$ I DWF
$M_{N}:$ BMW, ETM, JLQCD, LHP, MILC, NPLQCD, PACS-CS, QCDSF/UKQCD, RBC/UKQCD

$M_{N}:$ BMW, ETM, JLQCD, LHP, MILC, NPLQCD, PACS-CS, QCDSF/UKQCD, RBC/UKQCD

$M_{N}:$ BMW, ETM, JLQCD, LHP, MILC, NPLQCD, PACS-CS, QCDSF/UKQCD, RBC/UKQCD

$M_{N}:$ BMW, ETM, JLQCD, LHP, MILC, NPLQCD, PACS-CS, QCDSF/UKQCD, RBC/UKQCD

$M_{N}:$ BMW, ETM, JLQCD, LHP, MILC, NPLQCD, PACS-CS, QCDSF/UKQCD, RBC/UKQCD

$M_{N}:$ BMW, ETM, JLQCD, LHP, MILC, NPLQCD, PACS-CS, QCDSF/UKQCD, RBC/UKQCD

$M_{N}:$ BMW, ETM, JLQCD, LHP, MILC, NPLQCD, PACS-CS, QCDSF/UKQCD, RBC/UKQCD

New Lessons

What is needed to have confidence in chiral extrapolation?
\bigcirc Ideally, $g_{A}, g_{\Delta N}$ would come out of analysis and not be inputs

This is unlikely, but possible

$$
g_{A}=1.1(3.5), g_{\Delta N}=1.5(11.3)
$$

global fit to $g_{A}, g_{\Delta N}$ and M_{N}
O Also, unphysical extrapolation functions should be ruled out by analysis

Assume the "straight line" behavior is accidental: what precision is needed to rule out this extrapolation function?

What is needed?

CONCLUSIONS

Heavy baryon extrapolation formulae is in good statistical agreement with the lattice results
O although resulting convergence is not great
O All $2+1$ flavor results show an unexpected trend with the theoretically unmotivated fit ansatz $M_{N}=\alpha_{0}^{N}+\alpha_{1}^{N} m_{\pi}$ describing the results remarkably well.
To distinguish between this straight line and the expected behavior from heavy baryon chiral perturbation theory, each nucleon mass point needs to be known at the $\sim 1 \%$ level, including lattice spacing and finite volume systematics
The 2-flavor results are systematically different from the $2+1$ flavor results, and they are not consistent with each other.
Larger systematic effects in the nucleon mass than previously thought
O Determining the nucleon axial charge from the mass extrapolation is likely not possible

$$
M_{N}=M_{0}-2 \alpha_{M}(\mu) m_{\pi}^{2}-\frac{3 \pi g_{A}^{2}}{\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{3}-\frac{8 g_{\Delta N}^{2}}{3\left(4 \pi f_{\pi}\right)^{2}} \mathcal{F}\left(m_{\pi}, \Delta, \mu\right)+\ldots
$$

O Move towards global analysis, in which the axial charges are fit simultaneously with the masses

ACKNOWLEDGMENTS

Brian Tiburzi Massimiliano Procura LHP Collaborators
Doug Toussaint, Tom Blum, Gerrit Schierholz, Shoji Hashinoto_ \quad Hiroshi Ohki, Yoshinobu Kurumashi, Christian Hoelbling

