QCD Thermodynamics

C. DeTar

University of Utah

Lattice 2008, College of William and Mary

Why Study QCD thermodynamics?

- Early universe
- Heavy ion collisions
 - RHIC, LHC, FAIR
 - Plasma signatures, structure
 - Modeling: hydrodynamics
- Dense stars
 - Stellar structure, observables
 - Strange matter
- Theory
 - Chiral symmetry restoration
 - Color/flavor locking
 - AdS/CFT predictions

What lattice QCD can contribute

- At RHIC temperatures we need nonperturbative calculations.
- We can do equilibrium thermodynamics at zero baryon density
 - Phase diagram
 - Transition temperature
 - Equation of state
 - Transport coefficients
- Nonequilibrium difficult
 - Extrapolate from lattice results using models e.g. hydrodynamics
- Nonzero baryon density is very challenging
 - See next talk by Shinji Ejiri

Progress in the Past Year

- Large HotQCD study. (R. Gupta, M. Cheng talks).
- Insights that affect the determination of T_c . (Karsch talk).
- New ideas for computing the equation of state. (Umeda talk).
- New ideas and methods for computing transport coefficients. (Meyer talk).
- New result for spatial string tension. (RBC/Bielefeld).
- No time to cover QCD phase structure at high N_f.
 (Deuzeman talk)
- My apologies to those whose work I am not covering.

Outline

- Introduction
- Lattice methodology
- Cutoff issues with various actions
- Determination of T_c at zero baryon number density
 - A variety of observables and their problems
 - T_c confusion diminished
- Equation of state
- Plasma structure
 - Transport coefficients
 - Spatial string tension
- Conclusions

Lattice methodology: General approach

- Set finite N_{τ}
- Simulate quantum partition function $Z = \text{Tr} \exp(-H/T)$
- $T = 1/(aN_{\tau})$
- Usually fix N_{τ} and vary g^2 to vary a, so $T \to \infty$ as $g^2, a \to 0$.
- Set quark masses (use the same H but $T \rightarrow 0$) e.g. Lines of constant physics are standard now

 $m_{\pi}/m_{
ho} = \text{const} \quad m_K/m_{\phi} = \text{const}$

Lattice methodology: continuum limit

- Approach the continuum by increasing N_{τ} and repeating.
- Warning! Risk of lattice cutoff effects at low N_{τ} .

At $T_c \approx 180 \text{ MeV}$ we have

$N_{ au}$	4	6	8	10	12
a (fm)	0.27	0.18	0.14	0.11	0.09

So by today's standards $N_{\tau} = 4$ looks crude, even for improved actions.

Lattice methodology: Action choices

- Pure Yang-Mills quite well studied.
- QCD with 2 or 2+1 flavors.
 - Staggered: most thoroughly studied
 - Wilson: has been limited to rather heavy quark masses. (JLQCD; Bornyakov et al.)
 - Domain wall and overlap: in infancy
- Improvement is essential. Calculational cost

standard cost
$$\ \sim \ a^{-7}$$

EOS cost $\ \sim \ a^{-11}$

- Improvement tends to fatten the action operators
- Locality could become an issue for improved-action thermodynamics
- Want localization length $\ell \ll a N_{\tau} = 1/T$

Cutoff issues: free fermions

• Cutoff effects for various actions [Hegde et al (arXiv:0801.4883)]

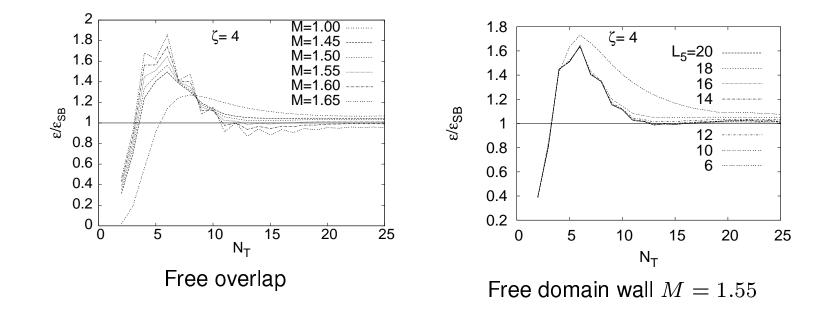
$$\frac{P}{T^4} = \sum_{k=0}^{\infty} A_{2k} P_{2k}(\mu/\pi T) \left(\frac{\pi}{N_\tau}\right)^{2k}$$

action	A_{2}/A_{0}	A_{4}/A_{0}	A_{6}/A_{0}
standard staggered	248/147	635/147	3796/189
Naik	0	-1143/980	-365/77
p4	0	-1143/980	73/2079
standard Wilson	248/147	635/147	13351/8316
hypercube	-0.242381	0.114366	-0.0436614
overlap/	248/147	635/147	3796/189
domain wall			

- Quarks do become free at high T, so why design for bad scaling?
- DWF, overlap, Wilson: dispersion relation should be improved!

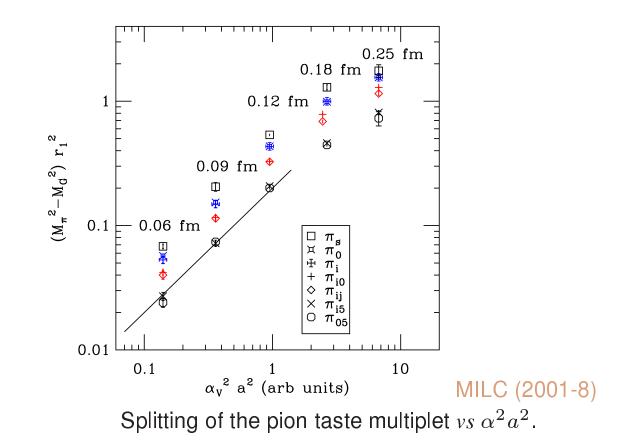
Cutoff issues: free chiral fermions

Gavai and Sharma (arXiv:0805.2866)
 Free chiral fermions.



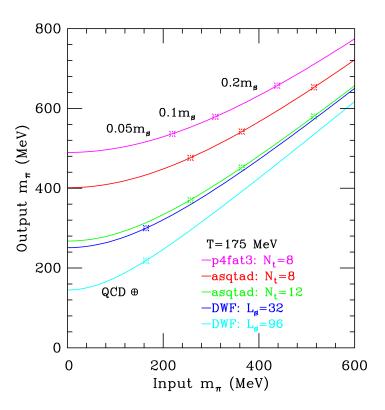
Signs of negative transfer-matrix eigenvalues and slow scaling.

Cutoff issues: staggered fermions



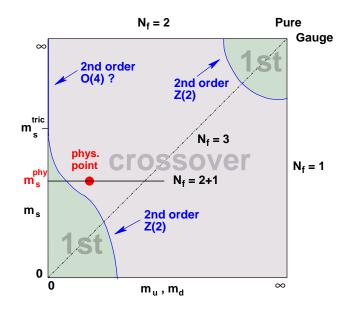
Cutoff issues: staggered and DWF

- Input pion mass
 - Staggered: Goldstone pion.
 - DWF: pion with $m_{\rm res} = 0$.
- Output pion mass
 - Staggered: RMS mass.
 - DWF: propagator pion.



- Truth in labeling! If the staggered Goldstone pion is at it's physical mass, but the RMS pion mass is large, one can't claim to have reached the physical point.
- Important for deconfining phenomena? Maybe not. Hagedorn pileup of states.
- Important for chiral critical behavior? Maybe so. Wrong universality class.
- Important for T < 100 MeV? Certainly. Wrong pion masses.

Phase Diagram at Zero Baryon Density



- Long-standing consensus: Crossover at the physical point Recent strong case: Y. Aoki, G. Endrödi, Z. Fodor, S.D. Katz and K.K. Szabó [Nature 443, 675 (2006)].
- Dissent: first order for $N_f = 2$? Bielefeld(1996), JLQCD (1996-8). Pisa/Genoa/BNL group (2005-2008). G. Cossu (this conference). **But!** so far only $N_{\tau} = 4$ with conventional staggered fermions.



How to determine T_c

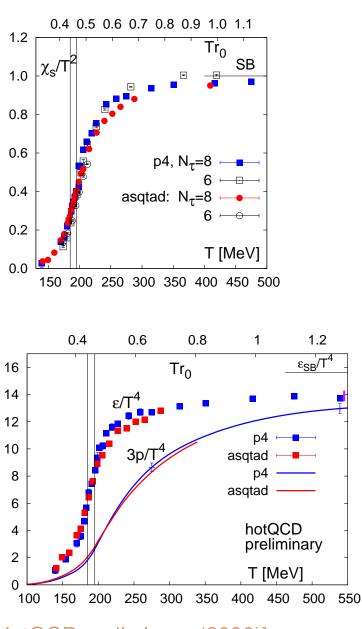
- For a crossover it is not uniquely defined.
 - Why do we need T_c ?
 - How precisely do we need it?
 - What is the relevant observable?
- Phenomenology at the physical point. Here it is good enough to determine the temperature range over which a quantity, such as the energy density or entropy density changes rapidly. Each observable may give a different answer.
- Field theory at a critical point. *T_c* is unambigous, precision is achievable, and it may even be useful. The observable must have a sensible continuum limit and, to be effective, it should expose the critical behavior.
- Related issue: how to set the lattice scale?

Transition signatures

- Deconfinement-type observables
 - Quark number susceptibility
 - Energy density or entropy
 - Polyakov loop -> heavy quark screening free energy
- Chiral-type observables
 - Light quark chiral condensate
 - Light quark chiral susceptibilities

Deconfinement-type observables 1.2 1.0 0.8 0.6 0.4 0.2 0.0 16 14 12

OF UTAH



Strange quark number susceptibility

$$\chi_s = \langle N_s^2 \rangle / (VT)$$

Measures strangeness fluctuations LCP $m_\ell/m_s = 0.1$

Equation of state

- energy density ε
- three times pressure 3p=

$$N_{ au} = 8$$
, LCP $m_{\ell}/m_s = 0.1$

[HotQCD preliminary (2008)]

Synthesis of order parameters

Singular part of the free energy $f_s = -T \log Z$ in the chiral limit. [Hatta and Ikeda (2002), Karsch(2007)]

$$f_s(T, \mu_q) = b^{-1} f_s(t b^{1/(2-\alpha)}) \sim t^{2-\alpha} \quad [\alpha \approx -0.25 \text{ for } O(4)]$$

$$t = \left| \frac{T - T_c}{T_c} \right| + c \left(\frac{\mu_q}{T_c} \right)^2$$

Slope in T of quark number susceptibility at $\mu_q = 0$ (Inflection point at max slope)

$$\frac{\partial(\chi_l/T^2)}{\partial T} \sim \frac{\partial^3 f_s}{\partial \mu^2 \partial T} \sim t^{1-\alpha}$$

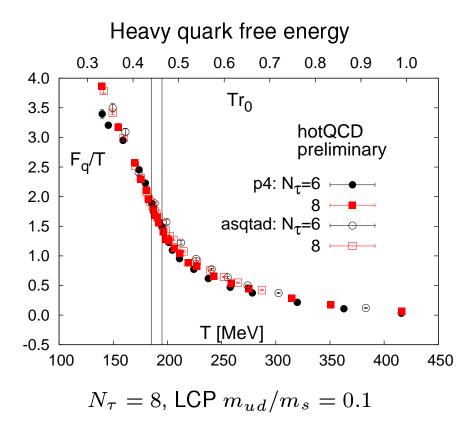
Weak. Masked by analytic contributions.

• Specific heat and quartic quark number fluctuations at $\mu_q = 0$.

$$C_V \sim \frac{\partial^2 f_s}{\partial T^2} \sim t^{-\alpha} \qquad \qquad c_4^q \sim \frac{\partial^4 f_s}{\partial \mu_q^4} \sim t^{-\alpha}$$

• $c_4^q = (\langle N_q^4 \rangle - 3 \langle N_q^2 \rangle)$ is a good observable. Karsch (2007).

Deconfinement-type observables



Related to Polyakov loop, the deconfinement order parameter.

$$F_q(T) = -T \log[P_{\text{renorm}}(T)].$$

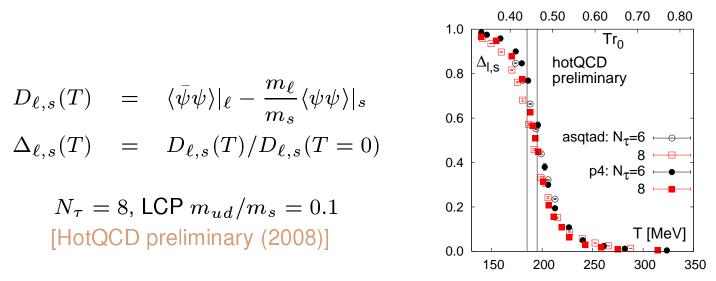
- Useful for phenomenology, but will it show critical behavior?
- Polyakov loop susceptibility? Peak weakens with increasing N_{τ} .

Chiral-type: chiral condensate

• Chiral condensate for light quarks at small m and a: Chiral and UV singularities:

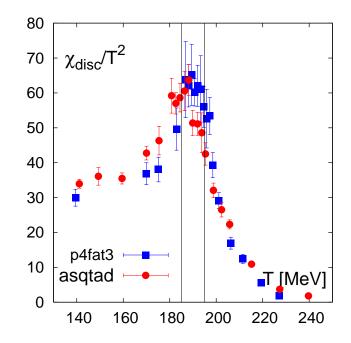
$$\langle \bar{\psi}\psi\rangle(a,m,T) \sim \begin{cases} c_{1/2}(a,T)\sqrt{m} + c_1m/a^2 + \text{analytic} & T < T_c \\ c_1m/a^2 + c_\delta m^{1/\delta} + \text{analytic} & T = T_c \\ c_1m/a^2 + \text{analytic} & T > T_c \end{cases}$$

• Bielefeld/RBC difference eliminates the m/a^2 term.



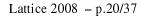
 It is not a primary phenomenological variable like entropy density, but it has a clear chiral limit.

Chiral-type: chiral susceptibility



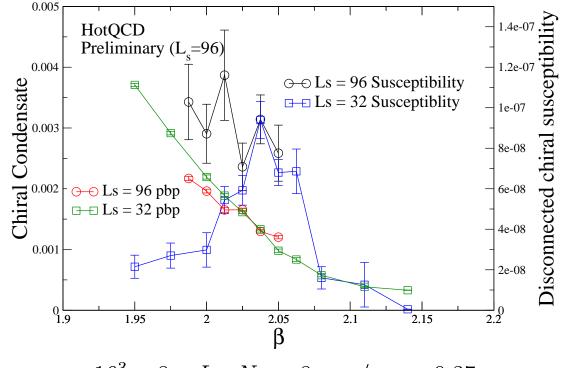
[HotQCD preliminary (2008)] light quark, $N_{\tau} = 8$, LCP $m_{\ell}/m_s = 0.1$

$$\chi_{\rm disc} = \frac{T}{V} \left[\left\langle (\operatorname{Tr} M^{-1})^2 \right\rangle - \left\langle \operatorname{Tr} M^{-1} \right\rangle^2 \right]$$



Chiral susceptibility: Domain Wall

New exploratory DWF study



 $16^3 \times 8 \times L_s$, $N_{\tau} = 8$, $m_{\pi}/m_{\rho} \approx 0.37$

M Cheng (this conference)

Chiral susceptibility

• The chiral susceptibility is an integrated correlator

$$C(x,T) = \langle \bar{\psi}\psi(x)\bar{\psi}\psi(0) \rangle$$

$$\chi = C(p=0,T) = \int d^4x C(x,T)$$

Ultraviolet singularity (continuum)

$$C(x,T) \rightarrow 1/x^6$$
 (small x)

Bad continuum limit. Will get noisy. With lattice regularization

$$\chi \to 1/a^2$$

Budapest/Wuppertal renormalization

$$m_q^2[\chi(m_q,T) - \chi(m_q,0)]/T^4$$

• Shifts peak to lower T, because m_q^2/T^2 decreases with increasing T. Zero in chiral limit.

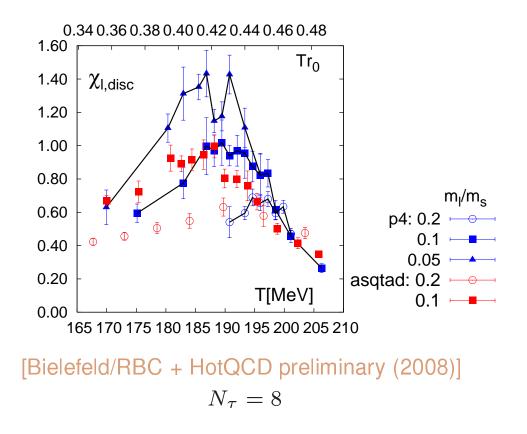
Lattice 2008 – p.22/37

Susceptibility and correlators

• In the chiral limit for $T < T_c$, there is also an infrared chiral singularity (3D analog of chiral log). Karsch (this conference);

$$\chi_{\text{isosinglet}} \sim \begin{cases} c_1/a^2 + c_{1/2}(a,T)/(2\sqrt{m}) + \text{analytic} & T < T_c \\ c_1/a^2 + c_\delta m^{1/\delta - 1} + \text{analytic} & T = T_c \\ c_1/a^2 + \text{analytic} & T > T_c \end{cases}$$

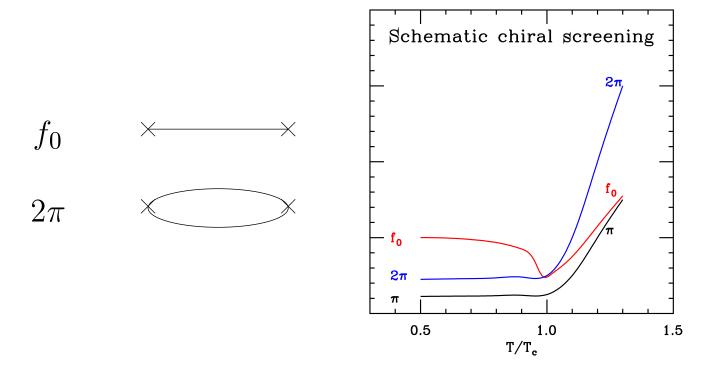
Chiral susceptibility



- Peak region is broad and noisy.
- Not good in the chiral limit. Probably OK at a nonchiral critical point.
- Let's analyze the screening spectrum of the correlator...

Susceptibility and screening masses

- $C(p=0,T) \sim \int d\mu^2 \rho(\mu^2,T)/\mu^2$ peaks when screening masses get small.
- Consider contributions to the isosinglet chiral susceptibility.

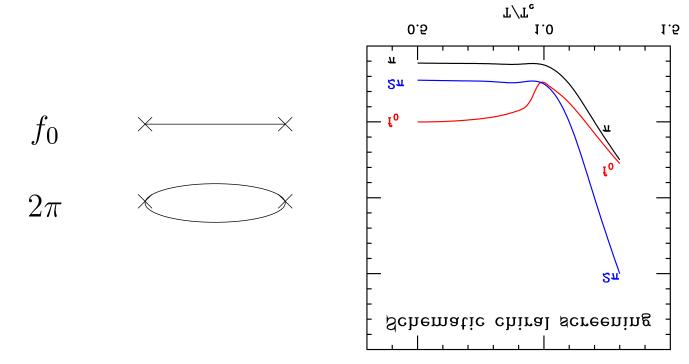


In chiral limit π and 2π shift to zero for $T < T_c$:

- Produces the chiral singularity for $T < T_c$.
- Causes a steep drop in the chiral susceptibility for $T > T_c$
- T_c is near the edge of the cliff.

Susceptibility and screening masses

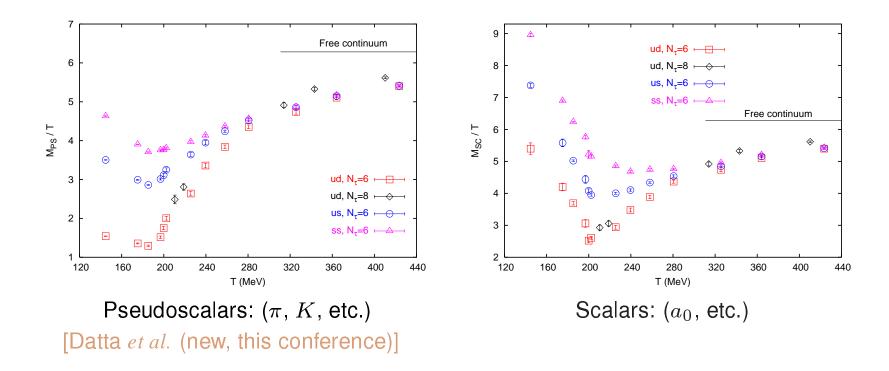
- $C(p=0,T) \sim \int d\mu^2 \rho(\mu^2,T)/\mu^2$ peaks when screening masses get small.
- Consider contributions to the isosinglet chiral susceptibility.



In chiral limit π and 2π shift to zero for $T < T_c$:

- Produces a chiral singularity for $T < T_c$.
- Causes a steep drop in the chiral susceptibility for $T > T_c$
- T_c is near the edge of the cliff.

Screening masses



 $24^3 \times 6$ and $32^3 \times 8$; LCP $m_{\pi,G} \approx 220$ MeV, $m_K \approx 500$ MeV. E. Laermann talk.

- Screening masses may be more robust than the chiral susceptibility.
 - No UV or chiral divergences.
 - No renormalization.

Scale setting

- Use Sommer parameter r_0 (or r_1)? (Favored by many groups)
- Use f_K ? (Budapest/Wuppertal)
- The f_K scale can give a 10 20% lower T than r_0 for current m_q and a.
- Best choice: the one that gives the best scaling of thermodynamic observables.
- Y. Aoki, Z. Fodor, S.D. Katz and K.K. Szabo, (2006) found that r_0 gives better scaling for T_c determined from the quark number susceptibility or Polyakov loop.
- No reason so far to abandon Sommer parameter scale.

Confusion about T_c

- Budapest/Wuppertal (Y. Aoki, Z. Fodor, S.D. Katz and K.K. Szabo, 2006) reported that at the physical point
 - $T_c = 151(3)(3)$ MeV from a peak in the chiral susceptibility
 - $T_c = 175(2)(4)$ from the inflection point in the quark number susceptibility. Also from Polyakov loop.
- cf. MILC (2004) 169(12)(4), RBC (2006) 192(7)(4) based on r_0 scale.
- The current conventional wisdom is that there is only one critical temperature.
- As BW has carefully explained, the lower chiral number can be attributed to
 - Nonuniqueness of the definition of the crossover temperature.
 - BW renormalization of the susceptibility. Shifts a peak to lower T.
 - BW use of f_K scale: Tends to lower all inferred temperatures.
- New reason this year:
 - The chiral susceptibility is problematic. We should probably be locating the edge of the "cliff" instead of fitting a parabola to a peak.

Equation of State

• Standard integral method

$$I = \varepsilon - 3p = -\frac{T}{V} \frac{d \ln Z}{d \ln a}$$
$$\frac{p}{T} = \frac{\partial \ln Z}{\partial V}\Big|_{T}$$

- Next, *assume* that V is large enough that $\ln Z \propto V$.
 - Gliozzi(hep-lat/0701020) and Panero (this conference) examine the deviations from the Stefan-Boltzmann law caused by finite size effects. Important at high T where we want to compare with perturbation theory.
- Proceed to integrate.

$$\begin{aligned} \frac{p}{T} &= \frac{\ln Z}{V} \\ \frac{Vp}{T}\Big|_{a} - \frac{Vp}{T}\Big|_{a_{0}} &= -\int_{a_{0}}^{a} \frac{V'}{T'} (\varepsilon' - 3p') d\ln a' \end{aligned}$$

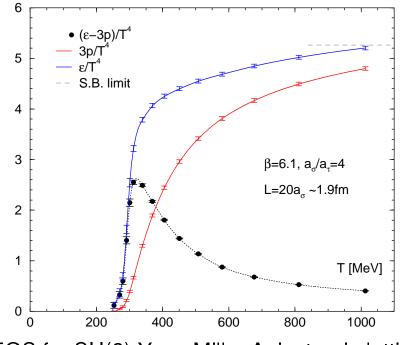
We must subtract out the vacuum pressure and energy density.

EoS: New T integral method

WHOT-QCD collaboration (pronounced "hot"): S. Aoki, S. Ejiri, T. Hatsuda,
 N. Ishii, K. Kanaya, H. Ohno and T. Umeda. See Umeda (this conference).

$$(\varepsilon - 3p)/T^4 = \frac{d(p/T^4)}{d\ln T}$$

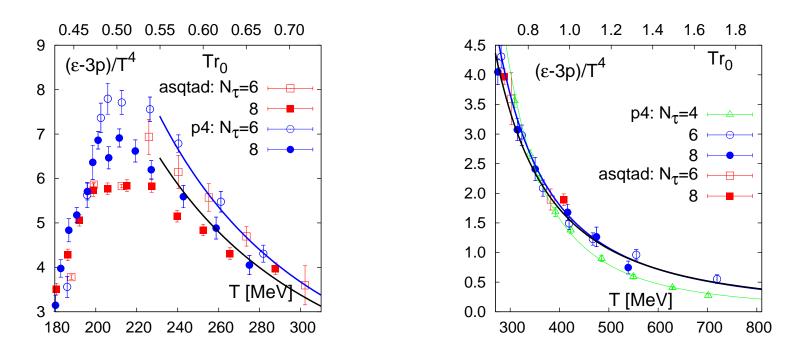
- Vary N_{τ} at fixed g^2 , quark masses. Do $\ln T$ integral.
- Anisotropic $a_t \ll a_s$ helps overcome the discrete T resolution.



EOS for SU(3) Yang-Mills. Anisotropic lattice.



Interaction measure



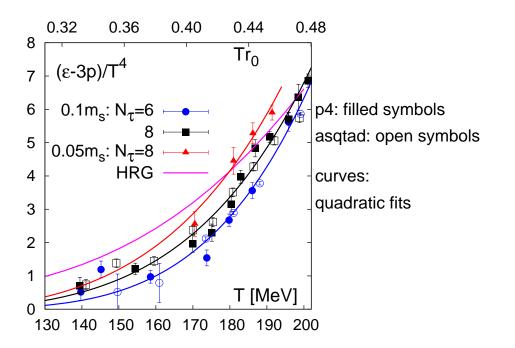
LCP $m_{\ell}/m_s = 0.1$ [HotQCD preliminary (2008)]

• For $T \in [250, 700]$ MeV, can be fit to

$$(\varepsilon - 3p)/T^4 = b/T^2 + c/T^4$$

• No indication of perturbative $1/\log T$ terms.

Interaction measure

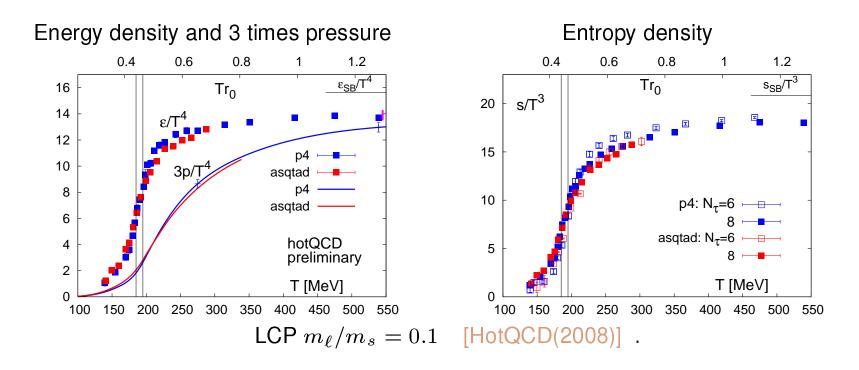


[RBC/Bielefeld/HotQCD preliminary (2008)]

Magenta line: hadron resonance gas (HRG) with masses < 2.5 Gev.

We may soon be able to test models such as HRG.

EOS at zero baryon number density



Plasma structure: Transport coefficients

- Analysis of RHIC heavy ion collisions suggests that high T matter is a good fluid
- Hydrodynamics modeling needs shear (η) and bulk (ζ) viscosities
- These are obtained from correlators of the energy-momentum tensor at temperature T

$$C(x_0, \mathbf{x}, T) = \langle T_{\mu\nu}(x_0, \mathbf{x}) T_{\rho\sigma}(0) \rangle$$

• We need the spectral function ρ from the Kubo formula

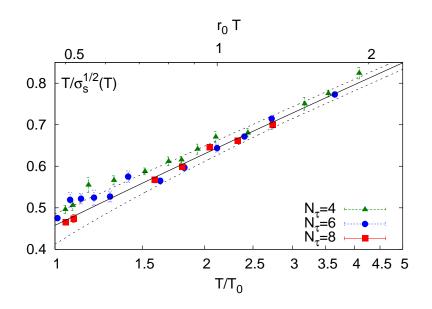
$$C(x_0, \mathbf{q}, T) = \int_0^\infty d\omega \,\rho(\omega, \mathbf{q}, T) \frac{\cosh \omega (x_0 - 1/2T)}{\sinh(\omega/2T)}.$$

$$\eta(T) = \pi \lim_{\omega \to 0} \frac{\rho_{12,12}(\omega, 0, T)}{\omega} \qquad \qquad \zeta(T) = \frac{\pi}{9} \lim_{\omega \to 0} \frac{\rho_{ii,jj}(\omega, 0, T)}{\omega}$$

- Going from Euclidean $C(x_0)$ to $\rho(\omega)$ is a really difficult inverse problem.
- At $N_{\tau} = 8$ we have only 5 x_0 's after symmetrization!
- Like inferring a dinosaur from a toe bone. It helps to know the dinosaur.
- Meyer paleontology talk on Friday.

Plasma structure: spatial string tension

- For $T \gg T_c$ QCD can be described by an effective 3D confining theory.
 - Quarks acquire a large 3D mass $\sqrt{(\pi T)^2+m_q^2}$
 - A_0 becomes a scalar field. We get a gauge-Higgs theory.
- The spatial Wilson loop gives the potential and 3D string tension.



Points: measured 4D values of spatial string tension Curves: predictions of 3D-reduced theory. [Cheng *et al* (RBC/Bielefeld) arXiv:0806.3264]

Surprise: should dimensional reduction really work as low as $1.5T_c$?

Conclusions

- New high statistics results from HotQCD show good agreement between two different staggered fermion methods (p4fat3, asqtad).
- New results will help hydrodynamic modeling of heavy-ion collisions.
- First exploratory (expensive) DWF results with small residual mass look promising.
- We are learning more about the chiral behavior of the chiral susceptibility.
- More work is needed to confirm scaling and to approach the physical point and the critical point.
- New methods
 - WHOT-QCD collaboration: equation of state.
 - Meyer: transport coefficients.
 - We are making progress.
- New result
 - Dimensional reduction and spatial string tension.

