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# Determination of fundamental

parameters of the SM

* CKM matrix elements:

|Vub|, |Vcs|, |Vcd|, |Vcb|
* heavy quark masses:mb, mc

# Unveiling New Physics effects.

# Constraining NP models.

# In conjunction with experimental measurements . . .

* CDF and DØ tagged angular analysis of Bs0 → J/Ψφ
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# In conjunction with experimental measurements . . .

* B0 − B̄0 mixing observables

Observable source % error

∆Ms CDF <1

∆Md PDG07 <1

* Leptonic decays branching fractions CLEO-c, 0806.2112

Observable % error in corresponding decay constant

Br(Ds → µν)/ Br(Ds → τν) 3/6.5

Br(D → µν) 4

* Semileptonic decays branching ratios BaBar, Belle, CLEO-c

Observable % error in corresponding CKM element

Br(D → K(π)eν) 1.5/4.5

Br(B → πlν) 6

Br(B → D∗lν) 1.5



Non-perturbative theory inputs still main source of error

→ Need to reduce lattice errors to ≤ 5%

# Nf = 2 + 1 calculations + all the sources of systematic errors

analyzed: chiral extrapolation, discretization (continuum limit),

renormalization, finite volume, ...

* Results relevant for phenomenology rely on χPT to go to physical

masses → validity of χPT techniques to have accurate results



Non-perturbative theory inputs still main source of error

→ Need to reduce lattice errors to ≤ 5%

# Nf = 2 + 1 calculations + all the sources of systematic errors

analyzed: chiral extrapolation, discretization (continuum limit),

renormalization, finite volume, ...

* Results relevant for phenomenology rely on χPT to go to physical

masses → validity of χPT techniques to have accurate results

# Hints of discrepancies between SM expectations and some

flavour observables (see, for example, E. Lunghi, talk at BEACH08)

* B0
s mixing phase UTfit coll., arXiv:0803.0659

* fDs B. Dobrescu and A. Kronfeld, arXiv:0803.4340 (talk by A. Kronfeld)

* sin(2β) E. Lunghi and A. Soni, arXiv:0803.0512 (talk by A. Soni)

Improvement in calculation of decay constants, ξ

and form factors needed for the extraction of

Vcb and Vub is crucial.



2. Decay constants: P → lν
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2.1. fD and fDs : test of lattice QCD

2.2. fB and fBs



fD and fDs: test of lattice QCD

# Charm quark is in between the heavy and light mass regimes

* Heavy quark effective theories do not give accurate results

* Relativistic descriptions: Maintain cut-off effects under control

requires

** Improved actions and currents.

** Fine enough lattices
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Heavy quark formalisms for D mesons

# Fermilab action: Relativistic clover action with Fermilab

(HQET) interpretation

* Smooth interpolation between static limit and light quarks

# HISQ (Highly improved staggered action ): No tree level a2 errors

(Asqtad) + reduction of O(a2αs) and O((amQ)4) errors (by a

factor of ∼ 3)

→ Very precise results for charm physics: charmonium and D

# Twisted mass QCD at maximal twist (tuning a single parameter)

* Meson masses and decay constants O(a) improved.

* No need for renormalization for decay constants (PCAC)

* Mass renormalization multiplicative and calculated NP

# O(a) improved Wilson: improvement in action and currents.



fD and fDs: test of lattice QCD

FNAL/MILC Nf = 2 + 1 (talk by P. Mackenzie) Preliminary

# Reanalysis of existing data completed with all systematic errors

analyzed.

Heavy valence quarks: Fermilab action

Light quarks: improved staggered (Asqtad)

# MILC ensembles: 3 values of a = 0.15, 0.12, 0.09 fm with 3-5 light sea

quark masses (down to ms/10).

* For each sea quark mass: 8-12 valence quark masses (including full

QCD points).
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fD and fDs: test of lattice QCD

FNAL/MILC Nf = 2 + 1 (talk by P. Mackenzie) Preliminary

# Reanalysis of existing data completed with all systematic errors

analyzed.

Heavy valence quarks: Fermilab action

Light quarks: improved staggered (Asqtad)

# MILC ensembles: 3 values of a = 0.15, 0.12, 0.09 fm with 3-5 light sea

quark masses (down to ms/10).

* For each sea quark mass: 8-12 valence quark masses (including full

QCD points).

# Renormalization partially NP: ZQqA4 = ρQqA4

√
ZQQV4

ZqqV4

* Z
QQ(qq)
V4

calculated NP (1.4% error)

* ρQqA4 very close to 1 (≤ 0.3% error)
→ small error ∼ 1.4%

# Simultaneous chiral and continuum extrapolation: Staggered χPT

* NLO + analytic NNLO + explicit O(a2)

* Remove the dominant light discretization errors



fD and fDs: test of lattice QCD

FNAL/MILC Nf = 2 + 1 (talk by P. Mackenzie) Preliminary

# Simultaneous fit to all the data: → fD and fDs

# Fits sensitive to logarithms



fD and fDs: test of lattice QCD

FNAL/MILC Nf = 2 + 1 (talk by P. Mackenzie) Preliminary

Error budget (in %)

source fD fDs
fDs

/fD

statistics 1.5 1.0 1.0

inputs (r1,ms,d,u) 2.1 1.4 0.6

inputs (mc) 2.7 2.7 <0.1

renorm. 1.4 1.4 <0.1

HQ disc. 2.7 2.7 0.3

LQ disc. 2.6 1.2 1.6

FV 0.6 0.2 0.6

total syst. 5.3 4.5 1.8

fD = 207(11)MeV fDs = 249(11)MeV fDs/fD = 1.200(27)



fD and fDs: test of lattice QCD

FNAL/MILC Nf = 2 + 1 (talk by P. Mackenzie) Preliminary

Error budget (in %)

source fD fDs
fDs

/fD

statistics 1.5 1.0 1.0

inputs (r1,ms,d,u) 2.1 1.4 0.6

inputs (mc) 2.7 2.7 <0.1

renorm. 1.4 1.4 <0.1

HQ disc. 2.7 2.7 0.3

LQ disc. 2.6 1.2 1.6

FV 0.6 0.2 0.6

total syst. 5.3 4.5 1.8

# Future improvements:

* Smaller lattice spacings

(existing: a = 0.06 fm,

generating: a = 0.04 fm)

* Quadruple number of

configurations

* Technical improvements to

reduce statistical errors.

* Improved determination of

inputs: r1,mc

fD = 207(11)MeV fDs = 249(11)MeV fDs/fD = 1.200(27)



fD and fDs: test of lattice QCD

HPQCD, PRL 100(2008)062002 Nf = 2 + 1

Charm and light valence quarks: Highly improved staggered (HISQ)

# MILC ensembles: 3 values of a = 0.15, 0.12, 0.09 fm with 3-5 light sea

quark masses (down to ms/10) (only full QCD).
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fD and fDs: test of lattice QCD

HPQCD, PRL 100(2008)062002 Nf = 2 + 1

Charm and light valence quarks: Highly improved staggered (HISQ)

# MILC ensembles: 3 values of a = 0.15, 0.12, 0.09 fm with 3-5 light sea

quark masses (down to ms/10) (only full QCD).

# No renormalization needed (PCAC): fPm2
P = (ma +mb)〈0|āγ5b|P 〉

# Bayesian fit of the masses and decay constants to the chiral and

continuum limits: continuum NLO ChPT + O(a2)

O(a2) ∝ αsa2, α3
sa

2, α3
sa

2log(xu,d), α
3
sa

3xu,d with xq ∝ mq

fDs = (241± 3)MeV fD = (208± 4)MeV fDs/fD = 1.162(9)

# Very good agreement with FNAL/MILC.
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fD and fDs: test of lattice QCD

ETMC Nf = 2 (talk by C. Tarantino) Preliminary

# Twisted mass QCD at maximal twist.

# Lattice spacing: a = 0.1 fm, 0.0855 fm, 0.0667 fm with light quark

masses (full QCD) ms/5−ms/2, several ms and mc around the

physical ones (interpolation)

# Combined fit: meson mass dependence (NLO) + O(a2) terms

* Use SU(2) HMχPT

* Decay constants extracted from

the ratios:

R1 = fDs
√
MDs/fK

R2 =
[
fDs

√
MDs/fK

]
/
[
fD
√
MD/fπ

]
(smooth chiral behaviour)

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2
r
0
 mπ

2,8

2,9

3,0

3,1

3,2

3,3

3,4

3,5

3,6

3,7

r 01/
2  R

1

β=3.8
β=3.9
β=4.05
β=3.9, fixed simulated M

Ds

β=4.05, fixed simulated M
Ds

a=0, physical M
Ds

physical point

µ
s
 ~ m

s

phys.
,    µ

c
 ~ m

c

phys.



fD and fDs: test of lattice QCD

ETMC Nf = 2 (talk by C. Tarantino) Preliminary

fD = (197± 7± 12)∗MeV fDs = (244± 4± 11)∗MeV

fDs/fD = (1.24± 0.04± 0.02)∗

* Estimate of the errors is preliminary: statistics ± systematics

(continuum extrapolation and chiral extrapolation).

# Systematic errors dominated by cut-off effects.

* Simulations at a ' 0.05 fm are planned.



fD and fDs: test of lattice QCD

ETMC Nf = 2 (talk by C. Tarantino) Preliminary

fD = (197± 7± 12)∗MeV fDs = (244± 4± 11)∗MeV

fDs/fD = (1.24± 0.04± 0.02)∗

* Estimate of the errors is preliminary: statistics ± systematics

(continuum extrapolation and chiral extrapolation).

# Systematic errors dominated by cut-off effects.

* Simulations at a ' 0.05 fm are planned.

# Good agreement with complete Nf = 2 + 1 calculations.

* But still missing part of the vacuum polarization effects.



Disagreement for fDs between lattice and experiment

250 300

f
D

s
 (MeV)

HPQCD (Nf = 2+1)

FNAL-MILC (Nf = 2+1)

CLEO-c/Belle average
(Stone FPCP 2008)

ETMC (Nf = 2), preliminary*

QCDSF (Nf = 0) (2007)

ALPHA (Nf = 2), preliminary*

(no chiral extrap.)

175 200 225 250

f
D

 (MeV)

HPQCD (Nf = 2+1)

FNAL-MILC (Nf = 2+1)

CLEO-c, 2008

ETMC (Nf = 2), preliminary*

Becirevic,Haas,Mescia
(Nf = 2), preliminary*

QCDSF (Nf = 0) (2007)

# > 3σ discrepancy between experiment and HPQCD fDs
( 1.6σ with FNAL/MILC

and all lattice numbers smaller than experiment).
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2mD−mηc

(with errors ≤ 2%).
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Becirevic,Haas,Mescia
(Nf = 2), preliminary*

QCDSF (Nf = 0) (2007)

# > 3σ discrepancy between experiment and HPQCD fDs
( 1.6σ with FNAL/MILC

and all lattice numbers smaller than experiment).

* Experiment - HPQCD agree in fK , fπ, fD, mD, mDs ,
2mDs−mηc
2mD−mηc

(with errors ≤ 2%).

# Good check: other Nf = 2 + 1 calculations with < 5% accuracy

or better.



Disagreement for fDs between lattice and experiment

# Experimental issues to be addressed:

* Experiment uses Vcs = Vud/PDG’s global CKM fit.

* Radiative corrections Ds → D∗sγ → µνγ estimated to be 1%.



Disagreement for fDs between lattice and experiment

# Experimental issues to be addressed:

* Experiment uses Vcs = Vud/PDG’s global CKM fit.

* Radiative corrections Ds → D∗sγ → µνγ estimated to be 1%.

# Sensitive to BSM physics: Starting to see evidence of nonstandard

leptonic decays of Ds mesons? (talk by A. Kronfeld)



fB and fBs

# Extraction of CKM matrix elements: B(B− → τ−ν̄τ )︸ ︷︷ ︸
experiment

∝ |Vub|2 f2
B︸︷︷︸

lattice

# Decay constants needed in the SM prediction for processes potentially

very sensitive to BSM effects: for example, fBS for Bs → µ+µ−

# B− → τ−ν̄τ is a sensitive probe of effects from charged Higgs bosons.
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O(L,mh)

for s > 1 and mh < mb

** Assume mild dependence of finite size effects on high energy scale

* Extrapolate SS functions in 1/mh to mb
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# Fermilab action: Relativistic clover action with Fermilab (HQET)

interpretation

* Smooth interpolation between static limit and light quarks

# NRQCD: Discretized version of NR effective action improved through

O(1/M2), O(a2) and leading relativistic O(1/M3)

# Extrapolation method:

Relativistic simulations

at masses ∼ mc

→
fit functions determined

by HQET

bottom

# Step Scaling Method (HQET):

* Simulate b in a small volume: calculate an observable O(L0,mb).

* Eliminate finite size effects through SS functions:

** σ(L, s,mh) = O(sL,mh)
O(L,mh)

for s > 1 and mh < mb

** Assume mild dependence of finite size effects on high energy scale

* Extrapolate SS functions in 1/mh to mb

# HQET: static + 1/M
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fB and fBs

FNAL/MILC Nf = 2 + 1 (talk by P. Mackenzie) Preliminary

Heavy valence quarks: Fermilab action

Light quarks: improved staggered (Asqtad)

# Same set-up as for the fD, fDs determination.

* After chiral and continuum

extrapolations with SχPT

* Error dominated by statist. and light

quark discretization errors +

chiral extrap.

* Error in the ratio fBs/fBd is 3%

fB = (195± 11)MeV fBs = (243± 11)MeV

fBs/fB = 1.25± 0.04

agree with HPQCD, PRL 95(2005)212001

fB = (216± 22)MeV fBs = (260± 26)MeV fBs/fB = 1.20± 0.03

HPQCD errors dominated by higher-order perturbative renormalization



fB and fBs

ALPHA Nf = 0

# Action and currents: O(a) improved Wilson action.



fB and fBs

ALPHA Nf = 0

# Action and currents: O(a) improved Wilson action.

extrapolation+static

M. Della Morte et al, JHEP 0802(2008)078

* Continuum static approximation

+ relativistic QCD with masses

around mc → interpolation to

the physical point of Bs

r
3/2
0

FPS
√
mPS

CPS(M/ΛMS)
= A

(
1 + B

r0mPS

)
* 10% correction of the slope at

the physical b quark mass.



fB and fBs

ALPHA Nf = 0

# Action and currents: O(a) improved Wilson action.

extrapolation+static

M. Della Morte et al, JHEP 0802(2008)078

* Continuum static approximation

+ relativistic QCD with masses

around mc → interpolation to

the physical point of Bs

r
3/2
0

FPS
√
mPS

CPS(M/ΛMS)
= A

(
1 + B

r0mPS

)
* 10% correction of the slope at

the physical b quark mass.

SSM+static

D. Guazzini et al, JHEP 0802(2008)078

* Combine HQET and Step Scaling

Method (SSM)

** SS functions calculated for

several masses around mc and

static limit → interpolation to Bs

* Extrapolation in 1/(Lmh)

linear ∼ quadratic

* Corrections to the static limit

very small at the b quark mass.



fB and fBs ALPHA Nf = 0

extrapolation+static SSM+static

fBs = 191(6)MeV fBs = 193(7)MeV

# Both results are in very good agreement

* Also interesting to compare with HQET including 1/m corrections.

# Inclusion of static point improves control over heavy quark

mass dependence



fB and fBs ALPHA Nf = 0

extrapolation+static SSM+static

fBs = 191(6)MeV fBs = 193(7)MeV

# Both results are in very good agreement

* Also interesting to compare with HQET including 1/m corrections.

# Inclusion of static point improves control over heavy quark

mass dependence

# Quenched effects very large in fBs :

∼ 250 ⇒︸︷︷︸
quenching

∼ 190

* Promising methods to extend to unquenched simulations



Static-Light studies in progress

RBC/UKQCD Nf = 2 + 1 (talk by T. Ishikawa)

# Light quarks formulation: domain wall.

# fB and B0 − B̄0 mixing analyses in progress.

ETMC Nf = 2 (talk by M. Wagner)

# Light quarks formulation: tmQCD.

# Spectrum results presented for Bs mesons.



3. Semileptonic decays

P1 P2

W

l

ν

J = Vµ, Aµ

Vij

# New lattice techniques

* Use of double ratios with cancellation of statistical and systematic

errors and simpler χPT expressions

* Choose an adequate (model independent) parametrization

of the shape to describe the form factor in the allowed q2 region.

* Twisted boundary conditions allowed to go to smaller values of q2.



Exclusive B → D∗lν: determination of |Vcb|

# B → D∗lν rate depend on four form factors:

FB→D
∗
(ω) = hA1 (ω)

√
H2

0 (ω) +H2
+(ω) +H2

−(ω)

λ(ω)

* ...but at zero recoil ∝ |VcbhA(1)|.

# Experimental errors at zero recoil for B → D∗lν smaller than for

B → Dlν.

# |Vcb| needed as an input in εK and rare kaon decays ( Br(K → πνν̄)).

* More relevant after progress in BK .
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FNAL/MILC (J. Laiho 2008) Nf = 2 + 1

# MILC configurations, Asqtad for light quarks and Fermilab action

for heavy quarks.

# New double ratio method: |hA(1)|2 =
〈D∗|c̄γjγ5b|B̄〉〈B̄|b̄γjγ5c|D∗〉
〈D∗|c̄γ4c|D∗〉〈B̄|b̄γ4b|B̄〉

* Cancellation of statistical and systematic errors (particularly,

renormalization mostly cancel).

* hA1 given directly to all orders in HQET

* Ratio can be calculated at tuned mb,c → computationally more

efficient than previous

FNAL/MILC method



Exclusive B → D∗lν: determination of |Vcb|

FNAL-MILC (J. Laiho 2008) Nf = 2 + 1
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# Use NLO + analytic NNLO SχPT.

# Very mild chiral and continuum extrapolations



Exclusive B → D∗lν: determination of |Vcb|

FNAL-MILC (J. Laiho 2008) Nf = 2 + 1

uncertainty hA1
(1)

statistical 1.4%

gπ 0.9%

NLO vs partial NNLO ChPT fits 0.9%

discretization errors 1.5%

kappa tuning 1.0%

perturbation theory 0.3%

u0 tuning 0.4%

Total 2.7%

hA1(1) = 0.921(13)stat.(21)syst.
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FNAL-MILC (J. Laiho 2008) Nf = 2 + 1

uncertainty hA1
(1)

statistical 1.4%

gπ 0.9%

NLO vs partial NNLO ChPT fits 0.9%

discretization errors 1.5%

kappa tuning 1.0%

perturbation theory 0.3%

u0 tuning 0.4%

Total 2.7%

hA1(1) = 0.921(13)stat.(21)syst.

# HFAG average: hA(1)|Vcb| = (36.0± 0.6)× 10−3

=⇒ |Vcb| = (38.8± 0.6exp ± 1.0theo)× 10−3

Inclusive determination is |Vcb| = 41.7(0.7)total × 10−3 (2σ difference)
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# Twisted flavour boundary condit.: Calculate FB→D
∗
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G.M. Divitiis, R. Petronzio and N. Tantalo Nf = 0 Preliminary

# Twisted flavour boundary condit.: Calculate FB→D
∗
(ω) for ω ≥ 1.

# SS method: SS functions almost insensitive to initial heavy quark

mass mh for mh > mc.

|Vcb|FB→D
∗
(ω)

 22

 24

 26

 28

 30

 32

 34

 36

 38

 1  1.1  1.2  1.3  1.4  1.5

BaBar ’07
BaBar ’04

Belle ’01

Cleo ’02
this work normalized at w=1.075

← Matching experimental and

lattice data at ω = 1.075

FB→D
∗
(1) = 0.917± 0.008± 0.005

* First error is statist. (including extrap.)

and second error is renorm. factors in

the small V
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G.M. Divitiis, E. Molinaro, R. Petronzio and N. Tantalo, JHEP

0710(2007)062; PLB 655(2007)45 Nf = 0

Form factors for Hi → Hf lν with Hi,f = B,D and l = e, µ, τ

# Same methodology as for B → D∗lν
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G.M. Divitiis, E. Molinaro, R. Petronzio and N. Tantalo, JHEP

0710(2007)062; PLB 655(2007)45 Nf = 0

Form factors for Hi → Hf lν with Hi,f = B,D and l = e, µ, τ

# Same methodology as for B → D∗lν
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# Twisted flavour boundary condit.

→ Form factors for 1 ≤ ω = vi · vf ≤ 2

where experimental data are available

→ no need for extrapolation
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G.M. Divitiis, E. Molinaro, R. Petronzio and N. Tantalo, JHEP

0710(2007)062; PLB 655(2007)45 Nf = 0

# Calculation of ∆D→B(ω) (linear combination of the 2 form factors),

which parametrizes the difference between B → De, µνe,µ and B → Dτντ .

* ∆D→B can be extracted from dΓ(B→Dτντ )
dΓ(B→De,µνe,µ)

=⇒ to be checked by experiment.

** Independent of CKM inputs.



Exclusive B → Dlν: determination of |Vcb|

G.M. Divitiis, E. Molinaro, R. Petronzio and N. Tantalo, JHEP

0710(2007)062; PLB 655(2007)45 Nf = 0

# Calculation of ∆D→B(ω) (linear combination of the 2 form factors),

which parametrizes the difference between B → De, µνe,µ and B → Dτντ .

* ∆D→B can be extracted from dΓ(B→Dτντ )
dΓ(B→De,µνe,µ)

=⇒ to be checked by experiment.

** Independent of CKM inputs.

* Lepton-flavour universality checks on the extraction of Vcb
are possible.
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G.M. Divitiis, E. Molinaro, R. Petronzio and N. Tantalo, JHEP

0710(2007)062; PLB 655(2007)45 Nf = 0

# Calculation of ∆D→B(ω) (linear combination of the 2 form factors),

which parametrizes the difference between B → De, µνe,µ and B → Dτντ .

* ∆D→B can be extracted from dΓ(B→Dτντ )
dΓ(B→De,µνe,µ)

=⇒ to be checked by experiment.

** Independent of CKM inputs.

* Lepton-flavour universality checks on the extraction of Vcb
are possible.

* The ratio of partially integrated rates Br(B → Dτντ )/Br(B → Deνe)

is a good place to look for charged Higgs contributions to

low energy observables (J.F. Kamenik and F. Mescia, arXiv:0802.3790)



B → πlν: determination of |Vub|

Br(B → πlν) = |Vub|2
∫ q2max
0 dq2fB→π+ (q2)2 × (known factors)

# Problem: Poor overlap in q2 between lattice and experiment

→ increases the total error

# Work in progress to reduce total error.
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Br(B → πlν) = |Vub|2
∫ q2max
0 dq2fB→π+ (q2)2 × (known factors)

# Problem: Poor overlap in q2 between lattice and experiment

→ increases the total error

# Work in progress to reduce total error.

* Moving NRQCD: Generate data at low q2 + keeping statical

errors under control K. Wong Lattice2007 .

* z-fit: combine lattice and experimental data over full q2 region

using model-independent expression based on analyticity and unitarity

to describe the shape of the form factor

Arnesen et al.; Becher & Hill; P. Ball; P. Mackenzie and R. Van de Water

FNAL/MILC Nf = 2 + 1 (talk by R. Van de Water) Preliminary



B → πlν: determination of |Vub|

FNAL/MILC Nf = 2 + 1 (talk by R. Van de Water) Preliminary

# MILC configurations: a = 0.15 fm, 0.12 fm, 0.09 fm, full QCD for

nine light quark masses.
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 chiral-continuum extrapolation
gπ=0.51 -- NLO rSχPT no sea analytic term -- χ2

/d.o.f.=0.81-- C.L.=0.65

SχPT

continuum + chiral extrapolation

(separate fit for f⊥ and f‖)

* NLO for f⊥ (dominated by B∗ pole)

* NLO + mqEπ + E3
π + mqE2

π

for f‖.



B → πlν: determination of |Vub|

FNAL/MILC Nf = 2 + 1 (talk by R. Van de Water) Preliminary
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* Lattice error

dominated by statistics

and chiral+continuum

extrapolation errors.

(8% and 7%)

|Vub| = (2.94± 0.35)× 10−3 (12% error)
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# Improvements: Double number of configurations, randomize spatial

origin, finer lattice spacing, partial quenched points . . .
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FNAL/MILC Nf = 2 + 1 (talk by R. Van de Water) Preliminary
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Simultaneous fit of lattice and BABAR F
+
 data

χ2
/d.o.f. = 0.46 Simultaneous z-fit to lattice

and BaBar data gives a

model independent

determination of |Vub|
* Lattice error

dominated by statistics

and chiral+continuum

extrapolation errors.

(8% and 7%)

|Vub| = (2.94± 0.35)× 10−3 (12% error)

# Improvements: Double number of configurations, randomize spatial

origin, finer lattice spacing, partial quenched points . . .

# 2σ lower than inclusive determinations.



B → πlν: determination of |Vub|

QCDSF Nf = 0 Preliminary

# Calculate form factors for B → π(K)lν, D → π(K)lν and Ds → Klν, with

O(a) improved Wilson at a single a = 0.04 fm.

# Physical c, quite heavy b (no need of an important 1/mH
extrapolation) and 3 light masses mminπ = 526MeV (very heavy).
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* value: 0.232(23)

B to π, extrapolated to the physical values
(Preliminary analysis; errorbar estimates are conservative)
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Extrapolated value: f
+
(0) = 0.733(38)

D to K
Chiral extrapolation from mπ = 856 MeV (circles), 690 MeV (squares), and 526 MeV (triangles)

Becirevic-Kaidalov parametrization

fB→π+ (0) = 0.232(23)∗ fB→K+ (0) = 0.29(3)∗

fD→π+ (0) = 0.668(38)∗ fD→K+ (0) = 0.733(38)∗ fDs→K
+ (0) = 0.598(20)∗

* Systematic error analysis still in progress.



D meson decays: Vcd(s) from D → π(K)lν

Br(D → Keν) + lattice form factors → best determination of Vcs
FNAL/MILC, PRL95(2005)122002

+ CLEO-c |Vcs| = 1.015± 0.015± 0.106

Br(D → πeν) + (improved) lattice form factors → potentially best

determination of Vcd



D meson decays: Vcd(s) from D → π(K)lν

Br(D → Keν) + lattice form factors → best determination of Vcs
FNAL/MILC, PRL95(2005)122002

+ CLEO-c |Vcs| = 1.015± 0.015± 0.106

Br(D → πeν) + (improved) lattice form factors → potentially best

determination of Vcd

Semileptonic-leptonic decays ratios

1

Γ(D+ → lν)

dΓ(D → πlν)(q2)

dq2
and

1

Γ(Ds → lν)

dΓ(D → Klν)(q2)

dq2

* independent of |Vcq | → consistency check

* Smoother chiral extrapolation to the physical pion mass.



D meson decays: Vcd from D → πlν

ETMC Nf = 2 Preliminary

# Twisted mass QCD at maximal twist.

* a ' 0.086 fm and V ∗ T = 243 ∗ 48.

* Four values of amh = 0.25(∼ amc)− 0.46 and six values of

amseal = amval.l (0.3 ≤ mπ(GeV ) ≤ 0.6).

* Use all-to-all propagators computed with a stochastic method and

twisted boundary conditions.
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# Twisted mass QCD at maximal twist.

* a ' 0.086 fm and V ∗ T = 243 ∗ 48.

* Four values of amh = 0.25(∼ amc)− 0.46 and six values of

amseal = amval.l (0.3 ≤ mπ(GeV ) ≤ 0.6).

* Use all-to-all propagators computed with a stochastic method and

twisted boundary conditions.

# BK parametrization:

f+(q2) = f(0)
(1−q2/M2

D∗ )

(
1− αq2/M2

D∗

)
f0(q

2) = f(0)
(1−q2/(βM2

D∗ ))

# Extrapolation (linear) to physical

π / interpolation to physical D.
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D meson decays: Vcd from D → πlν

Becirevic, Haas and Mescia Nf = 2 Preliminary

# Improved O(a) Wilson

* Configurations from QCDSF

* a ' 0.08 fm, mseaπ = 770, 585, 380 MeV and mh close to mc.

# Double ratio

* D −meson at rest and inject momenta to the pion.

* Twisted boundary conditions

* NP renormalization mostly cancelled



D meson decays: Vcd from D → πlν

Becirevic, Haas and Mescia Nf = 2 Preliminary

# Improved O(a) Wilson

* Configurations from QCDSF

* a ' 0.08 fm, mseaπ = 770, 585, 380 MeV and mh close to mc.

# Double ratio

* D −meson at rest and inject momenta to the pion.

* Twisted boundary conditions

* NP renormalization mostly cancelled
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2
’s  for D→πlν decay

# Qualitative change in the shape

of f+ and f0 when mπ goes to

physical value.

(polar behaviour more visible)

# Extrapolation (linear and HMχPT)

to physical π.

* No sensitive to logarithms





D meson decays: Vcd from D → πlν

source [fD→π+ (q2 = 1GeV 2)/fD+ ]GeV −1

ETMC (linear fit) Nf = 2 4.39(31)stat. Preliminary

Becirevic et al. (linear fit) Nf = 2 3.76(54) Preliminary

Becirevic et al. (HMχPT fit) Nf = 2 4.32(56) Preliminary

reconstructed from CLEO 4.51(53)

# Direct experimental determination of fD→π+ /fD+ .
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D meson decays: Vcd from D → πlν

source [fD→π+ (q2 = 1GeV 2)/fD+ ]GeV −1

ETMC (linear fit) Nf = 2 4.39(31)stat. Preliminary

Becirevic et al. (linear fit) Nf = 2 3.76(54) Preliminary

Becirevic et al. (HMχPT fit) Nf = 2 4.32(56) Preliminary

reconstructed from CLEO 4.51(53)

# Direct experimental determination of fD→π+ /fD+ .

# Need study of discretization errors.

♣ ETMC result for D → Klν:

fD→π+ (0)/fD→K+ (0) = 0.90± 0.05stat.

FNAL/MILC (2005), Nf = 2 + 1 fD→π+ (0)/fD→K+ (0) = 0.87± 0.03± 0.09



4. B0 − B̄0 mixing: ∆Md,s, ∆Γd,s and ξ

# theoretically: In the Standard Model

B
0

B̄
0

W

W
H∆B=2

eff

∆Mq |theor. ∝

|V ∗tqVtb|2 f2
Bq
B̂Bq

;
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W
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eff

∆Mq |theor. ∝

|V ∗tqVtb|2 f2
Bq
B̂Bq

# Non-perturbative input in B0 − B̄0 analysis

8
3
f2
Bq
BBq (µ)M2

Bq
= 〈B̄0

q |OL|B0
q 〉(µ) with OL ≡ [bi qi]V−A[bj qj ]V−A

For ∆Γs one needs either OS and OL, or O3 and OL

OS≡[bi si]S−P [bj sj ]S−P O3≡[bi sj ]S−P [bj si]S−P

;
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# theoretically: In the Standard Model

B
0

B̄
0

W

W
H∆B=2

eff

∆Mq |theor. ∝

|V ∗tqVtb|2 f2
Bq
B̂Bq

# Non-perturbative input in B0 − B̄0 analysis

8
3
f2
Bq
BBq (µ)M2

Bq
= 〈B̄0

q |OL|B0
q 〉(µ) with OL ≡ [bi qi]V−A[bj qj ]V−A

For ∆Γs one needs either OS and OL, or O3 and OL

OS≡[bi si]S−P [bj sj ]S−P O3≡[bi sj ]S−P [bj si]S−P

# B0 − B̄0 system very sensitive to NP effects. Recent suggestions of

NP effects in B0
s − B̄0

s and B0
d − B̄0

d mixing:

Bona et al. (UTfit Col.), arXiv:0803.0659; E. Lunghi and A. Soni, arXiv:0803.0512

E. Buras and A. Guadagnoli, arXiv:0805.3887



* talk by A.Soni: SM prediction for sin(2β) using ∆F = 2 inputs (ξ and

B̂K) disagrees by ∼ 2σ with direct experimental measurements via

tree-level Bd → ψKs and penguin-loop b→ s decays

** Independent of (controversial) |Vub|

** It would imply the existence of a BSM CP-odd phase

fBs
√
BBs

fBd
√
BBd︸ ︷︷ ︸
ξ



* talk by A.Soni: SM prediction for sin(2β) using ∆F = 2 inputs (ξ and

B̂K) disagrees by ∼ 2σ with direct experimental measurements via

tree-level Bd → ψKs and penguin-loop b→ s decays

** Independent of (controversial) |Vub|

** It would imply the existence of a BSM CP-odd phase

Important input for SM tests: ξ

∣∣∣∣VtdVts
∣∣∣∣ = fBs

√
BBs

fBd
√
BBd︸ ︷︷ ︸
ξ

√
∆MdMBs

∆MsMBd

* Many uncertainties in the theoretical (lattice) determination cancel

totally or partially in the ratio



B0 − B̄0 mixing: Nf = 2 + 1 Preliminary

FNAL/MILC

(talk by R. Todd Evans)
HPQCD

# Calculation of all the matrix elements needed to determine

∆Md,s, ∆Γd,s and ξ

# MILC configurations: Asqtad for light sea (and valence)

quarks (mmin.π ' 230MeV)

b quarks Fermilab NRQCD

a(fm) 0.15, 0.12, 0.09 0.12, 0.09

light sea masses 3 + 4 + 2 4 + 2

light valence masses 6 for each sea mass full QCD

# Simultaneous fits of the 2-pt and 3-pt correlators for any

four-fermion operator

# Perturbative renormalization: one loop.



B0 − B̄0 mixing: Nf = 2 + 1 Preliminary results for fBq

√
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* Very small discretization errors

and very mild light quark mass

dependence.

# Very good agreement between both coll. → small systematic

associated with heavy quark discretization.

# FNAL/MILC: Simultaneous chiral and continuum extrapolation with

SχPT at NLO + NNLO analytic terms:

ξ = 1.211± 0.038± 0.024estimate



5. Heavy quark masses

Charm quark mass mc

HPQCD, Chetyrkin, Kühn, Steinhauser & Sturm, arXiv:0805.2999

Nf = 2 + 1 (talk by P. Lepage)

# Method analogous to the extraction of mc from dispersion relations using

perturbative determination of zero-momentum moments of current-current

correlators and experimental data from e+e− → hadrons.

# mc extracted from

* moments of charm-quark P , V and A correlators

* 4-loop continuum perturbation theory
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# Method analogous to the extraction of mc from dispersion relations using

perturbative determination of zero-momentum moments of current-current

correlators and experimental data from e+e− → hadrons.

# mc extracted from

* moments of charm-quark P , V and A correlators

* 4-loop continuum perturbation theory to determine gn(αMS(µ), µ/mc)
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* Cut-off effects decrease with n,

but n should be small enough so

perturbation theory is applicable.

* Averaging over n = 6, 8, 10:



Charm quark mass mc
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# Interesting application: Non perturbative calculation of

renormalization coefficients for H −H and H − L currents.



Charm quark mass mc

HPQCD Nf = 2 + 1 (talk by I. Allison) in progress

# Different approach using also HISQ formulation.

* Use 2-loop perturbation theory (traditional and high-β techniques).

mMS
c (3GeV ) = 0.983(25)GeV

* Determination of mc/ms → extraction of ms.

TWQCD, PLB 651(2007)171 Nf = 0

# Exploratory study: DW quarks in a small volume/fine lattice.

mMS
c (mc) = 1.16± 0.04∗GeV from ηc m

MS
b (mb) = 4.65± 0.05∗GeV from Υ(9460)

∗ error is an estimate not including all systematics.

# Prediction for mηb = 9383(4)(2)MeV agrees with recent experimental

measurement by BaBar, arXiv:0807.1086: mηb(1S) = 9388.9+3.1
−2.3 ± 2.7MeV
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Bottom quark mass mb

# The extraction of |Vub| from inclusive decays is extremely sensitive

to the value of mb

Guazzini, Sommer and Tantalo, JHEP 0801(2008)076 Nf = 0

# Same setup as for the fBs calculation: HQET and SS method.

* RGI mass fixed using physical mBs

* Non-perturbative renormalization

MRGI
b = 6.88(10)GeV → mMS

b (mb) = 4.42(6)GeV

ALPHA, JHEP 0701 (2007) 007 Nf = 0

# NP HQET: static + 1/m

MRGI
b = 6.758(86)GeV → mMS

b (mb) = 4.347(48)GeV

Need accurate unquenched determination



6. Conclusions and outlook

# Precise lattice calculations of hadronic matrix elements in the heavy

sector are needed for extracting Standard Model parameters and

are crucial for testing the SM.

* Complementary to direct searches in studying and constraining

possible NP.

* Possible indications of NP already in leptonic decays and B0 − B̄0

mixing: fDs , ξ, |Vcb|, |Vub|, mb , . . .

** Priority should be given to improvements in the calculations

of the relevant parameters.

* Precision needs Nf = 2 + 1 and all systematic errors addressed.
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** Priority should be given to improvements in the calculations
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* Precision needs Nf = 2 + 1 and all systematic errors addressed.

# Important progress made in calculations of decay constants, form

factors for B semileptonic decays and mc ...

# ... more results in progress for D form factors, B0 mixing and mb.



# Current and future calculation benefiting from

* Improved of actions and operators.

* Improved statistics: all-to-all propagators, RW sources, smearing

techniques ...

* Improved methods: Twisted boundary conditions,

model-independent parametrization of form factors, double ratios.



# Current and future calculation benefiting from

* Improved of actions and operators.

* Improved statistics: all-to-all propagators, RW sources, smearing

techniques ...

* Improved methods: Twisted boundary conditions,

model-independent parametrization of form factors, double ratios.

# B0 mixing results can be extended to matrix elements of

four-fermion which only contribute BSM. Same for short-distance

contributions to D0 mixing.
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B0 and D0 mixing beyond the SM

# Effects of heavy new particles seen in the form of effective operators

built with SM degrees of freedom

H∆F=2
eff =

5∑
i=1

CiQi +

3∑
i=1

C̃iQ̃i
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where ψq is a heavy fermion field (b or c) and ψf a light fermion field.

• Ci, C̃i Wilson coeff. calculated for a particular BSM theory

• 〈F̄ 0|Qi|F 0〉 calculated on the lattice
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Bećirević et al, JHEP 0204 (2002)

# Same programme as for the SM can be applied for extra operators

# FNAL/MILC:

* Existing open propagator can be used for the B0 mixing analysis.

* Same code can be used for short-distance contributions to D0 mixing. Need matching calculation.

# HPQCD: Same code can be used for the B0 mixing analysis.

* One-loop renormalization coefficients already calculated

E. G. ,J. Shigemitsu and H. Trottier, arXiv:0804.1557



Charm quark mass mc

HPQCD, Chetyrkin, Kühn, Steinhauser & Sturm, arXiv:0805.2999

Nf = 2 + 1 (talk by P. Lepage)

# In producing the moments one must control O((amc)n) and

parameters’ tuning errors (a, amc).

Define reduced moments

lattice continuum PT

Rn ≡


G4/G

(0)
4 g4/g

(0)
4 for n = 4,

amηc
2am0c

(
Gn/G

(0)
n

)1/(n−4) rn(αMS , µ/mc)

2mc(µ)/mηc
for n ≥ 6,

with rn =
(
gn/g

(0)
n

)1/(n−4)
and G

(0)
n /g(0)n moments at first order in

lattice/continuum PT → reduce discretization effects.



a−1 am0u/d am0s am0c L/a T/a Ncfg

1.31 0.013 0.066 0.850 16 48 631

1.60 0.014 0.055 0.660 20 64 595

2.26 0.007 0.037 0.430 28 96 566

# Extra simulation performed to test sea quark dependence (also PT

estimate) and finite volume effects (am0,u/d = 0.007, L/a = 24) and

(am0,u/d = 0.028, L/a = 20) → errors < 0.2%.

# Analysis repeated with different correlators:

j
(1)
µ ≡ ψ̄c(x+ aµ̂)γµψc(x); j

(µ)
µ ≡ ψ̄c(x)γµψc(x); j

(5µ)
5µ ≡ ψ̄c(x)γ5γµψc(x)

Agreement for different

momenta/correlators

→ check of systematic errors

and negligible taste-changing

effects



B0 − B̄0 mixing

ETMC, JHEP 0805(2008)065 Nf = 2

# Non-perturbative renormalization and Renormalization Group running

of relevant four-fermion operators with O(a) improved Wilson fermions

completed.

* Static (HYP2) heavy quarks

* Parity odd operators:

** Protected from non-continuum like operator mixing

** Can be mapped to parity even operators via addition of a chirally tm term.

* Schrödinger Functional methods.

# Limitations current calculation

* Increased statistical fluctuations

at the three strongest couplings

* Need control over continuum

extrapolation

∣∣∣∣∣
* Improving statistics at the three strongest

couplings

* Simulations closer to the continuum

* Removing O(a) discretization effects

(improving operators)


