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# In conjunction with experimental measurements ...

S

and tagged angular analysis of B — J/ V¢
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* BO — BY mixing observables
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# In conjunction with experimental measurements ...

* BY — BY mixing observables

Observable | source | % error
AMg CDF <1
AM, PDGO7 <1

* Leptonic decays branching fractions CLEO-c, 0806.2112

Observable % error in corresponding decay constant
Br(Ds — uv)/ Br(Ds — Tv) 3/6.5
Br(D — uv) 4

* Semileptonic decays branching ratios BaBar, Belle, CLEO-c

Observable % error in corresponding CKM element

Br(D — K(m)ev)
Br(B — 7lv)
Br(B — D*lv)

1.5/4.5

6
1.5




Non-perturbative theory inputs still main source of error

— Need to reduce lattice errors to < 5%

# Ny =2+ 1 calculations + all the sources of systematic errors
analyzed: chiral extrapolation, discretization (continuum limit),

renormalization, finite volume, ...

* Results relevant for phenomenology rely on xPT to go to physical
masses — validity of yPT techniques to have accurate results



Non-perturbative theory inputs still main source of error

— Need to reduce lattice errors to < 5%

# Ny =2+ 1 calculations + all the sources of systematic errors
analyzed: chiral extrapolation, discretization (continuum limit),

renormalization, finite volume,

* Results relevant for phenomenology rely on xPT to go to physical
masses — validity of yPT techniques to have accurate results

# Hints of discrepancies between SM expectations and some
flavour observables (see, for example, E. Lunghi, talk at BEACHOS)

* BY mixing phase uTfit coll., arXiv:0803.0659
* fDS B. Dobrescu and A. Kronfeld, arXiv:0803.4340 (talk by A. Kronfeld)

* sin(28) E. Lunghi and A. Soni, arXiv:0803.0512 (talk by A. Soni)

Improvement in calculation of decay constants, &
and form factors needed for the extraction of
V. and V,, Is crucial.




2. Decay constants: P — [v

w
P
2.1. fp and fp_: test of lattice QCD
2.2. fp and fBS



fp and fp_ : test of lattice QCD

# Charm quark is in between the heavy and light mass regimes
* Heavy quark effective theories do not give accurate results
* Relativistic descriptions: Maintain cut-off effects under control
requires

** Improved actions and currents.
** Fine enough lattices
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# Fermilab action: Relativistic clover action with Fermilab
(HQET) interpretation

* Smooth interpolation between static limit and light quarks
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Heavy quark formalisms for D mesons

# Fermilab action: Relativistic clover action with Fermilab
(HQET) interpretation

* Smooth interpolation between static limit and light quarks

# HISQ (Highly improved staggered action ): No tree level a? errors
(Asqgtad) 4 reduction of O(a?as) and O((amg)?*) errors (by a
factor of ~ 3)

— Very precise results for charm physics: charmonium and D

# Twisted mass QCD at maximal twist (tuning a single parameter)

* Meson masses and decay constants O(a) improved.
* No need for renormalization for decay constants (PCACQC)
* Mass renormalization multiplicative and calculated NP

# O(a) improved Wilson: improvement in action and currents.



fp and fp_ : test of lattice QCD

FNAL/MILC

NfZQ—‘,—l

(talk by P. Mackenzie) Preliminary

# Reanalysis of existing data completed with all systematic errors

analyzed.

Heavy valence quarks: Fermilab action

Light quarks: improved staggered (Asqgtad)

# MILC ensembles: 3 values of a = 0.15,0.12,0.09 fm with 3-5 light sea
quark masses (down to ms/10).

* For each sea quark mass: 8-12 valence quark masses (including full
QCD points).
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* pxl very close to 1 (< 0.3% error)



fp and fp_ : test of lattice QCD

FNAL/MILC | N; =24 1| (talk by P. Mackenzie) Preliminary

# Reanalysis of existing data completed with all systematic errors
analyzed.
Heavy valence quarks: Fermilab action
Light quarks: improved staggered (Asqgtad)

# MILC ensembles: 3 values of a = 0.15,0.12,0.09 fm with 3-5 light sea
quark masses (down to ms/10).

* For each sea quark mass: 8-12 valence quark masses (including full
QCD points).

# Renormalization partially NP: ZA4 — pA4\/ZQQqu

& ZQQ(qq) calculated NP (1.4% error)

Q — small error ~ 1.4%
* pxl very close to 1 (< 0.3% error)

7 Simultaneous chiral and continuum extrapolation: | Staggered xPT

k NLO 4+ analytic NNLO 4+ explicit O(a?)
* Remove the dominant light discretization errors



fp and fp_:

FNAL/MILC

test of lattice QCD

Nf — 2+ 1| (talk by P. Mackenzie) Preliminary

# Simultaneous fit to all the data: — fp and fp_

D; joint fit; ratio_gsq.2601_LsLaQ2Q4_1.fit

1 . 1 T T T T | T T T | T T T T

0.8 *Z/dbf=63/gb | T T T T T T T T ~ .
| 0L = 1.0e+00 i - 1
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X L i - _
© C{raginoen) | 0.0097 0.0194 ©.029 ]
o{myem,ms .03 .02 ©.01
o - ° <I>D_(ms‘,.ml_.m5). plotted at myg, B 0.8 007 ©.005 —
X &p(ms,.m;,mg), plotted at m, - 0.0124 0.0062 0.0031 E
........ ® e _ i . — /%, (m*'=m,; m**=rfi;+m-m,)|
0.6 continuum: p, (m™=m,; m™=m,) — - Xx/dof=34/96 # extrap B
— &, (m*'=m,; m**=m,+Ri-m,) - CL = 1.0e+00 b
— O 7 1 1 1 1 | 1 1 1 | 1 1 1 1
+ extrap 3
L N B 0.00 0.05 0.10 0.15
fine
0.00 0.05 0.10 0.15 m, ry x (2/25°)

my ry X (Zm/zgne)

# Fits sensitive to logarithms



fp and fp_ : test of lattice QCD

FNAL/MILC | N; =24 1| (tak by P. Mackenzie) Preliminary

Error budget (in %)

source fp fp. fo,/fp
statistics 1.5 1.0 1.0
inputs (ry, Mg g.4) 2.1 1.4 0.6
inputs (m,) 2.7 2.7 <0.1
renorm. 1.4 1.4 <0.1
HQ disc. 2.7 2.7 0.3
LQ disc. 2.6 1.2 1.6
FV 0.6 0.2 0.6
total syst. 5.3 4.5 1.8

fp = 207(11)MeV fp, = 249(11)MeV

fp./fp =1.200(27)




fp and fp_ : test of lattice QCD

FNAL/MILC | Ny =241

(talk by P. Mackenzie) Preliminary

Error budget (in %)

source fo fp. fo./fp
statistics 1.5 1.0 1.0
inputs (ry, Mg g.4) 2.1 1.4 0.6
inputs (m,) 2.7 2.7 <0.1
renorm. 1.4 1.4 <0.1
HQ disc. 2.7 2.7 0.3
LQ disc. 2.6 1.2 1.6
FV 0.6 0.2 0.6
total syst. 5.3 4.5 1.8

fp = 207(11)MeV

# Future improvements:

* Smaller lattice spacings
(existing: a = 0.06 fm,
generating: a =0.04 fm)

* Quadruple number of
configurations

* Technical improvements to
reduce statistical errors.

* Improved determination of
inputs: r1,mec

fp. = 249(11)MeV

fp,/fp =1.200(27)




fp and fp_ : test of lattice QCD

HPQCD, PRL 100(2008)062002 Nf =2+1

Charm and light valence quarks: Highly improved staggered (HISQ)

# MILC ensembles: 3 values of a = 0.15,0.12,0.09 fm with 3-5 light sea
quark masses (down to ms/10) (only full QCD).
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fp and fp_ : test of lattice QCD

HPQCD, PRL 100(2008)062002 Nf =2+1

Charm and light valence quarks: Highly improved staggered (HISQ)

# MILC ensembles: 3 values of a = 0.15,0.12,0.09 fm with 3-5 light sea
quark masses (down to ms/10) (only full QCD).

# No renormalization needed (PCAC): fpm% = (mq + mp)(0|aysb|P)

# Bayesian fit of the masses and decay constants to the chiral and

continuum limits: continuum NLO ChPT + O(a?)

O(a?) o< asa?,ala?, aza?log(zy q4), a2aTy g With z4 o< my

fp. = (241 £ 3)MeV fp = (208 £ 4)MeV fp./fp = 1.162(9)

# Very good agreement with FNAL/MILC.
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ETMC | Nf = 2| (tak by C. Tarantino) Preliminary
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masses (full QCD) ms/5 — ms/2, several ms and m. around the
physical ones (interpolation)



fp and fp_ : test of lattice QCD

ETMC | Nf = 2| (tak by C. Tarantino) Preliminary

# Twisted mass QCD at maximal twist.

# Lattice spacing: a =0.1 fm,0.0855 fm,0.0667 fm with light quark
masses (full QCD) ms/5 — ms/2, several ms and m. around the
physical ones (interpolation)

# Combined fit: meson mass dependence (NLO) 4+ O(a?) terms

* Use SU(2) HMxPT
* Decay constants extracted from g 54
the ratios: Pl s thetamiaeiny
Bl sy — a0, physical M,
Ri = fo,/Mp, /fx i, S

Ry = [fo.V/Nb, /fx] / [ fov/3D /]

T ST A I R
0,1 0,2 0,3 04 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2
r0 mn

(smooth chiral behaviour) N




ETMC

fp and fp_ : test of lattice QCD

Ny =2

(talk by C. Tarantino) Preliminary

fp = (197 £ 7 £ 12)*MeV fp. = (244 £ 4 £ 11)*MeV

fp./fp = (1.24 +0.04 + 0.02)*

* Estimate of the errors is preliminary: statistics 4+ systematics
(continuum extrapolation and chiral extrapolation).

# Systematic errors dominated by cut-off effects.

* Simulations at a ~ 0.05 fm are planned.



fp and fp_ : test of lattice QCD

ETMC | Ny =2

(talk by C. Tarantino) Preliminary

fp = (197 £ 7 £ 12)*MeV fp. = (244 £ 4 £ 11)*MeV

fo./fp = (1.24 4 0.04 £ 0.02)*

* Estimate of the errors is preliminary: statistics 4+ systematics
(continuum extrapolation and chiral extrapolation).

# Systematic errors dominated by cut-off effects.

* Simulations at a ~ 0.05 fm are planned.

# Good agreement with complete Ny = 2 + 1 calculations.

* But still missing part of the vacuum polarization effects.



Disagreement for fp_ between lattice and experiment

QCDSF (N, = 0) (2007) QCDSF (N, = 0) (2007)
ALPHA (N, = 2), preliminary* A Becirevic,Haa;N_lescia
(no chiral extrap.) (N; = 2), preliminary*
[y ETMC (N, = 2), prelimingry* A ETMC (N, = 2), preliminany*

——— FNAL-MILC (N, = 2+1) —— FNAL-MILC (N, = 2+1)

o HPQCD (N, = 2+1) —— HPQCD (N, = 2+1)

P R CLEO-c/Belle average [ — CLEO-c, 2008
| L L L L | L L | L | L |
250 300 175 200 225 250
fDQ (MeV) fy (MeV)

# > 3o discrepancy between experiment and HPQCD fp,
( 1.60 with FNAL/MILC

and all lattice numbers smaller than experiment).

QTnDS — Moy,

* Experiment - HPQCD agree in fgx, fr, fo, mp, mp,,
(with errors < 2%).

2mp —moy,



Disagreement for fp_ between lattice

and experiment

ary*

ry*

) QCDSF (N, = 0) (2007)
ALPHA (N; = 2), prelimin

(no chiral extrap.)
[y ETMC (N, = 2), preliming

—_—— FNAL-MILC (Nf =2+1)

P HPQCD (N, = 2+1)
P R CLEO-c/Belle average
| |
250 300
5, (Mev)

QCDSF (N, = 0) (2007)

»

»

Becirevic,Haas,Mescia
(N; = 2), preliminary*

ETMC (N, = 2), preliminany*

175

— o— FNAL-MILC (N, = 2+1)
—e— HPQCD (N, = 2+1)
- = CLEO-c, 2008
\ \ \
200 225 250
f, (MeV)

# > 3o discrepancy between experiment and HPQCD fp,
( 1.60 with FNAL/MILC

and all lattice numbers smaller than experiment).

* Experiment - HPQCD agree in fgx, fr, fo, mp, mp,,
(with errors < 2%).

QTnDS — Moy,

2mp —moy,

# Good check: other Ny = 2 + 1 calculations with < 5% accuracy

or better.



Disagreement for fp_ between lattice and experiment

# EXxperimental issues to be addressed:
* Experiment uses V.s = V,,4/PDG’s global CKM fit.

* Radiative corrections Ds — D*~v — uv~vy estimated to be 1%.



Disagreement for fp_ between lattice and experiment

# EXxperimental issues to be addressed:
* Experiment uses V.s = V,,4/PDG’s global CKM fit.
* Radiative corrections Ds — D*~v — uv~vy estimated to be 1%.

# Sensitive to BSM physics: Starting to see evidence of nonstandard
leptonic decays of Ds; mesons? ( )



S and [fp,

# Extraction of CKM matrix elements: B(B~ — 7 o,) « |Vipl?  f3
= N = S~~~
experiment lattice

# Decay constants needed in the SM prediction for processes potentially
very sensitive to BSM effects: for example, fp, for Bs — ptpu~

# B~ — v U, IS a sensitive probe of effects from charged Higgs bosons.
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interpretation
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Heavy quark formalisms for B mesons

# Fermilab action: Relativistic clover action with Fermilab (HQET)
interpretation

* Smooth interpolation between static limit and light quarks

# NRQCD: Discretized version of NR effective action improved through
O(1/M?), O(a?) and leading relativistic O(1/M?)

# Extrapolation method.: \
Relativistic simulations
fit functions determined bottom
at masses ~ m.,
by HQET

# Step Scaling Method (HQET):

* Simulate b in a small volume: calculate an observable O(Lg, my).

* Eliminate finite size effects through SS functions:

** o(L, s, mp) = %&Sf,ﬁﬁ) for s > 1 and m;,, < my

** Assume mild dependence of finite size effects on high energy scale

* Extrapolate SS functions in 1/mj to m,



Heavy quark formalisms for B mesons

# Fermilab action: Relativistic clover action with Fermilab (HQET)
interpretation

* Smooth interpolation between static limit and light quarks

# NRQCD: Discretized version of NR effective action improved through
O(1/M?), O(a?) and leading relativistic O(1/M?)

# Extrapolation method.: \
Relativistic simulations
fit functions determined bottom
at masses ~ m.,
by HQET

# Step Scaling Method (HQET):

* Simulate b in a small volume: calculate an observable O(Lg, my).

* Eliminate finite size effects through SS functions:

** o(L, s, mp) = %&Sf,ﬁﬁ) for s > 1 and m;,, < my

** Assume mild dependence of finite size effects on high energy scale

* Extrapolate SS functions in 1/mj to m,

# HQET: static + 1/M



FNAL/MILC [ Ny =241

S and [fp,

(talk by P. Mackenzie) Preliminary

Heavy valence quarks: Fermilab action
Light quarks: improved staggered (Asqgtad)

# Same set-up as for the fp, fp, determination.



¢ x (r1)3/2

FNAL/MILC

S and [fp,

Nf:2—|—1

(talk by P. Mackenzie) Preliminary

Heavy valence quarks: Fermilab action
Light quarks: improved staggered (Asqgtad)

# Same set-up as for the fp, fp, determination.

1.2 —

1.0

T T T T T T T T T T T T
x2/dot=12/79 | |
| CL = 1.0e+00

0, ¢, X coarse
0, ¢, X fine

o q’E(mx'mx'mS)

. é5 (m*™'=mg m**=m,)

< B, s 3

continuum; ®p (mva-l=mx: m**=m, +m-m,)
+ extrap

| 1 | 1 1 1 1

¢ &g (mg,m,mg), plotted at mg, |
X &p(mg,m;,mg), plotted at m,

0.00

0.05 0.10
my ry X (Zm/zglne)

0.15

* After chiral and continuum
extrapolations with SxPT

fB=(195+11)MeV  fp = (243 £ 11)MeV
fB./fB =1.2540.04



¢ x (r1)3/2

FNAL/MILC

Nf:2—|—1

S and [fp,

(talk by P. Mackenzie) Preliminary

Heavy valence quarks: Fermilab action
Light quarks: improved staggered (Asqgtad)

# Same set-up as for the fp, fp, determination.

1.0

T T T T T T T T T T T T
x2/dot=12/79 | |
| CL = 1.0e+00

0, 9, X coarse
0, ¢, X fine

o q’E(mx'mx'mS)
¢ &g (mg,m,mg), plotted at mg, |
X &p(mg,m;,mg), plotted at m,

,,,,,,,, val _ q sea_
continuum; &g, (mm Msi m m,)
— &5 (m

=m,; m**=m,+m-m,)
| + extrap

0.00

0.05 0.10

‘ 0.15
my ry X (Zm/zglne)

* After chiral and continuum
extrapolations with SxPT

* Error dominated by statist. and light
quark discretization errors -

chiral extrap.

* Error in the ratio fz /fp, is 3%

fB=(195+11)MeV  fp_ = (243 £ 11)MeV
fB./fB =1.2540.04



FNAL/MILC

S and [fp,

Nf:2—|—1

(talk by P. Mackenzie) Preliminary

Heavy valence quarks: Fermilab action
Light quarks: improved staggered (Asqgtad)

# Same set-up as for the fp, fp, determination.

¢ x (r1)3/2

1.0

continuum

T T T T T T T T
x2/dot=12/79 |
| CL = 1.0e+00

| + extrap

0, 9, X coarse
0, ¢, X fine

o q’E(mx'mx'mS)
© &g (mg,m,mg), plotted at mg,

X &p(mg,m;,mg), plotted at m, ]

&g, (m™'=m,; m**=m,)
%p (m"™=m,; m*=m,+m-m,)

0.00 0.05

0.10

my ry X (Zm/zglne)

0.15

* After chiral and continuum
extrapolations with SxPT

* Error dominated by statist. and light
quark discretization errors -+

chiral extrap.

* Error in the ratio fg /fg, is 3%

fB=(195+11)MeV  fp_ = (243 £ 11)MeV
fB./fB =1.2540.04

agree with HPQCD, PRL 95(2005)212001

fB = (216 £ 22)MeV  fp, = (260 £26)MeV  fp./fp = 1.20 + 0.03

HPQCD errors dominated by higher-order perturbative renormalization



/B,

ALPHA | Ny =0

# Action and currents: O(a) improved Wilson action.



/B,

ALPHA | Ny =0

# Action and currents: O(a) improved Wilson action.

extrapolation+static
M. Della Morte et al, JHEP 0802(2008)078

* Continuum static approximation
-+ relativistic QCD with masses
around m. — interpolation to
the physical point of Bg

3/2 Fpg/mpg
"o Cpg(M/AP )_A(l—i_romps)

* 10% correction of the slope at
the physical b quark mass.



ALPHA | Ny =0

/B,

# Action and currents: O(a) improved Wilson action.

extrapolation+static
M. Della Morte et al, JHEP 0802(2008)078

* Continuum static approximation
-+ relativistic QCD with masses
around m. — interpolation to
the physical point of Bg

3/2 FPS\/TS)_A(:[_'_

-
0 Cps(M/A 7“omps)

* 10% correction of the slope at
the physical b quark mass.

SSM+-static
D. Guazzini et al, JHEP 0802(2008)078

* Combine HQET and Step Scaling
Method (SSM)

** SS functions calculated for
several masses around m. and
static limit — interpolation to Bs

* Extrapolation in 1/(Lmy)
linear ~ quadratic

* Corrections to the static limit
very small at the b quark mass.



fB, ALPHA |N; =0

extrapolation+-static SSM+-static

fB, = 191(6)MeV fB., = 193(7)MeV

# Both results are in very good agreement
* Also interesting to compare with HQET including 1/m corrections.

# Inclusion of static point improves control over heavy quark
mass dependence



fB, ALPHA |N; =0

extrapolation+-static SSM+-static

fB, = 191(6)MeV fB., = 193(7)MeV

# Both results are in very good agreement
* Also interesting to compare with HQET including 1/m corrections.

# Inclusion of static point improves control over heavy quark
mass dependence

# Quenched effects very large in fp_:

~ 250 = ~ 190
—~—

quenching

* Promising methods to extend to unquenched simulations



RBC/UKQCD

Static-Light studies in progress

Nf = 2+ 1| (talk by T. Ishikawa)

# Light quarks formulation: domain wall.

# fp and BY —

ETMC | Ny =2

BY mixing analyses in progress.

(talk by M. Wagner)

# Light quarks formulation: tmQCD.

# Spectrum results presented for Bs mesons.



3. Semileptonic decays

l
J=V,. A,
Vi W

Py Py

# | New lattice techniques

* Use of double ratios with cancellation of statistical and systematic
errors and simpler yPT expressions

* Choose an adequate (model independent) parametrization
of the shape to describe the form factor in the allowed ¢? region.

* Twisted boundary conditions allowed to go to smaller values of ¢2.



Exclusive B — D*[v: determination of |V_]

# B — D*lv rate depend on four form factors:

H3 (@) + H} (w) + H2 (@)
A)

FB=DP" (W) = ha, <w>\/

* ...but at zero recoil « |V pha(1)].

# EXxperimental errors at zero recoil for B — D*lv smaller than for
B — Dlv.

# |V.p| needed as an input in ex and rare kaon decays ( Br(K — nvi)).

* More relevant after progress in By .



Exclusive B — D*[v: determination of |V_]

FNAL/MILC (J. Laiho 2008) | Ny =2+1

# MILC configurations, Asqgtad for light quarks and Fermilab action
for heavy quarks.



Exclusive B — D*[v: determination of |V_]

FNAL/MILC (J. Laiho 2008) | Ny =2+1

# MILC configurations, Asqgtad for light quarks and Fermilab action
for heavy quarks.

- . 2 _ (D"|ev;v5b|B)(B|by;jvs5¢c|D*)
# New double ratio method: |ha(1)]° = (D*[674c[D*) (Blbyabl B)

* Cancellation of statistical and systematic errors (particularly,
renormalization mostly cancel).

* ha, given directly to all orders in HQET

* Ratio can be calculated at tuned m; . — computationally more
efficient than previous
FNAL/MILC method



Exclusive B — D*[v: determination of |V_]

FNAL-MILC (J. Laiho 2008) | Ny =2+1

1 ' ' | ' |
1
o medium coarse (0.15 fm) :
0.98— o coarse (0.12 fm) . 098 |
- o fine (0.09 fm) . L
0.96 x extrapolated value | 0.96 |

094 T 0.94-

J— 31

s (1)

0.88- n
0.88— - 0.86 B |
0.86,; ' 0'_1 ' 0{2 ' 0'_3 084 — o.(l)os | o.|01 | o.c|)215 | o.loz | 0.525 |
mn2 (Gevz) a

full QCD points
# Use NLO 4 analytic NNLO SyPT.

# Very mild chiral and continuum extrapolations

0.03



Exclusive B — D*[v: determination of |V_]

FNAL-MILC (J. Laiho 2008) | Ny =2+1

uncertainty ha, (1)

statistical 1.4%

Jr 0.9%

NLO vs partial NNLO ChPT fits 0.9%
discretization errors 1.5% hAl (1) — 0-921(13)stat.(21)syst.

kappa tuning 1.0%

perturbation theory 0.3%

up tuning 0.4%

Total 2. 7%




Exclusive B — D*[v: determination of |V_]

FNAL-MILC (J. Laiho 2008) | Ny =2+1

uncertainty ha, (1)

statistical 1.4%

Jr 0.9%

NLO vs partial NNLO ChPT fits 0.9%
discretization errors 1.5% hAl (1) — 0-921(13)stat.(21)syst.

kappa tuning 1.0%

perturbation theory 0.3%

up tuning 0.4%

Total 2.7%

# HFAG average: ha(1)|Vy| = (36.0 £0.6) x 1073
— Vep| = (38.8 & 0.6¢p &= 1.0400) X 1073

Inclusive determination is |V | = 41.7(0.7)t0ta; X 1073 (20 difference)



Exclusive B — D*lv: determination of |V_|

G.M. Divitiis, R. Petronzio and N. Tantalo | Ny = 0| Preliminary

# Twisted flavour boundary condit.: Calculate FE—P" (w) for w > 1.
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G.M. Divitiis, R. Petronzio and N. Tantalo | Ny = 0| Preliminary

# Twisted flavour boundary condit.: Calculate FE—P" (w) for w > 1.

# SS method: SS functions almost insensitive to initial heavy quark
mass my, for my; > me.



Exclusive B — D*[v: determination of |V_]

G.M. Divitiis, R. Petronzio and N. Tantalo | N; = 0| Preliminary

# Twisted flavour boundary condit.: Calculate FE—P" (w) for w > 1.

# SS method: SS functions almost insensitive to initial heavy quark
mass my for my > me.

| Veo | PP (w)

wf —f— ' | | - «— Matching experimental and
*r [ ] lattice data at w = 1.075

34 %

2l -9
LS

30

FB=P"(1) =0.917 4+ 0.008 4+ 0.005

* First error is statist. (including extrap.)

26

8
“I —4— ¥ 5 and second error is renorm. factors in
22 :—%—4 i
1 1.1 1.2 1.3 1.4 1.5 the Small V
BaBar '07 —&— Cleo '02 —&—1

BaBar '04 —e— this work normalized at w=1.075 —@—
Belle '01 —&—



Exclusive B — Div: determination of |V_|

G.M. Divitiis, E. Molinaro, R. Petronzio and N. Tantalo, JHEP
0710(2007)062; PLB 655(2007)45 | Ny =0

Form factors for H; — H¢lv with H; = B, D and [ = e, u, T

# Same methodology as for B — D*lv



Exclusive B — Div: determination of |V_|

G.M. Divitiis, E. Molinaro, R. Petronzio and N. Tantalo, JHEP
0710(2007)062; PLB 655(2007)45 | Ny =0

Form factors for H; — H¢lv with H; = B, D and [ = e, u, T

# Same methodology as for B — D*lv

01z = I I I Cthiswork | @
- CLEO —o—

0.1 BELLE —o—
_ 008t | # Twisted flavour boundary condit.
E sl | — Form factors for 1 < w = v; - vy < 2
A ¢
B oole Lo t i % . | where experimental data are available

00z | & LI S — no need for extrapolation

O 1 1 1 1 1 1

1 11 1.2 13 14 15 1.6



Exclusive B — Div: determination of |V_|

G.M. Divitiis, E. Molinaro, R. Petronzio and N. Tantalo, JHEP
0710(2007)062; PLB 655(2007)45 | Ny =0

# Calculation of AP—~5(w) (linear combination of the 2 form factors),
which parametrizes the difference between B — De, uve,, and B — D7,

- DB dF(B—>DTVT)
A can be extracted from dT(B—De,pve. 1)

— to be checked by experiment.

** Independent of CKM inputs.
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G.M. Divitiis, E. Molinaro, R. Petronzio and N. Tantalo, JHEP
0710(2007)062; PLB 655(2007)45 | Ny =0

# Calculation of AP—~5(w) (linear combination of the 2 form factors),
which parametrizes the difference between B — De, uve,, and B — D7,

- DB dF(B—>DTVT)
A can be extracted from dT(B—De,pve. 1)

— to be checked by experiment.

** Independent of CKM inputs.

* Lepton-flavour universality checks on the extraction of V.,
are possible.



Exclusive B — Div: determination of |V_|

G.M. Divitiis, E. Molinaro, R. Petronzio and N. Tantalo, JHEP
0710(2007)062; PLB 655(2007)45 | Ny =0

# Calculation of AP—~5(w) (linear combination of the 2 form factors),
which parametrizes the difference between B — De, uve,, and B — D7,

dI'(B—DTv;)
dI'(B—De,pve )

* AP—B can be extracted from

— to be checked by experiment.
** Independent of CKM inputs.

* Lepton-flavour universality checks on the extraction of V.,
are possible.

* The ratio of partially integrated rates Br(B — D7v;)/Br(B — Deve)
is @ good place to look for charged Higgs contributions to
low energy observables (J.F. Kamenik and F. Mescia, arXiv:0802.3790)



B — wlv: determination of |V,;|

2
Br(B — 7lv) = |Viyp|? [Jme® dg® f£ 77 (¢*)? x (known factors)

# Problem: Poor overlap in ¢° between lattice and experiment
— increases the total error

# Work in progress to reduce total error.



B — wlv: determination of |V,;|

2
Br(B — 7lv) = |Viyp|? [Jme® dg® f£ 77 (¢*)? x (known factors)

# Problem: Poor overlap in ¢° between lattice and experiment
— increases the total error

# Work in progress to reduce total error.

* Moving NRQCD: Generate data at low ¢°> + keeping statical
errors under control K. wong Lattice2007.



B — wlv: determination of |V,;|

2
Br(B — 7lv) = |Viyp|? [Jme® dg® f£ 77 (¢*)? x (known factors)

# Problem: Poor overlap in q2 between lattice and experiment
— increases the total error

# Work in progress to reduce total error.

* z-fit: combine lattice and experimental data over full ¢? region
using | model-independent | expression based on analyticity and unitarity

to describe the shape of the form factor
Arnesen et al.; Becher & Hill; P. Ball; P. Mackenzie and R. Van de Water

FNAL/MILC | Ny =24 1| (talk by R. Van de water) Preliminary




form factor (inr, units)

B — wlv: determination of |V,;|

FNAL/MILC | Ny =24 1| (talk by R. Van de water) Preliminary

# MILC configurations: a = 0.15 fm,0.12 fm,0.09 fm, full QCD for
nine light quark masses.

VH

m B CS,,LL(t:Jca tya ﬁ — ng;’g’ eiﬁ.Q’(Oﬂ' (O)VMOTB>

/T

pr=(0,0,0) — (1,1,1)

fperpendicular chiral-continuum extrapolation
g,=0.51 -- NLO rSxPT no seaanalytic term -- X /d.0.f.=0.81-- C.L.=0.65

i | \ | | | . aml)ams = (;.0124/(;.031 f?r‘1e S X P T

= am/am =0.0062/0.031 fine

e am/am = 0.005/0.05 coarse

\ am/am_= 0.007/0.05 coarse| -

Ry continuum —+ chiral extrapolation
1. . (separate fit for f, and f))
=% * NLO for f| (dominated by B* pole)
¥ NLO + mgEr + E2 + myE?

for /.
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B — wlv: determination of |V,;|

FNAL/MILC | Ny =241

(talk by R. Van de Water) Preliminary

Simultaneous fit of lattice and BABAR F, data

x’/d.of. = 0.46

Simultaneous z-fit to lattice

0.04—

0.035—

A

0.02—

0.015—

- and BaBar data gives a

4 parameter z-fit

e |attice data
» 12-bin BABAR datarescaled by |V | from 4-parameter z-fit

model independent

determination of |V,
* Lattice error
dominated by statistics

] ﬁﬂ . and chiral4continuum

q s extrapolation errors.
L _. (8% and 7%)

I
0004 E 003

V| = (2.94 £0.35) x 1073 | (12% error)




B — wlv: determination of |V,;|

FNAL/MILC | Ny =24 1| (talk by R. Van de water) Preliminary

Simultaneous fit of lattice and BABAR F, data

X/dof. = 0.46 Simultaneous z-fit to lattice
T I T I T I T T T .
0.04- pe——— . and BaBar data gives a
- e |atticedata g -
005l + 12-bin BABAR datarescaled by |V | from 4-parameter zfit | | mo d e| in d epen d c nt

determination of |V,;]

I : WH H“ I | ¥ Lattice error

dominated by statistics

°-°2_— ] ﬁﬂ i and chiral4+continuum
0,015 q . extrapolation errors.
S S M | (8% and 7%)

V| = (2.94 £0.35) x 1073 | (12% error)

# Improvements: Double number of configurations, randomize spatial
origin, finer lattice spacing, partial quenched points ...



B — wlv: determination of |V,;|

FNAL/MILC | Ny =24 1| (talk by R. Van de water) Preliminary

0.04
0.035
0.03

L
&
o 0.025

0.02

0.015

Simultaneous fit of lattice and BABAR F, data
x’/d.of. = 0.46

4 parameter z-fit
e |attice data
» 12-bin BABAR datarescaled by |V | from 4-parameter z-fit

H——o—H
H—o—H
H—e—~
——e——
——e—~—
——e—+—
——e—1+
P
——
f——
| |

I I 1 1 1 1 1
0004 E 003 -0.2 01 0 01  maE, 03

Vup| = (2.94 £ 0.35) x 103

Simultaneous z-fit to lattice
and BaBar data gives a
model independent
determination of |V,;]
* Lattice error
dominated by statistics
and chiral4continuum
extrapolation errors.

(8% and 7%)

(12% error)

# Improvements: Double number of configurations, randomize spatial

# 20 lower than inclusive determinations.

origin, finer lattice spacing, partial quenched points ...



B — wlv: determination of |V,;|

QCDSF | Ny = 0| Preliminary

# Calculate form factors for B — n(K)lv, D — w(K)lv and Ds — Klv, with
O(a) improved Wilson at a single a = 0.04 fm.

# Physical ¢, quite heavy b (no need of an important 1/myg
extrapolation) and 3 light masses m'" = 526MeV (very heavy).

. DtoK
Btom, eXtrapOI ated to the phyS| cal values Chiral extrapolation from m_= 856 MeV (circles), 690 MeV (squares), and 526 MeV (triangles)

(Preliminary analysis; errorbar estimates are conservative) 2 T T T T T T T T T
4 T T T T T T T

@

o
T T

|

 Extrapolated value: f, (0) = 0.733(38) ‘

N
N ol W
L B
g
:
-
]
/
/
b
\

£,0) m? [Gev™?

[y

o
T T

|

N
L
|

+ f,(0)athephysical my value: 0.232(23)‘

0 o1 oﬁz llthO‘[sGeV]] o‘.4 ‘ 0‘.5 ‘ o4 02 ¢ ,Omé 02 o4
Becirevic-Kaidalov parametrization
F277(0) = 0.232(23)" F27H(0) =0.29(3)"
ff_”T(O) — 0.668(38)* ff_’K(O) — 0.733(38)* ffsﬁK(O) — 0.598(20)*

* Systematic error analysis still in progress.



D meson decays: V.4 from D — n(K)lv

Br(D — Kev) 4+ lattice form factors — | best determination of Vg
FNAL/MILC, PRL95(2005)122002
+ CLEO-c |Ves| = 1.015 +0.015 £ 0.106

Br(D — mwev) + (improved) lattice form factors — potentially best
determination of V4



D meson decays: V.4 from D — n(K)lv

Br(D — Kev) 4+ lattice form factors — | best determination of Vg
FNAL/MILC, PRL95(2005)122002
+ CLEO-c |Ves| = 1.015 +0.015 £ 0.106

Br(D — mwev) + (improved) lattice form factors — potentially best
determination of V4

Semileptonic-leptonic decays ratios

1 dl'(D — wlv)(qg?) ; 1 dT'(D — Klv)(q?)
an
(Dt — ) dq? ['(Ds — lv) dq?

* lindependent of |V.,| | — consistency check

* Smoother chiral extrapolation to the physical pion mass.



D meson decays: V. ; from D — 7wlv

ETMC Nf:2 Preliminary

# Twisted mass QCD at maximal twist.
* a~0.086 fm and V x T = 243 % 48.

* Four values of amj, = 0.25(~ am.) — 0.46 and six values of
ami¢® = am?? (0.3 < mx(GeV) < 0.6).

* Use all-to-all propagators computed with a stochastic method and
twisted boundary conditions.



D meson decays: V. ; from D — 7wlv

ETMC Nf:2 Preliminary

# Twisted mass QCD at maximal twist.
* a~0.086 fm and V x T = 243 % 48.

* Four values of amj, = 0.25(~ am.) — 0.46 and six values of
ami¢® = am?? (0.3 < mx(GeV) < 0.6).

* Use all-to-all propagators computed with a stochastic method and
twisted boundary conditions.

2
B 2,
18 ° f @)
- 2,
16 ° fu@)

# BK parametrization: f o
- @)
2y __ f(0) _ 2/ 2

2\ _ f(0) B
fola™) = (1—-¢*/(BM3.)) o

[EEY
LI

f(@), ,(@)

# Extrapolation (linear) to physical
7 / interpolation to physical D. o (Gov?)



D meson decays: V. ; from D — 7wlv

Becirevic, Haas and Mescia | N; = 2 | Preliminary

# Improved O(a) Wilson

* Configurations from QCDSF
* a4~ 0.08 fm, m3¢* = 770,585,380 MeV and m, close to mec.

# Double ratio

* D — meson at rest and inject momenta to the pion.
* Twisted boundary conditions
* NP renormalization mostly cancelled



Becirevic, Haas and Mescia

D meson decays: V. ; from D — 7wlv

# Improved O(a) Wilson

Ny = 2 | Preliminary

* Configurations from QCDSF
* a4 ~0.08 fm, m3¢* = 770,585,380 MeV and my close to mc.

# Double ratio

* D — meson at rest and inject momenta to the pion.
* Twisted boundary conditions

* NP renormalization mostly cancelled
physical g”'s for D - Tiv decay

14 -

12

F.(q)

04 r

¢
¢ 7
§;§ e
E i ®m=770MeV
¢ m =585 MeV
mm=380MeV |

¢ [Gev]

# Qualitative change in the shape
of f+ and fo when m,; goes to
physical value.

(polar behaviour more visible)

# Extrapolation (linear and HMyPT)
to physical .
* No sensitive to logarithms






D meson decays: V., from D — wlv

source [fP77™(¢* =1GeV?)/fp+]GeV 1
ETMC (linear fit) Ny = 2 4.39(31)stqt. Preliminary
Becirevic et al. (linear fit) Ny = 2 3.76(54) Preliminary
Becirevic et al. (HMxPT fit) Ny = 2 4.32(56) Preliminary
reconstructed from CLEO 4.51(53)

# Direct experimental determination of ff*”/ijL.
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ETMC (linear fit) Ny = 2 4.39(31)stqt. Preliminary
Becirevic et al. (linear fit) Ny = 2 3.76(54) Preliminary
Becirevic et al. (HMxPT fit) Ny = 2 4.32(56) Preliminary
reconstructed from CLEO 4.51(53)

# Direct experimental determination of ff*”/ijL.

# Need study of discretization errors.



D meson decays: V., from D — wlv

source [fP77™(¢* =1GeV?)/fp+]GeV 1
ETMC (linear fit) Ny = 2 4.39(31)stqt. Preliminary
Becirevic et al. (linear fit) Ny = 2 3.76(54) Preliminary
Becirevic et al. (HMxPT fit) Ny = 2 4.32(56) Preliminary
reconstructed from CLEO 4.51(53)

# Direct experimental determination of ff*”/ijL.
# Need study of discretization errors.

& ETMC result for D — Klv:

f2=m(0)/ P~ (0) = 0.90 + 0.055¢4t.

FNAL/MILC (2005), Ny =2+1 f?~™(0)/f7~"(0) = 0.87 £0.03 £ 0.09



4. B — B mixing: AM,,, ATy, and ¢

# theoretically: In the Standard Model

W
AN
g} | M AMQ|th60r :
B B -, R
ViEV|?  f2 Bs
A [ / ¢
w Hé;?:z




4. B — B mixing: AM,,, ATy, and ¢

# theoretically: In the Standard Model

W
AN
g} | M AMQ|th60r :
BO BO ~
ViEV|?  f2 Bs
AN I ! AN
w HeAf?:Q

# Non-perturbative input in BY — BY analysis

S 3. Bp, (M3, = (BYOL|BY) (1) with Op = [b ¢'lv_albi ¢}y _a
For AI's one needs either Og and Oy, or O3 and Oy,

Og=[bi s']g_p[bd s?]s_p O3=[b? s’ g_p[bI s']g_p



4. B — B mixing: AM,,, ATy, and ¢

# theoretically: In the Standard Model

W
AVAVAV
) A]\4q |theor. X
B° B -, N
VigVaol?  f5, B,
AVAVAV I
w HeAf?:Q

# Non-perturbative input in B® — B? analysis
573, B, (WM3 = (BYOL|BY) (k) with Op =[biq']lv_a[bi ¢]lv_a

For AI's one needs either Og and Oy, or O3 and Oy,

Os=[b' s']s_p[bd 7]s_p O3=[bis7|s_p[bi s']s_p

# BY — BY system very sensitive to NP effects. Recent suggestions of
NP effects in BY — BY and BY — BY mixing:

Bona et al. (UTfit Col.), arXiv:0803.0659, E. Lunghi and A. Soni, arXiv:0803.0512
E. Buras and A. Guadagnoli, arXiv:0805.3887



. SM prediction for sin(23) using AF = 2 inputs (£ and
By) disagrees by ~ 20 with direct experimental measurements via
tree-level B; — v Kz and penguin-loop b — s decays

** Independent of (controversial) |[V,;]

** It would imply the existence of a BSM CP-odd phase

IB. /BB,




* talk by A.Soni: SM prediction for sin(28) using AF = 2 inputs (£ and
BK) disagrees by ~ 20 with direct experimental measurements via
tree-level B; — v Kz and penguin-loop b — s decays

** Independent of (controversial) |[V,;]

** It would imply the existence of a BSM CP-odd phase

Important input for SM tests: ¢

_ fB./BB, |AMgMp,
de AV BBd A—1\48]\4'361

3

' Vid
Vis

* Many uncertainties in the theoretical (lattice) determination cancel
totally or partially in the ratio



BY — BY mixing: Ny =2+ 1| Preliminary

FNAL/MILC

(talk by R. Todd Evans)

HPQCD

# Calculation of all the matrix elements needed to determine
AMd,S, AFd,S and f

# MILC configurations: Asqtad for light sea (and valence)
quarks (mm: ~ 230MeV)

b quarks Fermilab NRQCD
a(fm) 0.15, 0.12, 0.09 0.12, 0.09
light sea masses 3+4+4+4 2 4 4+ 2
light valence masses 6 for each sea mass full QCD

# Simultaneous fits of the 2-pt and 3-pt correlators for any

four-fermion operator

# Perturbative renormalization: one loop.




BY — BY mixing: Ny =2+ 1| Preliminary results for fg_ \/MBqBBq

0-9 T I T I T I T I T I T I T
T T I B a012fm |
I 1 e L A a009f 7
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045 02 0.4 06 0.8 1 mseal, /m
/ vaence ight s
m

All systematic sources included in
Renormalization not applied yet.
error bars.



BY — BY mixing: Ny =2+ 1| Preliminary results for qu \/MBqBBq

09 T T T T T T T T T T T T
o I B a012fm
I L= L A a009f 7
08k &=0.12 fm, am ™ =0.005 _ ™ Preliminary aeLuoIm
— ® a=0.12fm, am’*=0.007 > 08 .
> (@
E> 0.751 m a=0.12fm, am**=0010 ] & s
@ m a=0.12fm, am’=0.020 0751 -
O S
o 07 . 3
2 i E}E - & 0.7} |
G 0651 % ﬁ | g
4 g L _
= | . E 1 M 065
m 0.6 _| m - i
mcr 2 0.6 —
s l <. °
= - 055~ _ Lo i ]
= i Preliminary . 0.551- .
05 _ |
0 5 1 I 1 I 1 I 1 I 1 I 1 I 1
s 0 01 02 0.3 0.4 05 06
045 02 0.4 06 0.8 1 mseal, /m
vaence ight s
q/ m,

All systematic sources included in
Renormalization not applied yet.

# Statistics+fitting errors: 1 —4% (BY-BY)

error bars.

# Very mild dependence on light sea quark masses.



BY — BY mixing: Ny =2+ 1| Preliminary results for qu \/MBqBBq

09 T T T T T T T T T T T T
o I B a012fm
I L= L A a009f 7
08k &=0.12 fm, am ™ =0.005 _ ™ Preliminary aeLuoIm
— ® a=0.12fm, am’*=0.007 > 08 .
> (@
E> 0.751 m a=0.12fm, am**=0010 ] & s
@ m a=0.12fm, am’=0.020 0751 -
O S
o 07 . 3
2 i E}E - & 0.7} |
G 0651 % ﬁ | g
4 g L _
= | . E 1 M 065
m 0.6 _| m - i
mU 2 0.6 —
s l <. °
= - 055~ _ Lo i ]
= i Preliminary . 0.551- .
05 _ |
0 5 1 I 1 I 1 I 1 I 1 I 1 I 1
s 0 01 02 0.3 0.4 05 06
045 02 0.4 06 0.8 1 mseal, /m
vaence ight s
q/ m,

All systematic sources included in
Renormalization not applied yet.

# Statistics+fitting errors: 1 —4% (BY-BY)

error bars.

# Very mild dependence on light sea quark masses.

# Fine lattice points fall on the coarse line — small discretization errors.
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All systematic sources included in
Renormalization not applied yet.

# Statistics+fitting errors: 1 —4% (BY-BY)

error bars.

# Very mild dependence on light sea quark masses.
# Fine lattice points fall on the coarse line — small discretization errors.

* HPQCD Relativistic corrections (after power law subtraction)
are ~ 5 — 6% for coarse and ~ 3 — 4% for fine.
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* Very small discretization errors
and very mild light quark mass
dependence.
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* Very small discretization errors
and very mild light quark mass
dependence.

# Very good agreement between both coll. — small systematic
associated with heavy quark discretization.
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Preliminary results for ¢

(FNAL/MILC & HPQCD)

Preliminary

* Only full QCD for FNAL /MILC

a=0.12 fm, HPQCD
a=0.09 fm, HPQCD
a=0.12 fm, FNAL/MILC
a=0.09 fm, FNAL/MILC

| <@»m

chiral extrapolation (after a=0 and fix m)

shown.

Il
0 0.02

0.04 0.06

1 Mignt

0.08

Statistical errors: 1 — 3%

* Very small discretization errors
and very mild light quark mass
dependence.

# Very good agreement between both coll. — small systematic
associated with heavy quark discretization.

# FNAL/MILC: Simultaneous chiral and continuum extrapolation with
SxPT at NLO + NNLO analytic terms:

£ =1.2114 0.038 + 0.024cstimate




5. Heavy quark masses

Charm quark mass me

HPQCD, Chetyrkin, Kuhn, Steinhauser & Sturm, arXiv:0805.2999
Nf=2+1 (talk by P. Lepage)

# Method analogous to the extraction of m. from dispersion relations using
perturbative determination of zero-momentum moments of current-current

correlators and experimental data from eTe~ — hadrons.

# m,. extracted from
* moments of charm-quark P, V and A correlators
* 4-loop continuum perturbation theory
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# m. extracted from

* moments of charm-quark P, V and A correlators
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* HISQ action used to determine moments G, (j5 = Yevs1e)
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5. Heavy quark masses

Charm quark mass me.

HPQCD, Chetyrkin, Kuhn, Steinhauser & Sturm, arXiv:0805.2999
Nf=2+1 (talk by P. Lepage)

# Method analogous to the extraction of m_. from dispersion relations using
perturbative determination of zero-momentum moments of current-current

correlators and experimental data from eTe~ — hadrons.

# m. extracted from
*

* 4-loop continuum perturbation theory to determine gy, (ag;g(1), n/me)

G, =) (t/a)"G(t) with G(t) = a” Z(am00)2<0|j5(f, t)735(0, 0)|0)

Qn(am(ﬂ)7 :u’/mc)

G, = n—4
(am¥(w))




Charm quark mass mec

HPQCD, Chetyrkin, Kuhn, Steinhauser & Sturm, arXiv:0805.2999

Nf =241 (talk by P. Lepage)
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Charm quark mass mec

Nf =241 ( )
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* Cut-off effects decrease with n, _ i
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8 12 16 s 12 16 and negligible taste-changing
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(talk by P. Lepage)

# Updated value: including superfine (a = 0.06 fm) lattice data and
new O(a?) contributions in the perturbation theory for n = 8 Preliminary

mMS (m.) = 1.269(9)GeV mMS (3GeV) = 0.988(10)GeV

continuum analysis: mM5(3GeV) = 0.986(13)GeV /
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# Updated value: including superfine (a = 0.06 fm) lattice data and
new O(a?) contributions in the perturbation theory for n = 8 Preliminary

mMS (m.) = 1.269(9)GeV mMS (3GeV) = 0.988(10)GeV
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# The method can be applied to determination of m; with

* Y currents.
* NRQCD for the b—quarks
* (Multiplicative) renormalization factors cancelled by taking ratios
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Charm quark mass me

HPQCD, Chetyrkin, Kuhn, Steinhauser & Sturm, arXiv:0805.2999
Nf =241 (talk by P. Lepage)

# Updated value: including superfine (a = 0.06 fm) lattice data and
new O(a?) contributions in the perturbation theory for n = 8 Preliminary

mMS (m.) = 1.269(9)GeV mMS (3GeV) = 0.988(10)GeV

continuum analysis: mM5(3GeV) = 0.986(13)GeV /

# The method can be applied to determination of m; with

* Y currents.
* NRQCD for the b—quarks
* (Multiplicative) renormalization factors cancelled by taking ratios

| | 1/2
() — _am? cli) gl IS B L
By = 50mon (G(j)2 ) — my*° (my,) = 4.20(4)* Preliminary

continuum analysis: mM5(m,) = 4.16(3)GeV 4/



Charm quark mass me

HPQCD, Chetyrkin, Kuhn, Steinhauser & Sturm, arXiv:0805.2999

Nf=2+1 (talk by P. Lepage)

# Updated value: including superfine (a = 0.06 fm) lattice data and
new O(a?) contributions in the perturbation theory for n = 8 Preliminary

mMS (m.) = 1.269(9)GeV mMS (3GeV) = 0.988(10)GeV

continuum analysis: mM5(3GeV) = 0.986(13)GeV /

# The method can be applied to determination of m; with

* Y currents.
* NRQCD for the b—quarks
* (Multiplicative) renormalization factors cancelled by taking ratios

| o\ 1/2
() — amd [ G§) G{Y 7S B . .
Ry’ = Samor (G(j) ~60) — my" P (my) = 4.20(4)* Preliminary
n—2 n—2
continuum analysis: mM5(m,) = 4.16(3)GeV 4/

# Interesting application: Non perturbative calculation of
renormalization coefficients for H — H and H — L currents.



Charm quark mass mec

HPQCD | Ny =2+ 1| (talk by L. Allison) iN progress

# Different approach using also HISQ formulation.

* Use 2-loop perturbation theory (traditional and high-3 techniques).

mMS (3GeV) = 0.983(25)GeV

* Determination of m./ms — extraction of ms.



Charm quark mass mec

—

TWQCD, PLB 651(2007)171 | Ny =0

# Exploratory study: DW quarks in a small volume/fine lattice.
mMS(m.) = 1.16 & 0.04*GeV from n, m™M°(m;) = 4.65 & 0.05* GeV from Y (9460)

*

error is an estimate not including all systematics.

# Prediction for m,, = 9383(4)(2)MeV agrees with recent experimental
measurement by BaBar, arxiv:0807.1086: m,, (15) = 9388.975 % £ 2.7MeV
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# Same set-up as for the fp_ calculation: HQET and SS method.
* RGI mass fixed using physical mpg,

* Non-perturbative renormalization

MECT = 6.88(10)GeV — | mM 5 (my,) = 4.42(6)GeV




Bottom quark mass my

# The extraction of |V,;| from inclusive decays is extremely sensitive
to the value of my

Guazzini, Sommer and Tantalo, JHEP 0801(2008)076 | Ny =0

# Same set-up as for the fp_ calculation: HQET and SS method.
* RGI mass fixed using physical mp,

* Non-perturbative renormalization

MECT = 6.88(10)GeV — | mM 5 (my,) = 4.42(6)GeV

ALPHA, JHEP 0701 (2007) 007 | Ny =0

# NP HQET: static + 1/m

MECT = 6.758(86)GeV — | milS (my,) = 4.347(48)GeV




Bottom quark mass my

# The extraction of |V,;| from inclusive decays is extremely sensitive
to the value of my

Need accurate unquenched determination




6. Conclusions and outlook

# Precise lattice calculations of hadronic matrix elements in the heavy
sector are needed for extracting Standard Model parameters and
are crucial for testing the SM.

* Complementary to direct searches in studying and constraining
possible NP.

* Possible indications of NP already in leptonic decays and B? — B°

mIXIng str gr Vcblr |Vub ! mb j ©0g

** Priority should be given to improvements in the calculations
of the relevant parameters.

* Precision needs Ny =2+ 1 and all systematic errors addressed.
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# Precise lattice calculations of hadronic matrix elements in the heavy
sector are needed for extracting Standard Model parameters and
are crucial for testing the SM.

* Complementary to direct searches in studying and constraining
possible NP.

* Possible indications of NP already in leptonic decays and B? — B°

mIXIng str gr Vcblr |Vub ! mb j ©0g

** Priority should be given to improvements in the calculations
of the relevant parameters.

* Precision needs Ny =2+ 1 and all systematic errors addressed.

# Important progress made in calculations of decay constants, form
factors for B semileptonic decays and me ...

# ... more results in progress for D form factors, BY mixing and my.



# Current and future calculation benefiting from
* Improved of actions and operators.

* Improved statistics: all-to-all propagators, RW sources, smearing

techniques ...

* Improved methods: Twisted boundary conditions,
model-independent parametrization of form factors, double ratios.



# Current and future calculation benefiting from
* Improved of actions and operators.

* Improved statistics: all-to-all propagators, RW sources, smearing

techniques ...

* Improved methods: Twisted boundary conditions,
model-independent parametrization of form factors, double ratios.

# BY mixing results can be extended to matrix elements of
four-fermion which only contribute BSM. Same for short-distance
contributions to DY mixing.



Thanks to: Benoit Blossier, Christine Davies, Aida
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Marco Panero, Silvano Simula, Junko Shigemitsu,
Amarjit Soni, Nazario Tantalo, Cecilia Tarantino,
Ruth Van de Water, Georg von Hippel.

—or sending material and useful discussions
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BY and DY mixing beyond the SM

# Effects of heavy new particles seen in the form of effective operators
built with SM degrees of freedom
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# Effects of heavy new particles seen in the form of effective operators
built with SM degrees of freedom

Heyr - ZC Qﬁzé@
QY = (%E}WV(I — 75)%) (15‘}7”(1 _ 75)»%') SM
QF = (¥5 (0= 7)9}) (1A —9)e])  QF = ($5( = 7)97) (P31 = 1))
1= (310 —v0)wl) (B +00wd)  @F = (F50— 30)9]) (B0 + 7))

@%’2’3 = Q{5 3 with the replacement (I & v5)— (I F ~5)

where 1), is a heavy fermion field (b or c¢) and v, a light fermion field.



BY and DY mixing beyond the SM

# Effects of heavy new particles seen in the form of effective operators
built with SM degrees of freedom

HoY 2 ZCQzﬂLZé@z

¢ = (Fiy” (1= )92 ) (Dhr" (1 — s) ) -
Qf = (91— vy WI —wd)  @f = (B = e)8d) (FH— o))
) (% Qf = (b1 — vs)w]) (PF(L+ 75)vE)

@‘11’2’3 = ‘11 > 3 With the replacement (I £ v5)— (I F v5)

where 1), is a heavy fermion field (b or c¢) and v, a light fermion field.

o Ci,@; Wilson coeff. calculated for a particular BSM theory
o (FO|Q;|FP) calculated on the lattice
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7 SM predictions + BSM contributions + experiment

— | constraints on BSM physics

F. Gabbiani et al, Nucl.Phys.B477 (1996) general SUSY extensions
D. Becirevi¢ et al, Nucl.Phys.B634 (2002) general SUSY models

E. Golowich, J. Hewett, S. Pakvasa and A. Petrov, Phys.Rev.D 76 (2007)

Becirevic€ et al, JHEP 0204 (2002)
# Same programme as for the SM can be applied for extra operators

# FNAL/MILC:
* Existing open propagator can be used for the BY mixing analysis.
* Same code can be used for short-distance contributions to DY mixing.

# HPQCD: Same code can be used for the BY mixing analysis.
* One-loop renormalization coefficients already calculated

E. G. ,J. Shigemitsu and H. Trottier, arXiv:0804.1557



Charm quark mass mec

HPQCD, Chetyrkin, Kuhn, Steinhauser & Sturm, arXiv:0805.2999

Nf =241 (talk by P. Lepage)

# In producing the moments one must control O((am.)™) and
parameters’ tuning errors (a, am.).

Define reduced moments

lattice continuum PT
G4/G§LO) g4/g§l0) for n =4,
Ryp = < 1/(n—4 (e .
amy, (Gn/G%O)) /( ) ra(agrg, b/me) for n > 6,
| 2amoc 2me(p)/mn,

1/(n—4)

with r,, = (gn/gg‘))) and Gé?)/gff) moments at first order in

lattice/continuum PT — reduce discretization effects.



—1

a amoy, /d amqs amoe L/a T/a  Ngg
1.31 0.013 0.066  0.850 16 48 631
1.60 0.014 0.055 0.660 20 64 595
2.26 0.007 0.037  0.430 28 96 566

# Extra simulation performed to test sea quark dependence (also PT
estimate) and finite volume effects (amg , /4 = 0.007, L/a = 24) and
(amg y/q = 0.028, L/a =20) — errors < 0.2%.

# Analysis repeated with different correlators:

me(p)/GeV

me(p)/GeV

i) = Pe(z+ au)vwc(w) i =

1.2
1.1

1
0.9

12
1.1 E

0.9

wc< Tutbe(); 5ot = Pe(x)y5Vutbe(x)

(5)

(5p)

Agreement for different

:

= momenta/correlators

— Check of systematic errors
' and negligible taste-changing

'Js 1 F Jsu =
:@§§§§§§é§§%%%%é
Q%HH@ E_MMH
_élal1l2l1l6___8lll2|1|6
Moment n Moment n

effects



BY — BY mixing

ETMC, JHEP 0805(2008)065 | Ny = 2

# Non-perturbative renormalization and Renormalization Group running
of relevant four-fermion operators with O(a) improved Wilson fermions

completed.

* Static (HYP2) heavy quarks

* Parity odd operators:
** Protected from non-continuum like operator mixing
** Can be mapped to parity even operators via addition of a chirally tm term.

* Schrodinger Functional methods.

7# Limitations current calculation o . ctatistics at the three strongest

* Increased statistical fluctuations couplings
at the three strongest couplings * Simulations closer to the continuum
* Need control over continuum * Removing O (a) discretization effects

extrapolation (improving operators)



