"Ask not what the extra dimension can do for you..."

(or the successes and challenges of AdS/QCD)

Ami Katz Boston U.

Lattice2008

- I. What is AdS/QCD?
- 2. Top-down vs. bottom-up paths.
- 3. Results/challenges facing the approach.

Old Myth: G.T. at large N simplifies ->> a weakly coupled string theory.

<u>AdS/CFT</u>: An additional simplification occurs for a large hierarchy of anomalous dimension of operators:

a few have $\Delta_O \sim 1$, but most have $\Delta_O >> 1$.

AdS/CFT duality:

G.T. is dual to an extra-dimensional (ED) theory:

Local primary operators of G.T., O(x).

Fields propagating in ED curved space $\phi(x, z)$.

 m_{ϕ}

Holographic Dictionary

G.T. $\bar{q}q(x)$ $J_{\mu}(x) = \bar{q}\gamma_{\mu}q(x)$ $T_{\mu\nu}(x)$

 $\bar{q}\gamma_{\mu_1}D_{\mu_2}...D_{\mu_n}q(x)$

ED dual

 $\phi(x,z)$

 $A_{\mu}(x,z)$

 $h_{\mu\nu}(x,z)$

 $\phi_{\mu_1\mu_2\ldots\mu_n}(x,z)$

 $\Delta_O >> 1$ \longrightarrow $m_{\phi} \sim \Delta_O >> 1$ Most ED dual fields decouple. Only left with duals to currents:

$$J_{\mu}, T_{\mu\nu}$$
 (+ superpartners) $\checkmark A_{\mu}, h_{\mu\nu}$ (+ super)

(The string theory simplifies, becoming a local field theory)

$$g_{\scriptscriptstyle ED} \sim \frac{1}{\sqrt{N_c}}$$

At first: ED duals only for conformal theories were

found:

$$ds^{2} = \frac{1}{z^{2}} (dx_{\mu} dx^{\mu} - dz^{2})$$

Dilatation: $x^{\mu} \rightarrow \lambda x^{\mu}, \ z \rightarrow \lambda z$

Towards QCD

<u>Top-down approach</u>: Study of particular field theories (mostly SUSY) with known ED duals in an attempt to extract universal/qualitative features.

<u>Bottom-up approach</u>: An attempt to build ED models for certain limited sectors of QCD that make quantitative predictions.

Top-down approach

- Studies of χSB , spectra, DIS, etc in theories with large hierarchies in anomalous dimensions of operators.
- QFT dynamics at finite temperature and chemical potential: Phase diagrams, transport properties, and response to external E & B fields:
 - I. RHIC physics: small shear viscosity consistent with strong coupling (qualitatively similar to strongly coupled known duals).
- 2. Condensed matter physics: theories which reflect some properties of superconductors.

- Challenges for top-down:
- I. Calculations are under control at large N.
- 2. All field theories described have a large hierarchy in the dimensions of operators.
- 3. It is not yet clear how to connect the calculations to QCD data at a more quantitative level.

FT with simple ED duals are Probably rare

- I. Generically, a strongly coupled CFT has $\Delta_O \sim 1$.
- 2. Even for a CFT with a marginal deformation, there is no guarantee that $\Delta_O \sim (def. parameter)$.
- 3. FT with weakly coupled duals have correlation functions with certain polarization structures suppressed (not due to any symmetry).

QCD as a test for ED models

w/ Erlich, Schwartz, Son, and Stephanov.

<u>QCD</u>: $\Delta_O \sim O(1)$ (no hierarchy).

ED dual contains infinitely many fields.

<u>Conjecture</u>: Lightest states are well described by the lowest dimension operators. —>

Might only need to consider a few ED fields.

Evidence for the conjecture:

- I. True for G.T. with known ED duals.
- 2. Suggested by success of ED models for lightest QCD resonances.
- 3. True in 2D QCD at large N.
- 4. LATTICE?

Modeling the lightest QCD states

- I. Include only lowest dimension operators.
- 2. Use QCD OPE's as a guide for constructing the 5D metric.
- 3. Model confinement with a hard wall + b.c.

5D dual $\phi(x,z)$ $\bar{q}q(x)$ $J^V_\mu(x), \ J^A_\mu(x)$ $V_{\mu}(x,z), A_{\mu}(x,z)$ $T_{\mu\nu}(x)$ $h_{\mu\nu}(x,z)$ $\phi_{\{\mu_1\mu_2...\mu_n\}}(x,z)$ $\bar{q}\gamma_{\{\mu_1}D_{\mu_2}...D_{\mu_n\}}q(x), \ G^a_{\nu\{\mu_1}D_{\mu_2}...D_{\mu_{n-1}}G^{a\nu}_{\mu_n\}}(x)$

 $SU(3)_L \times SU(3)_R \to SU(3)_V$

$$\int_{x} e^{iqx} \langle J^{a}_{\mu}(x) J^{b}_{\nu}(0) \rangle = \delta^{ab} (q_{\mu}q_{\nu} - q^{2}g_{\mu\nu}) \Pi(Q^{2})$$

LATTICE - Help find condensates at large N.

QCD-lite ModelAlso $c_{nV}, c_{nA} = 0.$ Da Rold & Pomarol

 $z_{IR} = 1/(346MeV), \ \langle \bar{q}q \rangle = (308MeV)^3, \ m_q = 2.3MeV, \ m_s = 35MeV.$

Observable	Measured	Model	Width
	(MeV)	(MeV)	(MeV)
m_π	139.6	141	-
$m_ ho$	775.8	832	146
m_{a_1}	$1230{\pm}40$	1220	250-400
f_{π}	92.4	84	-
$F_{ ho}^{1/2}$	345 ± 8	353	-
$F_{a_1}^{1/2}$	433 ± 13	440	-
m_{K^*}	892	897	51
m_{ϕ}	1020	994	4
m_{K_1}	1272 ± 7	1290	90 ± 2
m_K	498	411	-
f_k	113	117	-
m_{f_2}	1275	1236	185
m_{ω_3}	1667 ± 4	1656	$168{\pm}10$
m_{f_4}	$2025{\pm}8$	2058	$225{\pm}18$
$m_{ ho_5}$	$2330{\pm}35$	2448	$400{\pm}100$
m_{f_6}	$2465{\pm}50$	2829	255 ± 40
m_η	548	520	-
$m_{\eta'}$	958	867	-
$\Gamma(f_2 \rightarrow 2\gamma)$	$2.6{\pm}.24~{\rm KeV}$	2.71 KeV	-

Additional Progress

- I. Baryons as 5D solitons (similar to skyrmions). Pomarol & Wulzer
- 2. Anomaly physics from 5D Chern-Simmons term.
- 3. Modification of IR geometry away from the hard wall to reproduce Regge physics: $M_J^2 \sim J$.

2D QCD at large N (w/T. Okui)

The PDF of the n-th excited meson is given by

$$f_q^n(x) = |\phi_n(x)|^2$$

Solutions for highly excited modes are :

$$\phi_n(x) \simeq \sqrt{2} \cos[n\pi x]$$
, $m_n^2 \simeq \pi^2 \Lambda^2 n$.

In terms of the primary operators, O_k , $\Delta_k \sim k$:

$$\phi_n(x) = \sum_k \langle 0 | O_k | n \rangle P_{k-1}(2x-1)$$

The lightest states have the biggest overlap with the lowest dimension operators:

$$\langle 0|O_k|n\rangle << 1, \ k \gtrsim n$$

Parton-x and the extra dimensional coordinate are related by a transform:

Conclusions

- 1. AdS/QCD captures non-perturbative aspects of QCD both quantitatively and qualitatively.
- 2. Bottom-up models offer a connection between lowenergy parameters (of lightest resonances) and the UV theory (via the OPE).
- 3. These models are a useful tool for the LHC, where we might access only a few resonances. Similar to Randall-Sundrum models.
- 4. They work better than they should.
- 5. LATTICE may help clarify the reach and limitations of the approach.