Dynamical Fermion Simulations: A Critical Status Report

Karl Jansen

- Lattice actions

 (an over-critical account)
- Performance comparison

Systematics

- continuum limit scaling
- finite size effects
- chiral perturbation theory
- renormalization
- effects of strange quark
- mixed action

Conclusion

Welcome to the lattice and its dangerous animals

Bem-vindos 'a rede e seus animals perigosos

Добро пожаловать в теорию калибровочных полей на решётках... И в мир её опасных животных!

Bienvenidos a la Red y sus peligrosos animales

Dobrodosli na rešetku i opasne životinje na njoj

Willkommen auf dem Gitter und seinen gefährlichen Tieren

欢迎进入格点, 动物凶猛!

Witajcie na sieci, gdzie żyją niebezpieczne zwierzęta Καλώς ήρθατε στο πλέγμα και τα άγρια θηρία του

The parameter landscape (thanks to G. Herdoiza)

Non-perturbatively improved Wilson Fermions

This is most probably the best formulation of lattice QCD!

DRAWBACK

- for full non-perturbative O(a)-improvement
 - → nonperturbative operator improvement neccessary
 - \rightarrow very demanding (e.g. PDFs, formfactors etc.)
 - \rightarrow sometimes neglected
- mixing under renormalization
- Moderate smearing can be helpful does it harm?
- No infrared regulating quark mass

Non-perturbatively improved Wilson Fermions

• No infrared regulating quark mass

however

stability through spectral gap (CERN)

smallest eigenvalue distribution with median $ar{\mu}$ and width σ

median of distribution $\bar{\mu} \approx Zm$ demanding $\bar{\mu} \ge 3\sigma$ $\rightarrow m \ge 3a/Z\sqrt{V}$ $\rightarrow m_{\pi}L \ge \sqrt{3\sqrt{2}aB/Z}$

Stability and Meta-Stability (C. Urbach, K.J.)

Wilson plaquette gauge action and Wilson fermion action

β	L	$m_{\rm PS}L$	$ar{\mu}$	σ
5.2	16	8	0.0103	0.0013
5.3	16	4	0.0038	0.0010

 \Rightarrow all criteria fullfilled

- \rightarrow different (hot and cold) starts
- \rightarrow long-living metastable states at $\beta=5.2$ and $\beta=5.3$

→ check for metastable behaviour towards the chiral limit (Sharpe, Wu; Münster, Hofmann; Scorzato; Farchioni et.al.)

rooted staggered fermions

This is most probably the best formulation of lattice QCD!

DRAWBACK

• rooting issue still being discussed

- non-local at $a > 0 \Rightarrow$ scaling law towards continuum limit?
- theoretical analysis (Shamir; Sharpe; Bernard, Golterman, Shamir, Sharpe; Adams)
- non-perturbative couplings of tastes (Creutz)
- usage of non-exact **RHMD** algorithm
 - used for large volume simulations
 - no effect on plaquette (Toussaint) difference: $O(10^{-7})$ (is it safe? what about e.g. correlators?)

- exact RHMC algorithm about factor of 2 more expensive (Gottlieb, Toussaint)

rooted staggered fermions: two points of view

view l

- First continuum limit, then chiral limit
- needs minimal pion mass
 - continuum ChPT: taste splitting $\ll M_{
 m PS}^2$
 - staggered ChPT: taste splitting $\lesssim M_{\rm PS}^2$ $a = 0.060 {\rm fm}: M_{\rm PS}^2 = (\approx 220 {\rm MeV})^2 \approx 3*$ taste splitting $a = 0.125 {\rm fm}: M_{\rm PS}^2 = (\approx 250 {\rm MeV})^2 \approx$ taste splitting
- Symanzik-like analysis (Bernard, Golterman, Shamir) $D_{\text{taste}} = D_{\text{inv}} + \Delta$ bound: $||D_{\text{inv}}^{-1}\Delta|| \lesssim a/(\underbrace{ma_c^2}_{\text{blocked}})$

 \Rightarrow continuum limit first

 Order of limits: studied in Schwingermodel: (Dürr, Hoelbling)

strategy seems to be working for all practical purposes \rightarrow visit MILC presentations

view II

- Explore the chiral limit at fixed lattice spacing in the end we are theorists ...
- check 't Hooft vertex (Creutz) (more general: observables related to instanton physics)
- explore ϵ -regime with simulations and chiral perturbation theory

maximally twisted mass fermions

This is most probably the best formulation of lattice QCD!

DRAWBACK

- neutral pion becomes zero at $\mu_{\rm tm} = \mu_{\rm tm}^{\rm crit}$
- isospin breaking

observation I

charged minus neutral

 \rightarrow large cutoff effects in <u>neutral</u> pion mass

maximally twisted mass fermions

Observation II

$$R_O = \frac{O^{\pm} - O^0}{O^{\pm}}$$

	eta	$a\mu_q$	R_O
$af_{\rm PS}$	3.90	0.004	0.04(06)
	4.05	0.003	-0.03(06)
$am_{\rm V}$	3.90	0.004	0.02(07)
	4.05	0.003	-0.10(11)
$af_{\rm V}$	3.90	0.004	-0.07(18)
	4.05	0.003	-0.31(29)
am_{Δ}	3.90	0.004	0.022(29)
	4.05	0.003	-0.004(45)

 Isospin splittings compatible with zero for other (so far) considered observables

maximally twisted mass fermions

interpretation

analysis a la Symanzik

 $(m_{\rm PS}^0)^2 = m_\pi^2 + a^2 \zeta_\pi^2 + \mathcal{O}(a^2 m_\pi^2, a^4), \qquad \zeta_\pi \equiv \langle \pi^0 | \mathcal{L}_6 | \pi^0 \rangle |_{\rm cont}$

 $(m_{\rm PS}^{\pm})^2 = m_{\pi}^2 + \mathcal{O}(a^2 m_{\pi}^2, a^4)$

 ζ_π has a large contribution:

 $\zeta_{\pi}^2/\Lambda_{\rm QCD}^4 \sim 25 \gg a^2 \Lambda_{\rm QCD}^4$

size of isospin violation needs case by case study

high (6) level stout smeared Wilson Fermions

This is most probably the best formulation of lattice QCD!

DRAWBACK

- alter short distance behaviour?
- → here: look at static action (Farchioni, Montvay, Urbach, Wagner, K.J.)

 V_{eff} from below

no change at R/a relevant for r_0

shift $r_0 \approx 6.0 \rightarrow r_0 \approx 4.8$ why smaller?

 \rightarrow compare lattice spacing from fermionic observable \rightarrow in progress

high (6) level stout smeared Wilson Fermions

• alter short distance behaviour?

 \rightarrow check localization range of gauge field interaction

 \rightarrow find exponential localization

Domain wall Fermions

HE ALLIGATORS

This is most probably the best formulation of lattice QCD!

DRAWBACK

- Domain Wall Fermions with N_S < ∞ break chiral symmetry (as do imprecisely approximated overlap fermions)
 ← studied by RBC-UKQCD collaboration
- cost of improved chiral symmetry? \rightarrow later
- comparison $m_{
 m res}$ and $m_{
 m sea}^{
 m min}$

	$m_{ m res}$	$m_{\rm val}^{\rm min}$	$m_{\rm sea}^{\rm min}$	a^{-1}
CAU	0.00315(2)	0.001	0.005	1.73
BEWARE OF	0.000665(13)	0.002	0.004	2.42

Domain wall Fermions

Changing topology

- eigenvalue density of kernel operator ho(0) o 0 for $eta o \infty$ $m_{
 m res} \propto
 ho(0)/L_s$
 - \Rightarrow topology change forbidden for $a \rightarrow 0$

- consequence of negative quark mass plaquette bound
- holds true also for overlap fermions

Changing topology

what about other fermions?

Schwinger model with Wilson fermions (Christian, K.J.)

difficulty to change topology in principle problem for everybody \rightarrow think about algorithms

overlap fermions

This is most probably the best formulation of lattice QCD!

Nigel Cundy	Topology with dynamical overlap fermions
	Summary
• Dynamical overlap fermio	ons are difficult
 Correctly sampling topole fermions is even more difference 	ogical sectors with dynamical overlap ficult
• But it is possible	
 And with luck, I will have the next century 	e some physics to share some time in
However, there are simu see also (DeGrand, Sch	ulations: 8 ³ · 16 näfer)
	<i>,</i>
what about the Mand	ula concern? 29/29

overlap fermions in fixed topology

This is most probably the best formulation of lattice QCD!

- effects of fixing topology
 - topological finite size effects (Brower et.al., Aoki et.al)
 - algorithmic ergodocity
 - loss of clustering properties
- worth the effort? \rightarrow main motivation: ϵ -regime
 - fixed point action

(P. Hasenfratz, Hierl, Maillart, Niedermayer, A. Schäfer, Weiermann, Weingart)

- Wilson action (A. Hasenfratz, Hoffman, S. Schäfer)
- twisted mass action (Nube, Shindler, Urbach, Wenger, K.J.)
- ← formulae in ChPT available summing over all topologies
- Wilson determinant and O(a) effects?
- $au_{\mathrm{int},N_{\mathrm{inv}}} \propto O(100)$; Q independent?
- continuum form of chiral Lagrangian but breaking of Lorentz invariance

Other Collaborations/Fermions

These are for sure ...

- Flic fermions (CSSM)
- Chirally improved fermions (BGR collaboration)
- Fixed point action (Bern group)
- Stout smeared Wilson (Hasenfratz, Hoffmann, Schäfer)

Disclaimer: Don't forget, I have been over-critical here and played devil's advocate!

In general, I think, we are doing very well

Cost of simulations

cost formula

$$C_{\rm op} = k \left(\frac{20 \text{ MeV}}{\bar{m}}\right)^{c_m} \left(\frac{L}{3 \text{ fm}}\right)^{c_L} \left(\frac{0.1 \text{ fm}}{a}\right)^{c_a}$$
 Tflops × years

 \bar{m} renormalized quark mass at 2GeV

(sorry for shoehorning you	to this form)
----------------------------	---------------

action	k	c_m	c_L	c_a
Wilson (DDHMC)	0.3	1	5	6
staggered (RHMC)	0.016	1	4	4
tmQCD (MTMHMC)	0.8 - 2.1	2	5	6

 $-k, c_a, c_m, c_L: large$ uncertainties

- not to be taken as definite
- e.g. c_a not confirmed by ETMC data (scaling in a much weaker)

Updated Berlin Wall plot

tremenduous algorithmic improvement folded with machine capacities outperforming Moore's law ⇒ realistic simulations

It's universality

Continuum limit scaling (Urbach, K.J.)

- use r_0 but
 - consider r_0 as scaling variable
 - <u>not</u> as physical quantity
- r_0 better than using the scale a^{-1}
- r_0 extrapolated to the physical point
- fix $r_0 M_{\rm PS} = 0.8, 1.0, 1.2$
- consider $r_0 f_{\rm PS}$ and $r_0 M_{\rm nucleon}$
- finite size corrections are taken into account $(f_{\rm PS}, M_{\rm PS})$

note: $f_{\rm PS}$ does not need renormalization for overlap, twisted mass and staggered fermions

• the nucleon mass revisited

only smallest lattice spacing

 \rightarrow effects of scale setting

 \rightarrow find overall consistency

 \rightarrow eventually combined continuum limit possible

no signs of common scaling

Continuum limit scaling: f_{PS}

possible sources of mismatch

- non-perturbative renormalization factor Z_A
- value for r_0 varies from $r_0 = 0.45 - 0.5$ fm varies in time ...
- finite size effects
- N_f versus $N_f = 2 + 1$
- \Rightarrow need to understand this!

Do we need non-perturbative renormalization?

• strange quark mass (tm-example, arXiv:0709.4574)

 $Z_P^{\mathrm{RI-MOM}}(1/a) = 0.39(1)(2) \leftarrow \text{non-perturbative RI-MOM method}$ $Z_P^{\mathrm{BPT}}(1/a) \simeq 0.57(5) \leftarrow \text{one-loop boosted perturbation theory}$

$m_q^{\overline{\mathrm{MS}}}(2\mathrm{GeV})\mathrm{MeV}$	perturbative	non-perturbative
$m_{ud} \ m_{ud}$ (PACS-CS)	$2.63 \pm 0.08 \pm 0.36$ 2.53 ± 0.05	$3.85 \pm 0.12 \pm 0.4$
m_s m_s (PACS-CS)	$72 \pm 2 \pm 9$ 72.7 ± 0.8	$105 \pm 3 \pm 9$

Do we need non-perturbative renormalization?

- want massless renormalization scheme
 - $N_f = 2$ **RI-MOM:** chiral extrapolation **SF:** direct at $m_{\text{quark}} = 0$
 - N_f = 2 + 1
 RI-MOM: presently, only light quarks chirally extrapolated, strange fixed (RBC-UKQCD) estimates systematic effects
 SF: first simulations (talk by Taniguchi)
- renormalization needs dedicated runs with $N_f = 3$ mass degenerate quarks
- appetizer: this checks simultaneously SU(3) ChPT
 MILC is planning to perform such runs

Effects of dynamical strange?

strange quark mass compilation (compiled by V. Lubicz)

 \rightarrow no obvious effect of dynamical strange quark

Effects of dynamical strange?

take the $\Omega(sss - baryon)$ -mass: chiral limit, no strong decay

 \rightarrow no obvious effect (however, large errors)

Mixed action

overlap on twisted mass sea: match $M_{\rm PS}$ (Garron, Scorzato)

 \rightarrow find at matching point: $f_{\rm PS}({\rm tm}) = 0.0646(4)$

 $f_{\rm PS}(\text{overlap}) = 0.054(3)$

domain wall on rooted staggered fermions: match $M_{\rm PS}$ (LHP collaboration)

 \rightarrow find at matching point: $M_{\text{nucleon}}(\text{staggered}) = 0.723(6)$

 $M_{\rm nucleon}({\rm domainwall}) = 0.696(7)$

check cutoff effects in mixed action calculations

→ chiral perturbation theory analysis (Bär, Rupak, Shoresh; Golterman, Izubuchi, Shamir)

where to apply 1-loop and 2-loop chiral perturbation theory? • $SU(2) \chi PT$

NNLO needed?

scalar radius:

 $\leftarrow \mathsf{JLQCD}$

$$\langle r^2 \rangle_V^{\pi} = \frac{1}{(4\pi f_\pi)^2} \left[\ln \frac{m_\pi^2}{\mu^2} + 12(4\pi^2) l_9 \right]$$

also seen by **ETMC**

$$\langle r^2 \rangle_{\text{charge}}^{\pi} = \frac{1}{(4\pi f_{\pi})^2} \left[\ln \frac{\Lambda_6^2}{2Bm} - 1 \right]$$

 $N_f = 2 + 1$ flavours

• SU(3) chiral perturbation theory example: (PACS-CS)

 \Rightarrow SU(3) not a good description also concluded by other groups $N_f = 2 + 1$ flavours

- SU(2) chiral perturbation theory
 - partially quenched chiral perturbation theory
 - fits work for $m_{\rm quark} \lesssim 0.01 \; (M_{\rm PS} \lesssim 450 \; {\rm MeV})$

rooted staggered perturbation theory add NNLO anayltic terms (only sea quark data shown)

kaon ChPT issue of uncorrelated fits

$N_f = 2 + 1$ flavours

staggered data at $a=0.06{
m fm}$ seem to be close to continuum \Rightarrow

- SU(2) 2-loop continuum chiral perturbation theory (rS χ PT is not catching up to this order)
 - \rightarrow extend fit range

(C. Bernard, MILC)

A comparison

	В	f	$ar{l}_3$	$ar{l}_4$
$SU(2) \times SU(2)$	2.414(61)	0.0665(21)	3.13(33)	4.43(14)
$SU(3) \times SU(3)$	2.457(78)	0.0661(18)	2.87(28)	4.10(05)
MILC $(N_f = 2 + 1)$			0.6(1.2)	3.9(5)
MILC, pure NLO			2.85(07)	_
ETMC $(N_f = 2)$			3.44(08)(35)	4.61(04)(11)
$CERN\ (N_f = 2)$			3.0(5)	_
phenom.			2.9(2.4)	4.4(0.2)

E. Scholz, RBC-UKQCD

Summary chiral perturbation theory

 $N_f = 2$

- SU(2) $\chi {\rm PT}$ seems to work for $M_{\rm PS} \lesssim 450 {\rm MeV}$
 - 2-loop effects seem to be important for pion radii
 - constraining fits, add more observables, go down to 200MeVpion masses

 $N_f = 2 + 1$

- SU(3) χ PT not working for kaon sector
 - to explore SU(3) χ PT \rightarrow need $N_f = 3$ simulations (seems to be request from χ PTheorists (Colangelo))
 - SU(2) $\chi {\rm PT}$ including lattice artefacts works for $M_{\rm PS} \lesssim 450 {\rm MeV}$
 - continuum SU(2) χ PT at NNLO

final check: χ PT after continuum extrapolation

understand scaling

Topological susceptibility

 $\rightarrow \chi_{\mathrm{topo}}$ shows right behaviour in chiral limit

 $\rightarrow \chi_{\mathrm{topo}}$ particularly important for fixed topology

η_2 mass

•
$$\eta_2$$
 $(N_f=2)$ analogue of η' $(N_f=2+1)$

 \rightarrow reach small pion masses

 \rightarrow confirm mass of $\eta_2 pprox 700 {\rm MeV}$

Finite size effects

Comparison of data at several volumes to :

 $\mathsf{rS}\chi\mathsf{PT}$

CDH	(Colangelo,	Dürr,	Haefeli)
-----	-------------	-------	----------

	observed	"boosted"	1-loop rS χ PT
quantity	$28^3 - 20^3$	$\infty - 20^3$	$\infty - 20^3$
af_{π}	1.4(2)%	1.6(2)%	1.1%
af_K	0.4(3) %	0.4(3) %	0.3%
$(am_{\pi})^2$	-1.0(4)%	-1.2(4)%	-0.9%
$(am_K)^2$	-0.4(2)%	-0.4(2)%	-0.2%

observ.	$M_{\rm PS}L$	meas. [%]	CDH [%]
$M_{\rm PS}$	3.0	+6.2	+6.1
$f_{\rm PS}$	3.0	-10.7	-10.3
$M_{\rm PS}$	3.5	+1.1	+1.5
$f_{\rm PS}$	3.5	-1.8	-2.9

(ETMC)

relative deviation:
$$R_O = rac{O_L - O_\infty)}{O_\infty}$$

(MILC)

 $M_{\rm PS}L = 4$

•
$$R_X = (X(L) - X(\infty))/X(\infty)$$

• L = 3 fm

(PACS-CS)

 \rightarrow finite size effects small even at physical point

Dangerous finite size effects

predict: L=2.5fm, $M_{\rm PS}=140$ MeV: 20%

Some bounds for simulations

Getting social

- ILDG: put configurations on the net! (talk by T. Yoshie)
- Codes: publish code (MILC (arXiv:0806.2312), Lüscher, Borici)
- **Techniques:** publish papers with all technical details

Challenges for dynamical simulations

- Decay of unstable particles, resonances
- Disconnected contributions
- Change of topological charge towards the continuum limit
- Blind test of data analysis
- Collaborations with non-lattice people e.g.: (Allison et.al., arXiv:0805.2999)

Conclusion: there is a rooting problem!

Who do we root for now? Which dynasty do we want continuing to wave its victorious flag?

- thanks to algorithmic, machine and conceptual improvements:
 - \rightarrow after many years of preparatory work simulations are done at
 - Pion mass: $200 {
 m MeV} \lesssim M_{
 m PS}$ and even $M_{
 m PS} = 140 {
 m MeV}$
 - lattice spacing: $0.05 {\rm fm} \lesssim a$
 - lattice size: $M_{\rm PS} \cdot L \geq 3.5$
- investigate more: systematics of different lattice formulations: fourth root, stouting, isopin breaking, autocorrelations, residual mass, topology fixing, ...
- observations:
 - scaling towards continuum limit problematic, e.g. $f_{
 m PS}$
 - applicability of $\chi {\rm PT}$ up to the strange quark questionable
 - need massless renormalization with dynamical strange quark
 - dangerous finite size effects, e.g. g_A
 - mixed action may have non-negligible cutoff effects

Conclusion: whom to root for?

• the dynasties:

BMW, CLS, PACS-CS, ETMC, JLQCD, MILC, QCDSF, PACS-CS, RBC-UKQCD Let's go for all \Rightarrow universality will tell

(BMW collaboration)